Jak powstała Ewolucja fizyki (Eryk Infeld)

Wielkość: px
Rozpocząć pokaz od strony:

Download "http://www.wiw.pl/fizyka/ewolucja/ Jak powstała Ewolucja fizyki (Eryk Infeld)"

Transkrypt

1 Albert Einstein, Leopold Infeld EWOLUCJA FIZYKI Rozwój poglądów od najważniejszych pojęć do teorii względności i kwantów w przekładzie Ryszarda Gajewskiego Jak powstała Ewolucja fizyki (Eryk Infeld) Jest połowa lat trzydziestych. Na Zamku Królewskim w Warszawie obraduje Narodowa Rada Kultury. Głos zabiera Józef Piłsudski. Mówi on, że już nie jest w stanie zajmować się sprawami Rady na bieżąco, ale pragnie zwrócić uwagę na to, co uważa za bardzo istotne dla kraju. Otóż kluczowe znaczenie mają ośrodki akademickie na wschodzie, to znaczy uniwersytety we Lwowie i w Wilnie. Na tym terenie działa kilku bardzo zdolnych młodych ludzi. Tu wymienia nazwiska. Jest wśród nich docent Uniwersytetu Jana Kazimierza we Lwowie o nazwisku Leopold Infeld. Obecni uchwalają stypendia dla wymienionych. Przechodzi się do innych spraw. 1 Nie tylko nie przyznano stypendiów, ale wręcz zamknięto Infeldowi drogę do profesury, mimo że był on jedynym szeroko znanym polskim fizykiem teoretykiem swojego pokolenia. Elita polityczna Polski międzywojennej nie doceniała znaczenia fizyki teoretycznej (z fizyką doświadczalną było lepiej). Nie przejmowała się ani tą dziedziną, ani Infeldem, ani, co bardziej dziwi, zdaniem powoli umierającego Marszałka. Rok Leopold Infeld, po odrzuceniu swojej kandydatury na profesora w Wilnie, postanawia emigrować do Ameryki. Otrzymuje roczne stypendium w Princeton i wyjeżdża. Współpraca z Albertem Einsteinem układa się dobrze. Wspólnie piszą podstawowe prace, w których rozwiązują problem ruchu ciał w ogólnej teorii względności. Ale rok przechodzi szybko, jak to bywa, gdy się intensywnie pracuje. Kończą się środki. Uniwersytet nie uchwala przedłużenia stypendium, nie chcąc przesadnie inwestować w tematykę badań prawie sześćdziesięcioletniego Einsteina. Konserwa naukowa uznała, że wielki fizyk najważniejsze osiągnięcia ma już za sobą, a do zmiany poglądów konserwatyści z Princeton nie są bardziej skłonni od innych. 1

2 Co robić w tej sytuacji? Prace z Einsteinem nie są dokończone. Ojciec wpada na pomysł, by wspólnie napisać książkę o fizyce, lecz bez wzorów. Czytelnikiem miał być człowiek w miarę wykształcony, ale niekoniecznie naukowiec. Sama zaliczka oddala jego problemy finansowe! Jeden dzień w tygodniu był przeznaczony na pisanie książki. Dyskutowano, a ojciec spisywał wspólne ustalenia. I stało się. Powstała Ewolucja fizyki, o której filozof J. G. Kemeny napisał po latach: Potrzeba było połączonych talentów Einsteina i Infelda, by pisać o fizyce bez wzorów. Książka długo gościła na liście bestsellerów, a nawet przez kilka dni znajdowała się na pierwszym miejscu. Do chwili obecnej ukazało się około 200 wydań we wszystkich językach. Pierwsze polskie wydanie ukazało się w 1939 roku. (Tylko jeden egzemplarz ocalał). Leopold Infeld staje się człowiekiem sławnym. W tygodniku Time ukazuje się artykuł o autorach. Książka otrzymuje tytuł najładniej wydanej w roku Nieco później Infeld miał to wszystko ironicznie podsumować tak: Zapraszano mnie na obiad tam, gdzie przed tym bywałem tylko na herbatce. Zapraszano mnie na herbatkę tam, gdzie przed tym nie bywałem w ogóle! Nie ulega wątpliwości, że to potrzeba zmusiła ojca do zaproponowania Einsteinowi napisania