Wykład 1A Przegląd optycznych metod spektroskopowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 1A Przegląd optycznych metod spektroskopowych"

Transkrypt

1 Wykład 1A Przegląd optycznych metod spektroskopowych Porównanie metod spektroskopii NMR, EPR, spektroskopii mikrofalowej, Ramana,IR, ultrafioletu i promieniowania X. Reguły wyboru dla róznych typów spektroskopii.

2 Promieniowanie elektromagnetyczne jest zaburzeniem pola elektromagnetycznego. Pole elektromagnetyczne jest układem dwóch pól: pola elektrycznego E i pola magnetycznego H. Pola te są związane a wzajemną relację pól opisują równania Maxwella POMOC- WYKŁAD 1- kliknij tutaj Szczególnym przypadkiem pola elektromagnetycznego jest fala płaska rozchodząca się w próżni. Fala płaska jest falą poprzeczną, w której drgania wektora pola elektrycznego E i magnetycznego H są wzajemnie prostopadłe i prostopadłe do kierunku propagacji k E E0 sin( t kx) Wektor falowy k k E 4 (m c 1/ p c ), T 1 Okres drgań T dla fotonu m = 0 E p c p k

3 W opisie kwantowym promieniowanie elektromagnetyczne jest traktowane jako strumień nie posiadających masy cząstek elementarnych zwanych fotonami. Energia każdego fotonu zależy od długości fali. E=h lub E=ħ gdzie h jest stałą Plancka h = 6, (11) J s, zaś częstością promieniowania, jest częstością kołową Pochłonięcie fotonu o energii E=ħ powoduje absorpcję, a następnie emisję lub emisję wymuszoną. Nie wiesz co to jest emisja wymuszona? Kliknij tutaj-wykład

4 Właściwości fal elektromagnetycznych zależą od długości fali. Promieniowaniem elektromagnetycznym o różnej długości fali są fale radiowe, mikrofale, podczerwień, światło, ultrafiolet, promieniowanie rentgenowskie i promieniowanie gamma. Każdy zakres spektralny promieniowania jest związany z określonym rodzajem spektroskopii.

5 Techniki spektroskopowe stanowią bardzo uniwersalne narzędzie badawcze w chemii, fizyce, biologii, medycynie, diagnostyce, inżynierii materiałowej, farmacji i telekomunikacji. Podstawową ideą spektroskopii jest wykorzystanie oddziaływań fal elektromagnetycznych z cząsteczkami związków chemicznych do uzyskania informacji na temat budowy tych molekuł i procesów w nich zachodzących. Istnieje wiele metod spektroskopowych, z których największe zastosowanie mają: Spektroskopia NMR Spektroskopia EPR Spektroskopia rotacyjna Spektroskopia IR Spektroskopia Ramana Spektroskopia VIS-UV Spektroskopia promieniowania X Spektroskopia Mössbauera

6 Techniki spektroskopowe stanowią uniwersalne narzędzie do identyfikacji związków organicznych. Podstawową ideą spektroskopii jest wykorzystanie oddziaływań fal elektromagnetycznych z cząsteczkami związków chemicznych do uzyskania informacji na temat budowy tych cząsteczek. Istnieje wiele typów metod spektroskopowych, mających orgromne znaczenie w chemii, fizyce, biologii, medycynie, inżynierii materiałowej, farmacji, diagnostyce medycznej i telekomunikacji. Spektroskopia NMR obecnie odgrywa ona dominującą rolę w identyfikacji związków organicznych. W ramach NMR istnieje bardzo wiele technik, których właściwe użycie pozwala na wyznaczenie wzoru strukturalnego związku chemicznego. Ponadto pozwala ona na badanie mechanizmów reakcji chemicznych, wyznaczanie składu mieszanin, a także ustalanie budowy przestrzennej białek i kwasów nukleinowych. Spektroskopia w podczerwieni technika ta pozwala na wykrycie podstawowych grup funkcyjnych w cząsteczce, a także badanie wiązań wodorowych oraz ustalanie składu mieszanin organicznych. Spektroskopia Ramana, podobnie jak spektroskopia w podczerwieni, pozwala na wykrywanie grup funkcyjnych w związkach organicznych, znajduje ona także liczne zastosowania w badaniach związków zaadsorbowanych na powierzchniach. Spektroskopia UV-VIS stosowana jest głównie do ustalania stężeń związków w roztworach, a także badania przejść elektronowych. Ten rodzaj spektroskopii odgrywa mniejszą rolę w bezpośredniej identyfikacji związków organicznych ze względu na ograniczoną selektywność metody. Dichroizm kołowy to najczęściej stosowana obecnie metoda chiralooptyczna znajdująca

