Rozwiązywanie układów równań liniowych (1)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozwiązywanie układów równań liniowych (1)"

Transkrypt

1 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych etody dokłde pozwlą uzyskie rozwiązi w skończoe liczbie kroków obliczeiowych. etody itercye podą oszcowie poszukiwego rozwiązi z pewym przybliżeiem. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

2 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych Przykłd 6.. Rozwiązć ukłd czterech rówń liiowych z czterem iewidomymi: y z 6y 0z 0 y 8z 8. Rozwiązie Krok : y z y z 8y 9z. Krok : y z y z z. Krok : y z y z z. y y ( ) ( ) z. y y z. y y z () () y y y. z. z. z. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

3 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych Te sposób postępowi zywy est metodą elimici Guss. Wykorzystuemy włściwość rówń liiowych zgodie z którą kombic liiow dwóch rówń posid tkie smo rozwiązie k rówi wyściowe. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

4 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etod elimici Guss Sposób postępowi:. : : : b b b K K K (6.) b A (6.) gdzie: K O K K A (6.) ( T K ) ) (6.) ( T b b b K b. (6.5) riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

5 etody Numerycze i Progrmowie Stro 5 z Wykłd. Rozwiązywie ukłdów rówń liiowych (5) etod elimici Guss Ze względów formlych mcierz A łączy się z wektorem b otrzymuąc mcierz: [ ] ~ K O K K b A A. (6.6) Zkłdmy że 0 i dl kżdego i... przeprowdzmy opercę elimici: ( ) i i i (6.7) mące celu wyelimiowie współczyików i występuących przy wyrzie w kżdym z wierszy mcierzy A czyli z kżdego z rówń ~ K O K K A. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

6 etody Numerycze i Progrmowie Stro 6 z Wykłd. Rozwiązywie ukłdów rówń liiowych (6) etod elimici Guss Zkłdmy że 0 i dl kżdego i... przeprowdzmy opercę elimici: i (6.7) i ( ) i mące celu wyelimiowie współczyików i występuących przy wyrzie w kżdym z wierszy mcierzy A czyli z kżdego z rówń.... K ~ 0 K A. O 0 0 K riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

7 etody Numerycze i Progrmowie Stro 7 z Wykłd. Rozwiązywie ukłdów rówń liiowych (7) etod elimici Guss W te sposób elimiuemy w koleych wierszch z koleych kolum... - współczyiki występuące przy zmiee : i i i (6.8) ( ) dl kżdego i... zkłdąc kżdorzowo że 0. W efekcie uzyskmy mcierz trókątą górą: K 0 K A ~ 0 K. (6.9) O O 0 0 K 0 UWAGA: lemety digoli główe muszą być róże od zer! riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

8 etody Numerycze i Progrmowie Stro 8 z Wykłd. Rozwiązywie ukłdów rówń liiowych (8) etod elimici Guss cierz t przedstwi liiowy ukłd rówń postci:. : : : O K K (6.0) Te ukłd rówń rozwiązuemy metodą koleych podstwień:. Rozwiązuemy te rówie uzyskuąc: (6.). Podstwimy do rówi obliczoe i rozwiązuemy e względem - otrzymuąc: (6.). Te proces obliczeiowy kotyuuemy dl koleych rówń i... otrzymuąc: ii i i i ii i i i i i i i K (6.) riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

9 etody Numerycze i Progrmowie Stro 9 z Wykłd. Rozwiązywie ukłdów rówń liiowych (9) etod elimici Guss Przykłd 6.. Stosuąc metodę elimici Guss rozwiązć ukłd rówń:. 0 8 : : : : Rozwiązie cierz rozszerzo dl powyższego ukłdu rówń liiowych: () ~ ~ A A. Przeprowdząc koleo operce: orz elimiuemy elemety pierwsze kolumy otrzymuąc: ( ) ( ) ) ) ( ) ( ( ) ( ( ) ~ A. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