książki. Niemniej był drugi powód podjęcia się tego trudu. Faszyzm opanowywał stary świat. System ten żerował na łatwowierności i ignorancji ludzkiej. Zdaniem autorów, każdy krok w kierunku przekonania ludzi do samodzielnego myślenia warto zrobić. Człowieka, który przeczytał na przykład Ewolucję fizyki, trochę trudniej będzie przekonać do myślenia krwią, rasy aryjskiej czy podludzkiego charakteru Polaków i Żydów (czy kogokolwiek). Czy mieli rację, nie wiem, ale taką myśl ojciec nam przekazał. Choć autorzy o tym nigdy się nie dowiedzieli, ich książka zainspirowała jedno z najważniejszych doświadczeń na elektronach. Autorzy piszą w Ewolucji fizyki, że nie potrafimy wystrzeliwać w określonej chwili pojedynczego elektronu. Otóż w 1949 roku Fabrikant, Biberman i Suszkin otrzymali dyfrakcję na pojedynczych elektronach. Pomysł tego rewelacyjnego doświadczenia zrodził się w głowie Fabrikanta pod wpływem lektury tej książki. 2 Chciałbym móc zliczyć rozmowy, w których fizycy mi mówili, że studiowali fizykę pod wpływem lektury Ewolucji fizyki. Kiedyś, gdy byłem w Hamburgu na konferencji, młody Niemiec przejechał 120 kilometrów pociągiem tylko po to, by mi to powiedzieć! W każdym razie my wszyscy, ludzie zajmujący się fizyką i pokrewnymi dziedzinami, pochodzimy od Alberta Einsteina. Częścią tego dziedzictwa jest Ewolucja fizyki. Eryk Infeld Warszawa, 23 marca 1998 roku 1 Protokół z posiedzenia na Zamku udostępnił mi nieżyjący już profesor Bogdan Jaczewski. Ojciec go przeczytał niedługo przed śmiercią. Sprawa nie była mu wcześniej znana. 2 J. Hurwic: Wspomnienie o Leopoldzie Infeldzie, Problemy, tom 24 (1968), s

3 SPIS TREŚCI Triumfy poglądu mechanistycznego... 4 Wielka powieść sensacyjna... 4 Pierwszy trop... 5 Wektory... 8 Zagadka ruchu Jeszcze jeden trop Czy ciepło jest substancją Kolejka w lunaparku Stosunek zamiany Podłoże filozoficzne Kinetyczna teoria materii Streszczamy: Upadek poglądu mechanistycznego Dwa płyny elektryczne Płyny magnetyczne Pierwsza poważna trudność Prędkość światła Światło jako substancja Zagadka barwy Co to jest fala? Falowa teoria światła Podłużne czy poprzeczne? Eter a pogląd mechanistyczny Streszczamy: Pole i teoria względności Obraz polowy Dwa filary teorii pola Rzeczywistość pola Pole i eter Rusztowanie mechaniczne Eter i ruch Czas, odległość, teoria względności Teoria względności a mechanika Continuum czasoprzestrzenne Ogólna teoria względności Wewnątrz i na zewnątrz windy Geometria i doświadczenie Ogólna teoria względności i jej potwierdzenie Pole i materia Streszczenie Kwanty Ciągłość i nieciągłość Elementarne kwanty materii i elektryczności Kwanty światła Widma światła Fale materii Fale prawdopodobieństwa Fizyka i rzeczywistość Streszczenie

4 Triumfy poglądu mechanistycznego Wielka powieść sensacyjna Można sobie wyobrazić ideał powieści sensacyjnej. Powieść taka przedstawia wszystkie istotne tropy i zmusza nas do zbudowania własnej teorii opisywanego przypadku. Śledząc uważnie tok akcji, dochodzimy do rozwiązania sami tuż przed tym, nim na końcu książki ujawni je autor. Samo rozwiązanie, inaczej niż to się dzieje w kiepskich powieściach sensacyjnych, nie rozczarowuje nas; co więcej pojawia się ono dokładnie w momencie, w którym go oczekujemy. Czy można czytelnika takiej książki przyrównać do uczonych, którzy poprzez pokolenia trwają w poszukiwaniu rozwiązań tajemnic w księdze natury? Porównanie takie jest fałszywe i