7 Spektroskopia NMR i EPR

8 POMOC- WYKŁAD 11 mr/nmr1.htm E H E D H B D E - przenikalność dielektryczna 1 D E B H - przenikalność magnetyczna 1 diamagnetyki 1 paramagnetyki 1 ferromagnetyki D E 4P B H 4M P P polaryzacja N E NE 3kT - współczynnik polaryzowalności >0 M -namagnesowanie N M H NH 3kT - podatność magnetyczna or 0 3kT ind 0 diamagnetyki ind 0 paramagnetyki ind 0 ferromagnetyki

9 L EPR L L i J L S NMR Wartości spinów niektórych jąder - kliknij I spin jądra N E S L - moment orbitalny elektronu S S - spin elektronu m J J, , J m I I, , I magnetyczna liczba kwantowa dla spinu elektronu moment magnetyczny J g J(J 1) B g współczynnik magnetogiryczny elektronu B - magneton Bohra magnetyczna liczba kwantowa dla spinu jądra I I (I 1) N - współczynnik magnetogiryczny jądra N - magneton jądrowy e mec me- masa elektronu e N mc Współczynnik magnetogiryczny m masa jądra J(J 1) S(S 1) L(L 1) g 1 J(J 1)

10 REGUŁY WYBORU W SPEKTROSKOPII EPR I NMR Energia oddziaływania momentu magnetycznego magnetycznej wynosi: z wektorem indukcji E B J gmjb I min (moment magnetyczny jest skierowany przeciwnie do momentu pędu) EPR NMR E gmjbb E mi NB E h gbb gbb J 1 E NB h N B I 1

11 Elektron ma moment magnetyczny, bowiem ma spin o wartości s=1/. Magnetyczna liczba kwantowa m J przyjmuje wartości m s =+1/ i m s =-1/ (bo J=S). W obecności pola magnetycznego B=B 0 moment magnetyczny ustawia się równolegle (m s =-1/) lub antyrównolegle (m s =+1/) do pola magnetycznego. Energia elektronu w polu magnetycznym przyjmuje więc też dwie różne wartości w porównaniu z energią gdy B=0. Rozszczepienie poziomów energetycznych nosi nazwę efekty Zeemana. Równoległe ustawienie spinu i B ma niższą energię niż ustawienie antyrównoległe. Różnica energii wynosi ΔE = g e μ B B 0 gdzie g e nosi nazwę stałej g (lub stałej Landé go lub współczynnika magnetogirycznego) N E S S E N

12 Jaka jest energia fotonów wzbudzających w EPR i NMR? Niesparowany elektron może przenosić się na poziom niższy lub wyższy poprzez absorpcję lub emisję promieniowania elektromagnetycznego o energii ε = hν, gdy spełniony jest warunek ε = ΔE Podstawiając ε = hν oraz ΔE = g e μ B B 0 otrzymujemy hν = g e μ B B 0. Warunek ten określa jakiego promieniowania powinniśmy użyć, aby spełniony został warunek rezonansu hν = g e μ B B 0. Jak widać, można użyć bardzo wielu kombinacji częstości i pola magnetycznego, ale zazwyczaj w eksperymentach EPR wykorzystuje się mikrofale z zakresu MHz (9 10 GHz) i pola magnetycznego 3500 G (0.35 T)

13 Rozkład Boltzmana opisuje sposób obsadzania stanów energetycznych przez atomy, cząsteczki i inne indywidua chemiczne w stanie równowagi termicznej. Jeśli chcesz wiedzieć więcej kliknij tutaj ROZKŁAD BOLTZMANA WYKŁAD 6 ROZKŁAD BOLTZMANA EPR NMR nw nn E e kt g BB e kt nw nn NB e kt nw- liczba cząsteczek na poziomie wyższym n n - liczba cząsteczek na poziomie niższym