10 etody Numerycze i Progrmowie Stro 0 z Wykłd. Rozwiązywie ukłdów rówń liiowych (0) etod elimici Guss Przykłd 6.. cd. Przeprowdzmy opercę ( ) ( ) otrzymuąc ową mcierz: 8 ~ ( ) ( ) ~ 0 6 A A Wykouąc opercę ( ) ( ) otrzymmy mcierz trókątą postci: 8 ~ ( ) 0 6 A Nleży terz przez kolee podstwiei obliczyć iewidome: ( ) ( ) 6 ( ) ( ) 8 7. Tki sposób postępowi zyw się: metod elimici Guss z wyborem elemetu główego riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

11 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etod elimici Guss Przykłd 6.. ) y 6 ± 0. 5y 9 ± 0.. b) 5y 9 ± 0. y 6 ± 0.. Rozwiązie dokłde dl ieobciążoego błędmi ukłdu rówń wyosi y. Obliczei przeprowdzić w czterocyfrowe rytmetyce mszyowe. Rozwiązie Ad ) 5 y () y () y Rysuek 6.. Iterpretc geometrycz rozwiązi ie zburzoego ukłdu rówń z przykłdu 6.. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

12 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etod elimici Guss Przykłd 6.. cd. Zburzoy ukłd rówń rozptruemy ko cztery ukłdy rówń: y y y y y y y y Kżde z tych ukłdów rówń geerue edo rozwiązie:.076 y y y y.908. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

13 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etod elimici Guss Przykłd 6.. cd. 5 y () y () y Rysuek 6.. Iterpretc geometrycz rozwiązi wyściowego zburzoego ukłdu rówń z przykłdu 6. potrktowych ko cztery iezleże rówi.. Pole powierzchi rówoległoboku Poszukiwe rozwiązie wyściowego zburzoego ukłdu rówń zdue się wewątrz rówoległoboku którego wierzchołkmi są rozwiązi powyższych czterech ukłdów rówń liiowych: riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

14 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etod elimici Guss Przykłd 6.. cd. Formlie stosuąc metodę elimici Guss wyściowy ukłd rówń y 6 ± 0. 5y 9 ± 0.. przeksztłcmy do ukłdu rówń z trókątą mcierzą współczyików postci: y 6 ± y 0.5 ± 0.5. Jko rozwiązie drugiego z tych rówń otrzymuemy y ± Podstwiąc to rozwiązie do rówi pierwszego:.076 y y y y.908. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

15 etody Numerycze i Progrmowie Stro 5 z Wykłd. Rozwiązywie ukłdów rówń liiowych (5) etod elimici Guss Przykłd 6.. cd. 5 y () y () y Rysuek 6.. Iterpretc geometrycz rozwiązi zburzoego ukłdu rówń z przykłdu 6. po przeprowdzeiu elimici Guss. Pole powierzchi rówoległoboku riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

16 etody Numerycze i Progrmowie Stro 6 z Wykłd. Rozwiązywie ukłdów rówń liiowych (6) etod elimici Guss Przykłd 6.. cd. Ad b) 5y 9 ± 0. y 6 ± 0.. y 5 y () y () Rysuek 6.. Iterpretc geometrycz rozwiązi ie zburzoego ukłdu rówń z przykłdu 6.. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

17 etody Numerycze i Progrmowie Stro 7 z Wykłd. Rozwiązywie ukłdów rówń liiowych (7) etod elimici Guss Przykłd 6.. cd. Stosuąc metodę elimici Guss otrzymuemy ukłd rówń o mcierzy trókąte: 5y 9 ± 0. y ±. Rozwiązuąc drugie z tych rówń otrzymuemy że y ± (idetyczie k w przykłdzie ). Podstwiąc to rozwiązie do rówi pierwszego otrzymmy cztery róże rozwiązi wyzczące wierzchołki rówoległoboku:.076 y y y y.908. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

18 etody Numerycze i Progrmowie Stro 8 z Wykłd. Rozwiązywie ukłdów rówń liiowych (8) etod elimici Guss Przykłd 6.. cd. y 5 5 y () y () Rysuek 6.. Iterpretc geometrycz rozwiązi zburzoego ukłdu rówń z przykłdu 6.b po przeprowdzeiu elimici Guss. Pole powierzchi rówoległoboku 0.5. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