trzeba je będzie w dalszym ciągu zarzucić, ma ono jednak odrobinę uzasadnienia, które można rozszerzyć i zmodyfikować tak, by porównanie nasze należycie oddawało wysiłki nauki w dziele rozwiązywania zagadki wszechświata. Ta wielka powieść sensacyjna pozostaje wciąż bez rozwiązania. Nie możemy nawet mieć pewności, że ostateczne rozwiązanie istnieje. Czytanie dało nam już dużo: nauczyło nas elementów języka przyrody, umożliwiło zrozumienie wielu tropów, było źródłem radości i wzruszeń w mozolnym częstokroć procesie postępu wiedzy. Zdajemy sobie jednak sprawę, że mimo wszystkich przeczytanych i zrozumianych tomów, wciąż jeszcze daleko nam do pełnego rozwiązania o ile takie w ogóle istnieje. Na każdym szczeblu staramy się znaleźć odpowiedź, która by była zgodna z tropami wykrytymi już uprzednio. Teorie przyjmowane na próbę objaśniły wiele faktów, dotąd jednak nie podano rozwiązania ogólnego, które by było zgodne ze wszystkimi znanymi tropami. Bardzo często doskonała na pozór teoria okazywała się przy dalszym czytaniu nieodpowiednia. Pojawiają się nowe fakty, przeczące teorii lub nie dające się na jej gruncie wytłumaczyć. Kiedy czytamy książkę, rośnie zachwyt nad doskonałością jej konstrukcji, mimo że pełne rozwiązanie w miarę naszego postępu zdaje się odsuwać. W każdej prawie powieści detektywistycznej od czasów uroczych opowiadań Conana Doyle'a nadchodzi moment, w którym prowadzący śledztwo zebrał już wszystkie fakty potrzebne mu do rozwiązania przynajmniej pewnej części problemu. Fakty te wydają się często dziwne, oderwane i zupełnie ze sobą nie powiązane. Jednakże wielki detektyw zdaje sobie sprawę, że na razie żadne dalsze śledztwo nie jest potrzebne i że samo tylko myślenie doprowadzi do ustalenia związków między zebranymi faktami. Gra więc na skrzypcach lub paląc fajkę, kołysze się w swym fotelu, gdy wtem, na Jowisza, jest! Ma nie tylko objaśnienie wszystkich tropów, którymi dysponował, ale wie, że muszą jeszcze zajść pewne inne zdarzenia. Ponieważ wie dokładnie, gdzie ich oczekiwać, może, jeśli zechce, wyjść i zebrać dalsze potwierdzenia swej teorii. Uczony czytający księgę natury jeśli wolno powtórzyć ten banalny zwrot musi znaleźć rozwiązanie sam; nie może, jak to często robią niecierpliwi czytelnicy innych powieści, zajrzeć na koniec książki. W tym przypadku czytelnik jest tym, który prowadzi śledztwo i próbuje przynajmniej częściowo wyjaśnić stosunek zdarzeń do ich bogatego kontekstu. Aby otrzymać choć cząstkowe rozwiązanie, uczony musi zebrać dostępne nie uporządkowane fakty i drogą myślenia uczynić je spójnymi i zrozumiałymi. 4

5 Celem naszym jest opisanie na dalszych stronicach w grubym zarysie tej części pracy fizyka, która odpowiada samemu tylko myśleniu detektywa. Będziemy się głównie zajmować rolą, jaką w pełnym przygód poszukiwaniu wiedzy o fizykalnym świecie odgrywają myśli i pojęcia. Pierwszy trop Próby czytania wielkiej powieści przyrody są równie stare, jak stara jest myśl ludzka. Jednakże dopiero niewiele ponad trzysta lat temu zaczęli uczeni rozumieć język powieści. Od tego czasu, a były to czasy Galileusza i Newtona, czytanie postępowało bardzo szybko. Rozwinięto technikę badań, opracowano systematyczne metody odszukiwania tropów i ich śledzenia. Rozwiązano wiele zagadek natury, choć niektóre rozwiązania okazały się w świetle dalszych badań nietrwałe i powierzchowne. Problemem podstawowej wagi, który z powodu zawartych