14 ZADANIE 1A-1

15 SPEKTROSKOPIA ROTACYJNA

16 Rozkład energii w stanie równowagi: ROZKŁAD BOLTZMANA!!!!! P(E) E/ kt e N 1 E N1 E/ kt e N 0 N0 WIDMO ROTACYJNE! Przypomnijmy: dla sztywnego rotatora makroskopowego energia kinetyczna ruchu obrotowego wyraża się wzorem r i m i Ekin 1 m v i i 1 mir i i 1 I m i - masa r i - odległość od osi obrotu I gdzie i m i r i nosi nazwę momentu bezwładności Energia kinetyczna makroskopowego rotatora może zmieniać się w sposób ciągły, czyli jest nieskwantowana.

17 Natomiast energia rotacyjna molekuł jest skwantowana, (bo moment pędu jest skwantowany): Ek 1 gdzie I = moment pędu I 1 (I) I Można pokazać z równania Schrödingera, że: czyli Ek 1 I I 1 J(J 1) (I) I gdzie J jest kwantową liczbą rotacji h 8 I J(J 1) Gdy J 0, 1,,..., n h B, gdzie B jest stałą rotacyjną 8 I J 0 E 0 0 J 1 E 1 B J E 6B J 3 E 3 1B E 01 B E 1 4B E 3 6B

18 Rozkład Boltzmana w spektroskopii rotacyjnej? nj BJ(J1)/ kt (J 1) e n0 bo E EJ E0 BJ(J 1) 0 BJ(J 1) bowiem E 0 0 dla J 0 Dlaczego przed wykładnikiem jest: J 1? Bo każdy poziom energetyczny jest charakteryzowany przez moment pędu J, który jest (J+1) razy zdegenerowany. (Pamiętamy? Podobna sytuacje mamy dla elektronu w atomie wodoru: liczbie orbitalnej l odpowiada (l+1) wartości magnetycznej liczby kwantowej m = - l,..., -1, 0, 1,...,,l) nj n kwantowa liczba rotacji J Rozkład obsadzeń poziomów rotacyjnych molekuł w temperaturze pokojowej

19 Reguły wyboru dla widma rotacyjnego 1) E h (foton, który ma być pochłonięty przez molekułę musi pasować do różnicy poziomów energetycznych) ) n m d 0 dla przejścia n m - trwały moment dipolowy cząsteczki n, m - funkcja falowa opisująca rotator w stanie energetycznym n i m Oznacza to, że aby obserwować absorpcyjne widmo rotacyjne, molekuły muszą być obdarzone trwałym momentem dipolowym. 3) J 1 (molekuła może przenieść się w jednym akcie absorpcji tylko na poziom sąsiedni J,3 są zabronione!!!! nie! J Aparatura do rejestracji widma rotacyjnego (Kęcki Podstawy spektroskopii molekularnej, str. 34)

20 Badanie struktury molekuł na podstawie widma rotacyjnego Schemat przejść absorpcyjnych i wygląd widma rotacyjnego: a) molekuła dwuatomowa A R B Znając B z eksperymentu (odległości między pikami w widmie) można obliczyć moment bezwładności, a stąd odległość R między atomami A i B h B B I R 8 c I 1 gdzie B wyrażone jest w jednostkach [cm ] I m red R mred ma mb ma mb

21 a) molekuła wieloatomowa liniowa widma rotacyjne wyglądają podobnie A B C D E F (odległości są równe B), stąd można wyznaczyć I. Ale I wyraża się teraz trochę bardziej skomplikowanym wzorem: 1 I mimjrij m i i j i W molekule n atomowej mamy (n-1) zmiennych niezależnych R ij (odległości międzyatomowych). Aby je wyznaczyć trzeba (n- 1) równań. Dane te uzyskujemy stosując podstawienia izotopowe. Trzeba jednak pamiętać, że wzór na energię rotacyjną: EJ 1 EJ B(J 1) nie jest całkowicie prawdziwy. W obliczeniach zakładamy bowiem model rotatora sztywnego. A przecież atomy drgają!!! Czyli zmieniają się odległości między atomami. Poza tym, dla wyższych J (momentów pędów) obrót jest tak szybki, że zaczyna odgrywać rolę siła odśrodkowa.