19 etody Numerycze i Progrmowie Stro 9 z Wykłd. Rozwiązywie ukłdów rówń liiowych (9) etod elimici Guss Przykłd 6.5. ). 6 5 b). Rozwiązie Stosuąc metodę elimici Guss po pierwszym kroku otrzymue się: ). b). W rytmetyce dokłde ko rozwiązie pierwszego ukłdu rówń otrzymmy tomist ko rozwiązie drugiego ukłdu rówń otrzymmy orz 0. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

20 etody Numerycze i Progrmowie Stro 0 z Wykłd. Rozwiązywie ukłdów rówń liiowych (0) etod elimici Guss UWAGI:. Do elimici zmieych z koleych rówń leży zwsze brć to rówie w którym przy elimiowe zmiee est większy współczyik.. etod elimici Guss prcue poprwie w tych przypdkch gdy elemety digoli główe mcierzy współczyików A są silie domiuące to zczy gdy ii > i i. Gdy rozwiązie ukłdu rówń est czułe iewielkie zburzei współczyików to mówimy o zdiu umeryczie źle uwrukowym. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

21 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () Psmowe ukłdy rówń liiowych Psmowe ukłdy rówń liiowych: Chrkteryzuą się tym że mcierz współczyików est mcierzą psmową częście tródigolą lub pięciodigolą. Przykłd 6.6. Stosuąc metodę elimici Guss rozwiązć stępuący ukłd czterech rówń liiowych:. 0 0 Rozwiązie: Kolee kroki elimici wykouemy w te sposób by współczyik występuący digoli główe był rówy ede Używąc pierwszego rówi elimiuemy z rówi drugiego zmieą :. 0 riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

22 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () Psmowe ukłdy rówń liiowych Przykłd 6.6. cd. Dokouemy trsformci drugiego rówi otrzymuąc:. 0 limiuemy z rówi trzeciego zmieą otrzymuąc:. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

23 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () Psmowe ukłdy rówń liiowych Przykłd 6.6. cd. odyfikuemy rówie trzecie:. limiuemy zmieą z rówi czwrtego:. 5 5 riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

24 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () Psmowe ukłdy rówń liiowych Przykłd 6.6. cd. Przeprowdzmy trsformcę osttiego czwrtego rówi:. Stosuąc kolee podstwiei obliczmy:. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

25 etody Numerycze i Progrmowie Stro 5 z Wykłd. Rozwiązywie ukłdów rówń liiowych (5) Psmowe ukłdy rówń liiowych lgorytm Thoms. r d b r d b r d b r d b r d L (6.7) Przeksztłcmy pierwsze rówie:. d r r d (6.8) Kolee rówi... -:. dl t r b r r t b d t K (6.9) Ostie rówie :. b d r b r r (6.0) Rozwiązie uzyskuemy w ciągu obliczeń:. dl K r r (6.) riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

26 etody Numerycze i Progrmowie Stro 6 z Wykłd. Rozwiązywie ukłdów rówń liiowych (6) etody itercye rozwiązywi ukłdów rówń liiowych Dy est ukłdów rówń liiowych w postci mcierzowe: A b (6.) Przeprowdzmy trsformcę tego ukłdu rówń do ukłdu rówowżego: ( k ) ( k ) C d k L. (6.) Wychodząc z początkowego przybliżei (0) geeruemy kolee przybliżei: () ().... etody tkie zkwlifikowć moż do wcześie omwie metody iterci proste zstosowe do rozwiązywi rówń ieliiowych. Kryterium przerwi obliczeń: ( k ) ( k ) ( k ) ε (6.5) gdzie ε est pewą młą liczbą będącą dokłdością obliczeń. Ze metody: Jcobiego Guss Seidler orz SOR (g. successive overreltio). riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

27 etody Numerycze i Progrmowie Stro 7 z Wykłd. Rozwiązywie ukłdów rówń liiowych (7) etody itercye rozwiązywi ukłdów rówń liiowych etod Jcobiego Przykłd 6.7. : 0 : : : ( ) T Jko pukt strtowy przyąć 0 ( ). Rozwiązie dokłde ( ) T Rozwiązie. Ukłd rówń A b przeksztłcmy do postci C d riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