w nim komplikacji pozostawał przez tysiące lat zupełnie nie wyjaśniony, jest problem ruchu. Wszystkie ruchy, które obserwujemy w przyrodzie ruch kamienia rzuconego w powietrzu, ruch statku płynącego po morzu, ruch wózka popychanego na ulicy są w rzeczywistości bardzo złożone. Aby te zjawiska zrozumieć, dobrze jest zacząć od przypadków możliwie najprostszych, przechodząc stopniowo do bardziej skomplikowanych. Weźmy pod uwagę ciało pozostające w spoczynku; w tym przypadku w ogóle nie ma ruchu. Aby zmienić położenie takiego ciała, trzeba na nie w pewien sposób zadziałać popchnąć je lub podnieść albo poddać działaniu innych ciał, na przykład konia lub maszyny parowej. W intuicji naszej pojęcie ruchu wiąże się z takimi działaniami, jak popychanie, podnoszenie, pociąganie. Posiadane doświadczenie skłoniłoby nas do zaryzykowania dalszego stwierdzenia, że jeśli chcemy, by ciało poruszało się szybciej, musimy je mocniej popychać. Nasuwa się naturalny wniosek, że szybkość ciała jest tym większa, im większe jest wywierane na nie działanie. Powóz zaprzężony w cztery konie jedzie prędzej od dwukonnego. Tak więc intuicja mówi nam, że szybkość wiąże się w istotny sposób z działaniem. Czytelnicy powieści kryminalnych wiedzą dobrze, że fałszywy trop gmatwa wątek i opóźnia rozwiązanie. Metoda rozumowania, którą podyktowała nam intuicja, jest błędna i prowadzi do fałszywych pojęć o ruchu, które przyjmowano w ciągu stuleci. Być może główną przyczyną, dla której utrzymywały się one tak długo, był wielki w Europie autorytet Arystotelesa. W przypisywanej mu od dwóch tysięcy lat Mechanice czytamy: Poruszające się ciało powraca do spoczynku, jeżeli siła, która je popycha, przestaje działać. Odkrycie i zastosowanie przez Galileusza metody naukowego rozumowania było jednym z najdonioślejszych osiągnięć w historii myśli ludzkiej i stało się właściwym początkiem fizyki. Odkrycie to nauczyło nas, że nie można ufać intuicyjnym wnioskom opartym na bezpośredniej obserwacji, ponieważ mogą one czasem prowadzić na manowce. Ale w którym miejscu intuicja zawodzi? Czyżby nie było prawdą stwierdzenie, że powóz zaprzężony w cztery konie musi jechać szybciej niż zaprzężony tylko w dwa? Zbadajmy bliżej podstawowe fakty związane z ruchem, rozpoczynając od prostych doświadczeń życia codziennego, znanych ludzkości od początku cywilizacji, nabytych w ciężkiej walce o byt. 5

6 Przypuśćmy, że człowiek popychający wózek po równej drodze przestaje go nagle popychać. Wózek, zanim się zatrzyma, będzie się jeszcze poruszał, przebywając niewielką odległość. Pytamy: w jaki sposób można by tę odległość powiększyć? Sposoby są różne można oliwić koła, można wygładzać drogę. Im łatwiej obracają się koła i im gładsza droga, tym dłużej poruszać się będzie wózek. Lecz czegóż dokonano, oliwiąc koła i wygładzając drogę? Tylko jednego: zmniejszono wpływy zewnętrzne. Zmniejszono efekt zwany tarciem zarówno w kołach, jak między kołami a drogą. Jest to już teoretyczna interpretacja zaobserwowanych faktów, interpretacja w gruncie rzeczy dowolna. Jeszcze jeden istotny krok naprzód i znajdziemy się na właściwym tropie. Wyobraźmy sobie drogę doskonale gładką i koła, w których w ogóle nie ma tarcia. W tym wypadku nic nie zatrzyma wózka, a więc będzie on się toczył wiecznie. Do wniosku tego dochodzimy wyłącznie drogą rozważań nad wyidealizowanym doświadczeniem, którego w rzeczywistości nigdy nie można