22 Zmodyfikowany wzór, który uwzględnia: a) sprzężenia rotacji z wibracjami b) siłę odśrodkową ma postać: 3 EJ 1 EJ Bv (J 1) 4D(J 1) gdzie poprawka na siłę odśrodkową 3n 5 d B i v B i vi poprawka na sprzężenie i1 z wibracjami i - współczynnik sprzężenia v i - oscylacyjna liczba kwantowa d i - stopień degeneracji oscylacji 1) c) molekuły wieloatomowe nieliniowe ) c1) IA IB IC - bąk sferyczny przypadek nieinteresujący dla spektroskopii rotacyjnej, bo 0 c) IA IB IC - bąk symetryczny ma dwie stałe rotacyjne A h ; 8 cia B h 8 cib Energia rotacyjna bąka symetrycznego wyraża się wzorem EJK BJ(J 1) (A B) K K 0, 1,,J

23 Reguły wyboru dla bąka symetrycznego J 1 oznacza to, że: K 0 E JK B(J 1) (tak samo jak dla cząsteczek liniowych) Ale po uwzględnieniu poprawki na siłę odśrodkową wzór jest inny: E 3 JK (J 1)(B DJKK ) 4DJ (J 1) dla K 0 wzór przyjmuje postać taką samą jak dla cząsteczek liniowych E 3 JK (J 1)B 4D(J 1) dla przejść 0 1 ale dla wyższych poziomów rotacyjnych J 0, K może przyjmować wartości 0, 1,..., J, co oznacza, że każde pasmo przejścia J J 1 rozszczepia się na J 1 składowych K J

24 ZADANIE 1A-

25 Spektroskopia IR

26 Termin Spektroskopia IR obejmuje zakres promieniowania elektromagnetycznego z zakresu m. Rozróżniamy bliską IR, średnią i daleką IR. Najbardziej użyteczny jest region cm-1. Spektroskopia IR dostarcza informacji o drganiach cząsteczek Region Wavelength range (m) Wavenumber range (cm -1 ) Near Middle Far

27 POMOC hid=&page=1 Atomy w cząsteczce wykonują drgania wokół położenia równowagi. Cząsteczka składająca się z N atomów ma 3N stopni swobody. 3 stopnie swobody potrzebne są do opisu translacji cząsteczki (x,y,z środka masy) oraz 3 ( dla cząsteczki liniowej) stopnie do opisu rotacji. Zatem 3N-6 (3N-5) stopni swobody opisuje wibracje cząsteczki

28 Model oscylatora harmonicznego Drgania cząsteczek można opisywać za pomocą modeli mechanicznych posługując się prawami mechaniki klasycznej. Najczęściej wyobrażamy sobie drgania cząsteczek za pomocą oscylatora harmonicznego, gdzie dwie masy m1 i m połączone są sprężyną, o sprężystości charakteryzowanej przez stałą siłową f [N/m] Oscylator harmoniczny to taki oscylator który spełnia prawo Hooke a F=-fq które mówi, że siła F jaka potrzebna jest do rozciągnięcia sprężyny jest proporcjonalna do wychylenia q i skierowana przeciwnie do wychylenia

29 Energia oscylatora a) oscylator klasyczny fq U energia całkowita: Policzmy, jaka jest częstość oscylatora harmonicznego F fq q r re f stała siłowa mv m q E r k odległość między atomami re - odległość równowagowa E EK U U q Qcost Q amplituda - częstotliwość drgań [ Hz] = Energia potencjalna oscylatora: q praca wykonana nad układem 1 s r e r e -q 0 q du ( F)dq du fq dq du dq fq r d U dq f

30 U 1 ( F)dq fqdq fq U 1 fq m a F d q m dt fq podstawiając q Qcost otrzymujemy m( ) f 1 f m m red = m 1 m m 1 + m [kg] Otrzymaliśmy, że częstość osylatora harmonicznego zależy od stałej siłowej f oraz od masy zredukowanej m oscylatora, gdzie m=m 1 m /(m 1 +m )