28 etody Numerycze i Progrmowie Stro 8 z Wykłd. Rozwiązywie ukłdów rówń liiowych (8) etody itercye rozwiązywi ukłdów rówń liiowych etod Jcobiego Przykłd 6.7. cd. Korzystąc z puktu strtowego obliczmy pierwsze przybliżeie rozwiązi: () ( 0) ( 0) 5 0 () ( 0) ( 0) ( 0) () ( 0) ( 0) ( 0) 8 () ( 0) ( 0) Tbel 6.. Kolee przybliżei rozwiązywego metodą itercyą w przykłdzie 6.7 ukłdu rówń. k ( k ) ( k ) ( k ) ( k ) riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

29 etody Numerycze i Progrmowie Stro 9 z Wykłd. Rozwiązywie ukłdów rówń liiowych (9) etody itercye rozwiązywi ukłdów rówń liiowych etod Jcobiego Przykłd 6.7. cd. Kryterium przerwi obliczeń: dl 0 te iterci otrzymmy: ( 0) ( 9) ( 0) < 0. Porówuą uzyske rozwiązie z rozwiąziem dokłdym otrzymmy: ( 0) riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

30 etody Numerycze i Progrmowie Stro 0 z Wykłd. Rozwiązywie ukłdów rówń liiowych (0) etody itercye rozwiązywi ukłdów rówń liiowych etod Jcobiego. Zkłdmy że ii 0.. Rozwiązuemy kżde z i rówń wyściowego ukłdu A b ze względu zmieą i i bi. Otrzymuemy ukłd rówń w postci: i dl i K ii ii i. Geeruemy kolee przybliżei i (k) ( ) k i ( k ) bi i dl i K ii ii i stosuąc rówie: riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

31 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody itercye rozwiązywi ukłdów rówń liiowych etod Jcobiego Przykłd 6.8. y 6 y 6. Jko wrtości strtowe przyąć ( 0). T Rozwiązie y y. Pierwsze przybliżeie poszukiwego rozwiązi wyosi: y y () ( 0) () ( 0). Drugie przybliżeie: y y ( ) () ( ) () Trzecie przybliżeie: y y ( ) ( ) ( ) ( ) riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

32 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody itercye rozwiązywi ukłdów rówń liiowych etod Jcobiego Przykłd 6.8. cd 5 y () y y () y (0) (0) () () () Rysuek 6.5. Iterpretc geometrycz koleych rozwiązń uzyskych metodą Jcobiego. Rozwiązie ukłdu rówń z przykłdu 6.8. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

33 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody itercye rozwiązywi ukłdów rówń liiowych etody Guss Seidel Przykłd 6.0. Korzystąc z metody Guss Seidel rozwiązć ukłd rówń z przykłdu : 0 : 5 : 6 0 : Rozwiązie ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) k k k k k k k k k k k k k k riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

34 etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody itercye rozwiązywi ukłdów rówń liiowych etody Guss Seidel Przykłd 6.0. cd Tbel 6.. Kolee przybliżei rozwiązywego metodą itercyą Guss - Seidel ukłdu rówń z przykłdu 6.8. k 0 5 ( k ) ( k ) ( k ) ( k ) Jko kryterium przerwi obliczeń wykorzystuemy rówie (6.5). Dl 5 te iterci otrzymmy: ( 5) ( ) ( 5) co przy zstosowe dokłdości obliczeń est kceptowlą dokłdością. riusz B. Bogcki Stro Zkłd Iżyierii Procesowe Wydził Techologii Chemicze PP

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer.

METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. ETODY NUERYCZNE Wykłd 6. Rozwiązywie ukłdów rówń liiowych dr hb. iż. Ktrzy Zkrzewsk, prof. AGH et.numer. wykłd 6 Pl etody dokłde etod elimicji Guss etod Guss-Seidl Rozkłd LU et.numer. wykłd 6 Ukłd rówń

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego.

Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego. Wybre zgdiei bdń opercyjych Wykłd Metod simpleks rozwiązywi zdń progrmowi liiowego Prowdzący: dr iiż.. Zbiigiiew TARAPATA De kotktowe: e-mil: WWW: Zbigiew.Trpt@wt.edu.pl http://trpt.stref.pl tel. : 83-94-3,

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ

[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ I UKŁAD RÓNAŃ Defiicj Ukłd rówń liiowych z iewidoyi,,., : Defiicj Postć cierzow ukłdu rówń: A, lu krócej A, gdzie: A,,. Mcierz A zywy cierzą ukłdu rówń, wektor zywy wektore wyrzów wolych (koluą wyrzów

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)

Bardziej szczegółowo

Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej

Niech dany będzie układ równań postaci. Powyższy układ równań liniowych z n niewiadomymi można zapisać w postaci macierzowej Rozwiązywie ułdów rówń liiowych Metod elimicji Guss 2 Postwieie zgdiei Niech dy będzie ułd rówń postci b x x x b x x x b x x x 2 2 2 2 2 22 2 2 2 Powyższy ułd rówń liiowych z iewidomymi moż zpisć w postci

Bardziej szczegółowo

Macierze w MS Excel 2007

Macierze w MS Excel 2007 Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r. KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,

Bardziej szczegółowo

Metody numeryczne. Wykład nr 3. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 3. dr hab. Piotr Fronczak Metody erycze Wykłd r dr h. Piotr Froczk Pojęci podstwowe Rozwiązywie kłdów gericzych rówń iiowych. Ukłd gericzych rówń iiowych Ukłd iiowy rówń z iewidoyi postci + + = + + = + + = Postć cierzow A = . Mcierz

Bardziej szczegółowo

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa / WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu

Bardziej szczegółowo

6. Układy równań liniowych

6. Układy równań liniowych 6. Ukłdy rówń liiowych 6. Podstwowe określei Defiicj 6.. (ukłd rówń liiowych rozwiązie ukłdu rówń) Ukłde rówń liiowych z iewidoyi gdzie N zywy ukłd rówń postci:...... (6..) O... gdzie ij R to tzw. współczyiki

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH.

ALGEBRA MACIERZY. UKŁADY RÓWNAŃ LINIOWYCH. AGEBRA MACIERZY. UKŁADY RÓWNAŃ INIOWYCH. MACIERZE Mcierzą o wymirch m (m ) zywmy prostokątą tblicę której elemetmi jest m liczb rzeczywistych mjącą m wierszy i kolum postci A m m kolumy wiersze m Stosujemy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

Wykład 8: Całka oznanczona

Wykład 8: Całka oznanczona Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy

Bardziej szczegółowo

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury. Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod

Bardziej szczegółowo

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej. 5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Koputerowe wspogie decyzi 008/009 Liiowe zgdiei decyzye Nottki do tetu Metody poszukiwi rozwiązń edokryterilych probleów decyzyych etody dl zgdień liiowego progrowi tetyczego Liiowe zgdiei decyzye część

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

ELEMENTÓW PRĘTOWYCH. Rys.D3.1

ELEMENTÓW PRĘTOWYCH. Rys.D3.1 DODATEK N. SZTYWNOŚĆ PZY SKĘANIU ELEMENTÓW PĘTOWYH Zgdieie skręci prętów m duże zczeie prktycze. Wyzczeie sztywości pręt przy skręciu jest iezęde do określei skłdowych mcierzy sztywości prętów rmy przestrzeej

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1

METODY NUMERYCZNE. Wykład 5. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. wykład 5 1 METODY NUMERYCZNE Wykłd 5. Cłkowie umeryze dr. iż. Ktrzy Zkrzewsk, pro. AGH Met.Numer. wykłd 5 Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rirdso Metod Romerg Metod Simpso wzór prol Metod Guss

Bardziej szczegółowo

Struna nieograniczona

Struna nieograniczona Rówie sry Rówie okreś rch sry sprężysej kórą ie dziłją siły zewęrze Sł okreśo jes przez włsości izycze sry Zkłdmy że w położei rówowgi sr pokryw się z pewym przedziłem osi OX Fkcj okreś wychyeie z położei

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

3. Rozkład macierzy według wartości szczególnych

3. Rozkład macierzy według wartości szczególnych Rozkłd mcierzy wedłg wrtości szczególnych Wprowdzenie Przypomnimy podstwowe zleżności związne z zstosowniem metody nmnieszych kwdrtów do proksymci fnkci dyskretne Podstwowe równnie m nstępącą postć: +