wykonać, ponieważ nie sposób wyeliminować wszystkich wpływów zewnętrznych. Wyidealizowane doświadczenie wskazuje na trop, który stał się podstawowym dla mechaniki ruchu. Porównując obie metody podejścia do zagadnienia, możemy powiedzieć: pogląd oparty na intuicji głosi im większe działanie, tym większa prędkość. Tak więc prędkość wskazuje, czy na ciało działają siły zewnętrzne, czy nie. Nowy trop, odkryty przez Galileusza, prowadzi do stwierdzenia: jeżeli ciało nie jest ani popychane, ani pociągane, ani nie jest na nie wywierane jakiekolwiek inne działanie, czyli krótko mówiąc, jeżeli na ciało nie działa żadna siła zewnętrzna, to porusza się ono ruchem jednostajnym, to znaczy stale z tą samą prędkością po linii prostej. Tak więc prędkość nie wskazuje na to, czy na ciało działają siły zewnętrzne, czy nie. Wniosek Galileusza, wniosek poprawny, został po upływie jednego pokolenia sformułowany przez Newtona jako prawo bezwładności. Jest to zwykle pierwsze prawo fizyczne, którego się w szkole uczymy na pamięć, toteż niektórzy z nas mogą je jeszcze pamiętać: Każde ciało pozostaje w spoczynku lub w ruchu jednostajnym po linii prostej, jeżeli siły do niego przyłożone nie zmuszają go do zmiany tego stanu. Widzieliśmy, że tego prawa bezwładności nie można wyprowadzić wprost z doświadczenia; można je wyprowadzić jedynie na drodze zgodnego z doświadczeniem rozumowania. Wyidealizowanego doświadczenia choć prowadzi ono do głębokiego zrozumienia doświadczeń rzeczywistych nie można nigdy wykonać w rzeczywistości. Jako pierwszy przykład spośród bogactwa złożonych ruchów, jakie zachodzą w otaczającym nas świecie, wybieramy ruch jednostajny. Jest on najprostszy, bo nie działają tu siły zewnętrzne. Jednakże ruchu jednostajnego nigdy nie można zrealizować; ani kamień rzucony z wieży, ani wózek popychany drogą nie będą się nigdy poruszać ruchem absolutnie jednostajnym, gdyż nie możemy usunąć wpływu sił zewnętrznych. W dobrej powieści sensacyjnej tropy, które się najbardziej narzucają, prowadzą często do fałszywych podejrzeń. Podobnie w naszych próbach zrozumienia praw przyrody często spostrzegamy, że najbardziej narzucające się, dyktowane przez intuicję rozwiązanie okazuje się błędne. Myśl ludzka stwarza zmieniający się wiecznie obraz wszechświata. Galileusz przyczynił się do zburzenia poglądu opartego na intuicji i zastąpienia go nowym: na tym właśnie polega doniosłość jego odkrycia. Natychmiast jednak nasuwa się następne pytanie dotyczące ruchu. Jeżeli nie prędkość, to co jest wskaźnikiem działania na ciało sił zewnętrznych? Odpowiedź na to podstawowe 6

7 pytanie podał Galileusz, a w formie jeszcze bardziej zwartej Newton. Stanowi ona kolejny trop dla naszych dociekań. Aby znaleźć poprawną odpowiedź, musimy nieco głębiej zastanowić się nad doświadczeniem z wózkiem na doskonale gładkiej drodze. W naszym wyidealizowanym doświadczeniu jednostajność ruchu była spowodowana nieobecnością jakichkolwiek sił zewnętrznych. Wyobraźmy sobie teraz, że poruszający się ruchem jednostajnym wózek zostaje popchnięty w kierunku ruchu. Co się stanie z wózkiem? Oczywiście jego prędkość wzrośnie. W sposób równie oczywisty popchnięcie wózka w kierunku przeciwnym do ruchu zmniejszyłoby prędkość. W pierwszym przypadku popchnięcie przyspiesza ruch wózka, w drugim opóźnia go, czyli zwalnia. Wniosek wynika natychmiast: działanie siły zewnętrznej zmienia prędkość. Tak więc następstwem