31 a) oscylator kwantowy dla oscylatora kwantowego należy rozwiązać równanie Schrödingera W przypadku stosowania metod kwantowomechanicznych energia drgań oscylatora harmonicznego w stanie opisanym kwantową liczbą oscylacyjną ν wyraża się następującym wzorem m q E fq h( E 1 ) = 0, 1,... 5 E h 3 1 E 1 h 0 POMOC CHEMIA KWANTOWA-WYKŁAD 1 i E 0 h Czyli dla 0, energia nie jest równa zero. Ta energia nosi nazwę energii punktu zerowego.

32 Model oscylatora harmonicznego, którego krzywa energii jest parabolą nie opsuje prawidłowo energii cząsteczki dla wszystkich odległości międzyjądrowych, ponieważ nie pozwala on na dysocjację wiązania. W rzeczywistych sytuacjach molekularne oscylatory są anharmoniczne. Energia przejść zmniejsza się wraz ze wzrostem kwantowej liczby oscylacyjnej, aż do momentu dysocjacji molekuł. a) oscylator anharmoniczny m q U E (1) ale U fq i wyraża się bardziej skomplikowaną zależnością U (q) U U(0) q q 1! U q q 1 3! 3 U 3 q q czyli f k U(q) fq 1 3 kq () ( 1) () E h hx gdzie x jest tzw stałą anharmoniczności. E h[1 x( 1)]

33 Krzywą energii oscylatora anharmonicznego aproksymuje się funkcją Morse a przedstawioną poniżej: U D Q r e r U(q) e q D 1 1 dla oscylatora harmonicznego 1,, 3 dla oscylatora anharmonicznego pasma gorące ton 1 nadton nadton podstawowy

34 Typy drgań 3N drganie drganie drganie symetryczne zginające rozciągające asymetryczne 1) a) symetryczne b) asymetryczne ) a) zginające b) rozciągające 3) a) drgania w płaszczyźnie b) drganie poza płaszczyzną

35 XYZ X atom ciężki drganie nożycowe (scissoring) drganie wahadłowe (rocking) drganie wachlarzowe (wagging) drganie skręcające (twisting)

36 Reguły wyboru dla przejść w spektroskopii IR (podczerwień) Aby nastąpiła absorpcja promieniowania w oscylatorze molekularnym (jest to obszar podczerwieni): 1) Fotony promieniowania muszą mieć energię równą różnicy energii wibracyjnych poziomów energetycznych h E ) Przejście zachodzi tylko wtedy, gdy kwantowa liczba oscylacji zmienia się o 1,, dla oscylatora harmonicznego 1,, 3 dla oscylatora anharmonicznego 3) Przejścia między stanami kwantowymi l i m l 1 są widoczne w spektroskopii IR tylko dla takich oscylatorów, w których w czasie drgania zmienia się moment dipolowy molekuły, czyli 0 q l m lm lmdq l mdq q 0 gdzie l funkcje falowe oscylatora harmonicznego m w stanie l i m

37 ZADANIE 1A- 3

38 POMOC- WYKŁAD 10 Spektroskopia Ramana

39 Spektroskopia Ramana UV poziomy wibracyjne E IR poziomy elektronowe Rozpraszanie Ramana W 193 roku Smekal zwrócił uwagę, że w promieniowaniu rozproszonym powinny się pojawiać obok fotonów h 0 fotony o częstościach różnych od częstości promieniowania padającego. Kramers i Heisenberg opracowali w roku 195 kwantowomechaniczną teorię rozpraszania, która przewidywała, że wśród rozproszonych fotonów znajdą się nie tylko fotony h 0 lecz także fotony o częstościach 0 osc, rot. W 197 r. Dirac opracował najbardziej konsekwentną kwantowomechaniczną teorię rozpraszania. W roku 198 fizyk hinduski Chandrasekhara Raman ogłosił w Nature ROLA NAUKI W ZACHOWANIU DZIEDZICTWA KULTUROWEGO doświadczalne odkrycie zjawiska rozpraszania.