Bardziej szczegółowo

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zdi Odpowiedzi Pukty Bde umiejętości Obszr stdrdu. B 0 pluje i wykouje obliczei liczbch rzeczywistych,

Bardziej szczegółowo

Technika Obliczeniowa i Symulacyjna - wykład

Technika Obliczeniowa i Symulacyjna - wykład Techik Obiczeiow i Symcyj - wykłd kierek EiT, sem., stdi pierwszego stopi, r. k. 8/9 Krt przedmiot Prowdzący wykłd część : Metody merycze Prowdzący: dr iż. Brbr Stwrz-Grczyk Pokój: 449 EA E-mi: bstwrz@eti.pg.ed.p

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

1 Kryterium stabilności. 2 Stabilność liniowych układów sterowania

1 Kryterium stabilności. 2 Stabilność liniowych układów sterowania Kryterium stbilości Stbilość liiowych ukłdów sterowi Ukłd zmkięty liiowy i stcjory opisy rówiem () jest stbily, jeŝeli dl skończoej wrtości zkłócei przy dowolych wrtościch początkowych jego odpowiedź ustlo

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH

METODY NUMERYCZNE. Wykład 4. Całkowanie numeryczne. dr hab. inż. Katarzyna Zakrzewska, prof. AGH METODY NUMERYCZNE Wykłd. Cłkowie umeryze dr h. iż. Ktrzy Zkrzewsk, pro. AGH Pl Wzór trpezów Złożoy wzór trpezów Metod ekstrpolji Rihrdso Metod Romerg Metod Simpso wzór prol Metod Guss Cłkowie umeryze -

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdei Morsk w Gdyi Ktedr utotyki Okrętowej Teori sterowi lgebr cierzow Mirosłw Toer. ELEMENTRN TEORI MCIERZOW W owoczesej teorii sterowi brdzo często istieje potrzeb zstosowi otcji cierzowej uprszczjącej

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Ukłdy równń liniowych Mcierze rzdkie wr zesie ń SciLb w obliczenich numerycznych - część Sljd Pln zjęć. Zdnie rozwiązni ukłdu równń liniowych..

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: żółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk Zgdnieni. Pojęci. Dziłni n mcierzch.

Bardziej szczegółowo

a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n

a a = 2 S n = 2 = r - constans > 0 - ciąg jest malejący q = b1, dla q 1 S n 1 CIĄGI jest rosnący (niemalejący), jeżeli dla każdego n a n CIĄGI ciąg jest rosący (iemlejący), jeżeli dl kżdego < ( ) ciąg jest mlejący (ierosący), jeżeli dl kżdego > ( ) ciąg zywmy rytmetyczym, jeżeli dl kżdego r - costs - r > 0 - ciąg rosący - r 0 - ciąg stły

Bardziej szczegółowo

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności.

CIĄGI LICZBOWE. Naturalną rzeczą w otaczającym nas świecie jest porządkowanie różnorakich obiektów, czyli ustawianie ich w pewnej kolejności. CIĄGI LICZBOWE Nturlą rzeczą w otczjącym s świecie jest porządkowie różorkich obiektów, czyli ustwiie ich w pewej kolejości. Dl przykłdu tworzymy różego rodzju rkigi, p. rkig jlepszych kierowców rjdowych.

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

n 3 dla n = 1,2,3,... Podać oszacowania

n 3 dla n = 1,2,3,... Podać oszacowania Zestw r : Ciągi liczbowe włsości i gric.. Niech dl =.... Sprwdzić cz jest ciągiem mootoiczm rtmetczm... Sprwdzić cz stępując ciąg jest ciągiem geometrczm. Wpisć pierwszch pięć wrzów ciągu stępie dl ciągu

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01 WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r

Bardziej szczegółowo

ALGORYTMY PRZELICZANIA WSPÓŁRZĘDNYCH KARTEZJAŃSKICH NA GEODEZYJNE

ALGORYTMY PRZELICZANIA WSPÓŁRZĘDNYCH KARTEZJAŃSKICH NA GEODEZYJNE Mteriły dydktyce eodej geometryc Mrci Ligs, Ktedr eomtyki, Wydił eodeji óricej i Iżyierii Środowisk ALORYMY PRZELICZANIA WSPÓŁRZĘDNYCH KAREZJAŃSKICH NA EODEZYJNE Predstwioe poiżej metody trsformcji ostą