popychania lub pociągania nie jest sama prędkość, lecz jej zmiana. Zależnie od tego, czy siła działa w kierunku ruchu, czy w kierunku przeciwnym, powoduje ona zwiększenie lub zmniejszenie prędkości. Zrozumiał to dobrze Galileusz, pisząc w swoich Dwóch nowych umiejętnościach: [...] stopień prędkości, jakkolwiek się w ciele objawia, jest w nim niezniszczalnie zawarty, podczas gdy przyczyny zewnętrzne wytwarzają przyspieszenie lub opóźnienie, co tylko spostrzec można na płaszczyźnie poziomej: bo przy spadku po pochyłości dołącza się przyczyna przyspieszenia, a przy podnoszeniu się opóźnienia. Wynika stąd również, że ruch po poziomie jest także wieczny, bo gdy pozostaje zawsze jednaki, nie osłabia się ani wzmacnia, nie zmniejsza się i nie powiększa. Postępując właściwym tropem, osiągamy głębsze zrozumienie problemu ruchu. Związek pomiędzy siłą a zmianą prędkości a nie, jakby to nasuwała intuicja, związek pomiędzy siłą a samą prędkością jest podstawą sformułowanej przez Newtona mechaniki klasycznej. Korzystaliśmy dotychczas z dwóch pojęć, odgrywających zasadniczą rolę w mechanice klasycznej; są to: siła i zmiana prędkości. Oba te pojęcia zostały w miarę rozwoju nauki rozwinięte i uogólnione. Trzeba je więc zbadać dokładniej. Co to jest siła? Znaczenie tego słowa wyczuwamy intuicyjnie. Pojęcie sił powstało w związku z wysiłkiem związanym z popychaniem, rzucaniem, ciągnięciem w związku z wrażeniem mięśniowym, jakie towarzyszy każdemu z tych działań. Jednakże uogólnienie tego pojęcia wykracza daleko poza te proste przykłady. Po to, by pomyśleć o sile, nie trzeba sobie koniecznie wyobrażać konia ciągnącego wóz! Mówimy o sile przyciągania między Słońcem a Ziemią, między Ziemią a Księżycem, a także o siłach powodujących przypływ i odpływ morza. Mówimy o sile, którą Ziemia działa na nas i na otaczające nas przedmioty, zmuszając je do pozostawania w zasięgu jej wpływu, i o sile wiatru powodującej powstawanie fal na morzu lub poruszającej liśćmi drzew. Kiedykolwiek i gdziekolwiek stwierdzamy zmianę prędkości, musi to być wynikiem działania siły zewnętrznej w ogólnym tego słowa znaczeniu. W swych Principiach Newton pisał: Siła przyłożona jest to działanie wywierane na ciało w celu zmiany jego stanu bądź to spoczynku, bądź ruchu jednostajnego po linii prostej. Siła ta przejawia się tylko w działaniu i nie pozostaje w ciele po ustaniu działania. Albowiem ciało zachowuje wszelki nowy stan, w jakim się znajdzie, wyłącznie dzięki swej vis inertiae. Siły przyłożone mogą pochodzić z różnych źródeł, takich jak uderzenie, ciśnienie, siła dośrodkowa. Ruch kamienia spadającego z wieży nie jest jednostajny; w miarę jego spadania prędkość wzrasta. Wnioskujemy stąd, że w kierunku ruchu działa siła zewnętrzna. Innymi słowy Ziemia przyciąga kamień. Weźmy inny przykład: Co się dzieje z kamieniem rzuconym pionowo do góry? Prędkość jego maleje, dopóki kamień nie wzniesie się do punktu 7