40 S 1 S oscyl 0 oscyl Rozpraszanie rozpraszanie rozpraszanie Rayleigha stokesowskie antystokesowskie rozpraszanie Ramana pasmo stokesowskie pasmo antystokesowskie 0 Rayleigh I 4 ind

41 V E E polaryzacja elektronowa polaryzacja orientacyjna ind E I 4 ind ind E0 cos( 0t) ind 0 q... E0 cos( 0t) q

42 0E0 cos( 0t) q0 cos( oscyl t) E0 cos( 0t) q cos( + ) + cos( - ) = cos cos i dlatego w wyrażeniu opisującym rozpraszanie Ramana występują składowe o częstości 0 oscyl składowa stokesowska 0 oscyl składowa antystokesowska Reguły wyboru dla spektroskopii Ramana E h 1 q 0

43 0 C C 0 0 C C 0 4 IR Raman 1 - nieaktywne 1 - aktywne q 0 q 0 3 aktywne 3 nieaktywne 4 q 0 4 q 0

44 1, 3 q 4

45 1) Zasada wzajemnego wykluczania (zakaz alternatywny) Jeżeli cząsteczka ma środek inwersji to drgania aktywne w podczerwieni są zabronione w widmie Ramana i odwrotnie. ) Spektroskopowe kryterium polarności wiązania Jeżeli intensywność pasma w podczerwieni rośnie a w widmie Ramana maleje, to oznacza to, że wiązanie chemiczne staje się bardziej spolaryzowane (jonowe). Odwrotnie, gdy rośnie intensywność pasma Ramana oznacza to wzrost kowalencyjności.

46 ZADANIE 1A- 4

47 SPEKTROSKOPIA VIS-UV Spektroskopia elektronowa

48 Poziomy energetyczne n, l, m, s l l(l 1) l n 1 orb e l(l 1) B magneton Bohra B e mec Rzut momentu orbitalnego elektrycznego lub magnetycznego wynosi l na kierunek pola m

49 i L l S s i S + 1 multipletowość S 0 1-singlet 1 S -dublet S 1 3-tryplet : C H 0 * * : C 0 C n : C 0 H H * próżniowy nadfiolet (10 nm) n * * średni nadfiolet n * bliski nadfiolet

50 Reguły wyboru spektroskopii elektronowej E h * n kd nk 0 nk (dipolowy moment przejścia n k ) S 0

51

52 TEST KOŃCOWY 1A

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Wykład 1A Przegląd optycznych metod spektroskopowych

Wykład 1A Przegląd optycznych metod spektroskopowych Wykład 1A Przegląd optycznych metod spektroskopowych Porównanie metod spektroskopii NMR, EPR, spektroskopii mikrofalowej, Ramana,IR, ultrafioletu i promieniowania X. Reguły wyboru dla róznych typów spektroskopii.

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Wykład 6 Spektroskopia oscylacyjna. Model oscylatora harmonicznego i anharmonicznego cząsteczki dwuatomowej

Wykład 6 Spektroskopia oscylacyjna. Model oscylatora harmonicznego i anharmonicznego cząsteczki dwuatomowej Wykład 6 Spektroskopia oscylacyjna Model oscylatora armonicznego i anarmonicznego cząsteczki dwuatomowej W6. Spektroskopia oscylacyjna Widmo oscylacyjne cząsteczki CO w azie gazowej O czym nas inormuje

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Spektroskopia w podczerwieni

Spektroskopia w podczerwieni Spektroskopia w podczerwieni Metody badań strukturalnych ciała stałego dr inż. Magdalena Król Co to jest spektroskopia? Spektroskopia jest to nauka zajmująca się oddziaływaniem fali elektromagnetycznej

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XII Oddziaływanie promieniowania z materią w kontekście spektroskopii oscylacyjnej Absorpcja i rozpraszanie

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

dr hab. inż. Beata Brożek-Płuska SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ

dr hab. inż. Beata Brożek-Płuska SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ dr hab. inż. Beata Brożek-Płuska SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch

Bardziej szczegółowo

Analiza instrumentalna Wykład nr 3

Analiza instrumentalna Wykład nr 3 Analiza instrumentalna Wykład nr 3 KT2_2 brak zajęć lab. w dniu 18.10.2012 SPEKTROSKOPIA IR SPKTROSKOPIA RAMANA WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi.