Bardziej szczegółowo

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe. Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego

Bardziej szczegółowo

Rachunek wektorowo-macierzowy w programie SciLab

Rachunek wektorowo-macierzowy w programie SciLab Rchuek wektorowo-mcierzowy w progrmie Scib Rchuek wektorowo-mcierzowy w progrmie Scib Dziłi liczbch Dodwie i odejmowie + b 3 + = 5 b = + (-b) 3 = 3 + (-) = + 0 = + (-) = 0 Rchuek wektorowo-mcierzowy w

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx

Bardziej szczegółowo

3, leŝącym poniŝej punktu P. Wartości funkcji f są

3, leŝącym poniŝej punktu P. Wartości funkcji f są Odpowiedzi i schemty oceii Arkusz Zdi zmkięte Numer zdi Poprw odpowiedź Wskzówki do rozwiązi D ( 0 x )( x + b) x 0 + b 0 x xb x + ( 0 b) x + b 0 x + ( 0 b) x + b 0 0x + 0 0 WyrŜei po obu stroch rówości

Bardziej szczegółowo

Collegium Novum Akademia Maturalna

Collegium Novum Akademia Maturalna Collegium Novum Akdemi Mturl wwwcollegium-ovumpl 0- -89-66 Mtemtyk (GP dt: 00008 sobot Collegium Novum Akdemi Mturl Temt 5: CIĄGI Prowdzący: Grzegorz Płg Termi: 0007 godzi 9:00-:0 8 Zdie Które wyrzy ciągu

Bardziej szczegółowo

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Rchuek prwdopodobieństw MA5 Wydził Elektroiki, rok kd. 20/2, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 7: Zmiee losowe dwuwymirowe. Rozkłdy łącze, brzegowe. Niezleżość zmieych losowych. Momety. Współczyik

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE

CAŁKOWANIE NUMERYCZNE Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Macierz. Wyznacznik macierzy. Układ równań liniowych

Macierz. Wyznacznik macierzy. Układ równań liniowych Temt wykłdu: Mcierz. Wyzncznik mcierzy. Ukłd równń liniowych Kody kolorów: Ŝółty nowe pojęcie pomrńczowy uwg kursyw komentrz * mterił ndobowiązkowy Ann Rjfur, Mtemtyk n kierunku Biologi w SGGW Zgdnieni.

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Badanie regularności w słowach

Badanie regularności w słowach Przypdek sekwencyjny Mrcin Piątkowski Wydził Mtemtyki i Informtyki Uniwersytet Mikołj Kopernik Edsger Wybe Dijkstr (1930 2002) Computer science is no more bout computers thn stronomy is bout telescopes,

Bardziej szczegółowo

Modele linii elektroenergetycznych

Modele linii elektroenergetycznych Pls p. z o.o. emil:pls@pls.com.pl tel. 6 59 76 eri: Wykłdy ystemy elektroeergetycze Wykłd Autor: dr iż. igiew du dr iż. Krzysztof Księżyk mgr iż. Tomsz du Wrszw, 9 pis treści....4.. mpedcje wzdłuże liii...

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

Wprowadzenie: Do czego służą wektory?

Wprowadzenie: Do czego służą wektory? Wprowdzenie: Do czego służą wektory? Mp połączeń smolotowych Isiget pokzuje skąd smoloty wyltują i dokąd doltują; pokzne jest to z pomocą strzłek strzłki te pokzują przemieszczenie: skąd dokąd jest dny

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III A i III B Liceum Plastycznego 2019/2020

Wymagania edukacyjne z matematyki w klasie III A i III B Liceum Plastycznego 2019/2020 Wymgi edukcyje z mtemtyki w klsie III A i III B Liceum Plstyczego 019/00 Zkres rozszerzoy Kryteri Zjomość pojęć, defiicji, włsości orz wzorów objętych progrmem uczi. Umiejętość zstosowi wiedzy teoretyczej