8 najwyższego i nie zacznie spadać. To zmniejszenie się prędkości spowodowane jest przez tę samą siłę, która powoduje przyspieszenie ciała spadającego. W jednym przypadku siła działa w kierunku ruchu, w drugim w kierunku przeciwnym. Siła jest ta sama, jednak zależnie od tego, czy kamień spada w dół, czy został rzucony w górę, powoduje ona albo przyspieszenie, albo opóźnienie ruchu. Wektory Wszystkie rozważane przez nas dotąd ruchy były prostoliniowe, to znaczy zachodziły po linii prostej. Musimy teraz pójść o jeden krok dalej. Zrozumienie praw przyrody uzyskujemy, rozważając przypadki najprostsze i pomijając zrazu wszelkie możliwe komplikacje. Trudno jednak zadowolić się zrozumieniem samego tylko ruchu prostoliniowego. Ruchy Księżyca, Ziemi i planet te właśnie, do których z tak błyskotliwym sukcesem zastosowano zasady mechaniki są ruchami po torach zakrzywionych. Przejście od ruchu prostoliniowego do ruchu po torze zakrzywionym wiąże się z nowymi trudnościami. Musimy mieć odwagę pokonania tych trudności, jeśli chcemy zrozumieć zasady mechaniki klasycznej podsunięte nam przez pierwsze tropy i stanowiące punkt wyjścia dla rozwoju nauki. Rozważmy inne wyidealizowane doświadczenie, w którym doskonale gładka kula toczy się ruchem jednostajnym po gładkim stole. Wiemy, że jeśli kulę popchnąć, to znaczy, jeśli przyłożyć do niej siłę zewnętrzną, prędkość jej się zmieni. Przypuśćmy teraz, że pchnięcie nie następuje jak w przypadku wózka w kierunku ruchu, lecz w kierunku zupełnie innym, na przykład prostopadłym do kierunku ruchu. Co się stanie z kulą? Można wyróżnić trzy stadia ruchu: ruch początkowy, działanie siły i ruch końcowy, gdy siła przestała już działać. Zgodnie z prawem bezwładności obie prędkości przed zadziałaniem siły i po jej zadziałaniu są ściśle jednostajne. Między ruchem jednostajnym przed zadziałaniem i po zadziałaniu siły istnieje jednak różnica: zmienił się kierunek ruchu. Kierunek początkowego ruchu kuli i kierunek działania siły są nawzajem prostopadłe. Ruch końcowy nie będzie się odbywał wzdłuż żadnej z tych dwóch linii, lecz gdzieś pomiędzy nimi bliżej kierunku siły, jeżeli uderzenie było silne, a prędkość początkowa mała, zaś bliżej początkowego kierunku ruchu, jeżeli uderzenie było delikatne, a prędkość początkowa duża. Nasz nowy wniosek, oparty na prawie bezwładności, brzmi: działanie siły zewnętrznej zmienia w ogólności nie tylko szybkość, ale i kierunek ruchu. Zrozumienie tego faktu umożliwia nam dokonanie uogólnienia, jakim jest wprowadzenie do fizyki pojęcia wektora. Możemy w dalszym ciągu stosować naszą bezpośrednią metodę rozumowania. Punktem wyjścia jest nadal prawo bezwładności Galileusza. Wciąż jeszcze daleko nam do wyczerpania konsekwencji, jakie wynikają z tego cennego tropu, wiodącego ku rozwiązaniu zagadki ruchu. Weźmy pod uwagę dwie kule poruszające się po gładkim stole w różnych kierunkach. Aby sobie wytworzyć konkretny obraz, możemy założyć, że oba kierunki są nawzajem prostopadłe. Na kule nie działają żadne siły zewnętrzne, toteż ich ruchy są ściśle jednostajne. Przypuśćmy dalej, że szybkości kul są równe, to znaczy, że w jednakowym odstępie czasu obie przebywają taką samą odległość. Czy będzie jednak słuszne powiedzenie, że obie kule mają taką samą prędkość? Odpowiedź może brzmieć tak lub nie! Jeśli szybkościomierze dwóch samochodów wskazują obydwa sześćdziesiąt kilometrów na godzinę, to zazwyczaj mówi się, że mają one tę samą szybkość albo prędkość niezależnie od kierunku jazdy. Ale 8