Bardziej szczegółowo

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej

Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

SPEKTROSKOPIA ROTACYJNA

SPEKTROSKOPIA ROTACYJNA SPEKTROSKOPIA ROTACYJNA Co to jest spektroskopia mikrofalowa Obejmuje obszar częstości od 3GHz do 300GHz czyli od 0.1 do 10 cm -1 Wykrywa przejścia pomiędzy skwantowanymi poziomami energetycznymi obracającej

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie

Bardziej szczegółowo

Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny Instytut Techniki Radiacyjnej Laboratorium Laserowej Spektroskopii Molekularnej

Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny Instytut Techniki Radiacyjnej Laboratorium Laserowej Spektroskopii Molekularnej E-mail:abramczy@mitr.p.lodz.pl, http://mitr.p.lodz.pl/evu, http://mitr.p.lodz.pl/raman Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny Instytut Techniki Radiacyjnej Laboratorium Laserowej

Bardziej szczegółowo

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA

REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA REZONANSY : IDENTYFIKACJA WŁAŚCIWOŚCI PRZEZ ANALIZĘ FAL PARCJALNYCH, WYKRESY ARGANDA Opis układu cząsteczek w mechanice kwantowej: 1. Funkcja falowa, 2. Wektora stanu ψ. TRANSFORMACJE UKŁADU CZĄSTEK: 1.

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2

Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 Spektroskopia Analiza rotacyjna widma cząsteczki N 2 Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 w stanach B 2 v=0 oraz X 2 v=0. System B 2 u - X 2 g cząsteczki

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Spektroskopia Ramana

Spektroskopia Ramana Spektroskopia Ramana Źródło światła Próbka Promieniowanie rozproszone Rozpraszanie światła Rozpraszanie światła (fal elektromagnetycznych) to zjawisko oddziaływania światła z materią w wyniku którego następuje

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Spektroskopia Ramana

Spektroskopia Ramana Spektroskopia Ramana Źródło światła Próbka Promieniowanie rozproszone Rozpraszanie światła Rozpraszanie światła (fal elektromagnetycznych) to zjawisko oddziaływania światła z materią w wyniku którego następuje

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Fale elektromagnetyczne w dielektrykach

Fale elektromagnetyczne w dielektrykach Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

Atomy wieloelektronowe

Atomy wieloelektronowe Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Mateusz Winkowski, Jan Szczepanek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 06.10.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Jan Szczepanek Radosław Łapkiewicz Równania Maxwella r-nie

Bardziej szczegółowo

spektroskopia IR i Ramana

spektroskopia IR i Ramana spektroskopia IR i Ramana oscylacje (wibracje) 3N-6 lub 3N-5 drgań normalnych nie wszystkie drgania obserwuje się w IR - nieaktywne w IR gdy nie zmienia się moment dipolowy - pasma niektórych drgań mają

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

Model uogólniony jądra atomowego

Model uogólniony jądra atomowego Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa CZĘŚĆ I PRZEGLĄD METOD SPEKTRALNYCH Program wykładów Wprowadzenie:

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?

że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41? TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Kulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę.

Kulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę. Widmo elektronowe Elektrony w molekule poruszają się wokół jąder, mają więc pewną energię kinetyczną. Ponieważ znajdują się one w polu sil elektrostatycznych przyciągania przez jądra i odpychania przez

Bardziej szczegółowo

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego

Rysunek 3-23 Hipotetyczne widmo ciągłe atomu Ernesta Rutherforda oraz rzeczywiste widmo emisyjne wodoru w zakresie światła widzialnego 3.5. Model Bohra-Sommerfelda Przeciw modelowi atomu zaproponowanego przez Ernesta Rutherforda przemawiały także wyniki badań spektroskopowych pierwiastków. Jeśli elektrony, jak wynika z teorii Maxwella,

Bardziej szczegółowo

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1 Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek

Bardziej szczegółowo