Bardziej szczegółowo

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne

Wykład 2. Funkcja logarytmiczna. Definicja logarytmu: Własności logarytmu: Logarytm naturalny: Funkcje trygonometryczne Wykłd 2 Funkcj rytmiczn, Deinicj rytmu: Włsności rytmu: 2 u 2 u b c c b 2 2 Lorytm nturlny: Funkcje tryonometryczne Funkcje tryonometryczne kąt ostreo: b c sin cos t ct b c b c b Mir łukow kąt wyrż się

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

PODEJMOWANIE OPTYMALNYCH DECYZJI PRODUKCYJNYCH W WARUNKACH NIEPEWNOŚCI. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków

PODEJMOWANIE OPTYMALNYCH DECYZJI PRODUKCYJNYCH W WARUNKACH NIEPEWNOŚCI. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków 5/ Archives o Foudry Yer 6 Volume 6 Archiwum Odlewictw Rok 6 Roczik 6 Nr PAN Ktowice PL ISSN 6-58 PODEJMOWANIE OPTYMALNYCH DECYZJI PRODUKCYJNYCH W WARUNKACH NIEPEWNOŚCI E. ZIÓŁKOWSKI Wydził Odlewictw AGH

Bardziej szczegółowo

cz. 2 dr inż. Zbigniew Szklarski

cz. 2 dr inż. Zbigniew Szklarski Wykłd 11: Elektrosttyk cz. 2 dr inż. Zbigniew Szklrski szkl@gh.edu.pl http://lyer.uci.gh.edu.pl/z.szklrski/ Pole elektryczne przewodnik N powierzchni metlicznej (przewodzącej) cły łdunek gromdzi się n

Bardziej szczegółowo

Metody numeryczne. 1. Numeryczna reprezentacja liczb w maszynie cyfrowej

Metody numeryczne. 1. Numeryczna reprezentacja liczb w maszynie cyfrowej 3-59 Krów, Al. Miciewicz 3 http://home.gh.edu.pl/~horzy pw. H6/35, C3/4 tel.: -67-439, 394 e-mil: horzy@gh.edu.pl Metody umerycze Litertur:. Z. Fortu, B. Mcuow, J. Wąsowsi, Metody umerycze, WNT, Wrszw,

Bardziej szczegółowo

Wartość bezwzględna. Proste równania i nierówności.

Wartość bezwzględna. Proste równania i nierówności. Wrtość bezwzględn Proste równni i nierówności Dl liczb rzeczywistych możemy zdefiniowć opercję zwną wrtością bezwzględną lub modułem liczby Definicj 7,, Sens powyższej definicji jest nstępujący Jeżeli

Bardziej szczegółowo

Liczby zespolone i wielomiany

Liczby zespolone i wielomiany /5 Liczby zespoloe i wielomiy Rówie x ie m rozwiązi w zbiorze liczb rzeczywistych. Tk więc ie kżdy wielomi o współczyikch leżących do posid miejsce zerowe (zwe iczej pierwistkiem) w tym zbiorze. Okzuje

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Michł Pzdoski Istytut echologii Iformcyych Iżyierii Lądoe ydził Iżyierii Lądoe Politechik Krkosk rtości i ektory łse ektorem łsym mcierzy A [ ] zymy kżdy iezeroy ektor V, który zchoue kieruek po ykoiu

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb.

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb. Rchuek prwdopodobieństw MA064 Wydził Elektroiki, rok kd. 2008/09, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 2: Sumowie iezleżych zmieych losowych i jego związek ze splotem gęstości i trsformtmi Lplce

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnik Gdńsk Wydził Elektrotechniki i Automtyki Ktedr Inżynierii Systemów Sterowni Teori sterowni Sterowlność i obserwowlność liniowych ukłdów sterowni Zdni do ćwiczeń lbortoryjnych termin T Oprcownie:

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą

W praktycznym doświadczalnictwie, a w szczególności w doświadczalnictwie polowym, potwierdzono występowanie zależności pomiędzy wzrastającą liczbą W prktyczym doświdczlictwi, w zczgólości w doświdczlictwi polowym, potwirdzoo wytępowi zlżości pomiędzy wzrtjącą liczą oiktów doświdczlych w lokch, wzrotm orwowgo łędu ytmtyczgo. Podcz plowi doświdczń

Bardziej szczegółowo