9 nauka musi na swój własny użytek tworzyć własny język, własne pojęcia. Terminy naukowe często wywodzą się z pojęć używanych w języku potocznym w związku ze sprawami życia codziennego, jednak rozwijają się zupełnie inaczej. Przekształcają się i tracą wieloznaczność, która je cechuje w języku potocznym, zyskując zarazem precyzję, umożliwiającą stosowanie ich do rozważań naukowych. Z punktu widzenia fizyka wygodnie jest powiedzieć, że prędkości dwóch kul poruszających się w różnych kierunkach są inne. Jest to wprawdzie wyłącznie kwestią umowy, jednak wygodnie jest mówić, że cztery samochody rozjeżdżające się ze skrzyżowania w różnych kierunkach nie mają jednakowej prędkości, mimo że ich szybkościomierze wskazują wszystkie tę samą szybkość: sześćdziesiąt kilometrów na godzinę. To zróżnicowanie pojęć szybkości i prędkości pokazuje, jak fizyka, biorąc za punkt wyjścia pojęcie używane w życiu codziennym, zmienia je w sposób, który okazuje się owocny dla dalszego rozwoju nauki. Przy pomiarze długości podaje się wynik w postaci liczby jednostek. Długość pręta może wynosić 1 metr 20 centymetrów; ciężar jakiegoś przedmiotu może być 1 kilogram 257 gramów; zmierzony odstęp czasu może wynosić tyle a tyle minut i sekund. W każdym z tych wypadków wynik pomiaru można wyrazić w postaci liczby. Istnieją jednak wielkości fizyczne, w odniesieniu do których podanie samej tylko liczby jest niewystarczające. Uznanie tego faktu oznaczało znaczny postęp w badaniach naukowych. Na przykład dla scharakteryzowania prędkości istotne są zarówno liczba, jak kierunek. Taka wielkość, posiadająca zarówno wartość liczbową, jak kierunek, nazywa się wektorem. Wygodnym symbolem takiej wielkości jest strzałka. Prędkość można przedstawić w postaci strzałki, czyli inaczej mówiąc wektora, którego długość jest w pewnej wybranej skali miarą szybkości i którego kierunek jest identyczny z kierunkiem ruchu. Jeżeli cztery samochody rozjeżdżają się ze skrzyżowania z równymi szybkościami, to ich prędkości można przedstawić w postaci czterech wektorów o jednakowej długości, tak jak to pokazano na rysunku. W przyjętej tu skali jeden centymetr oznacza dwadzieścia kilometrów na godzinę. W ten sposób można każdą prędkość przedstawić w formie wektora i odwrotnie, znając skalę, można z takiego wykresu wektorowego określić prędkość. 9

10 Jeżeli dwa samochody mijają się na szosie, przy czym oba szybkościomierze wskazują sześćdziesiąt kilometrów na godzinę, to prędkości ich można scharakteryzować za pomocą dwóch różnych wektorów, których strzałki wskazują przeciwne strony. Podobnie przeciwne zwroty mają strzałki wskazujące kierunki w górę miasta i w dół miasta w nowojorskim metrze. Jednak wszystkie pociągi, jadące w górę miasta z taką samą szybkością, mają jednakową prędkość, którą można przedstawić w postaci jednego wektora. Wektor taki nie mówi nic o tym, które stacje pociąg właśnie mija, albo po którym z licznych, równoległych torów się porusza. Innymi słowy, według przyjętej umowy wszystkie wektory, takie jak na rysunku poniżej, można uważać za równe; leżą one albo na jednej prostej, albo na prostych równoległych, mają tę samą długość i wreszcie strzałki ich wskazują tę samą stronę. Wszystkie wektory przedstawione na następnym rysunku są inne, różnią się bowiem albo długością, albo kierunkiem, albo i jednym, i drugim. Te same cztery wektory można narysować inaczej, tak by rozchodziły się one wszystkie z jednego punktu. Ponieważ punkt początkowy nie ma znaczenia, wektory te mogą przedstawiać prędkości czterech samochodów rozjeżdżających się z jednego skrzyżowania albo prędkości czterech samochodów, które w różnych częściach kraju poruszają się ze wskazanymi szybkościami, w określonych kierunkach. 10

11 Możemy teraz zastosować obraz wektorowy do opisu omówionych uprzednio faktów dotyczących ruchu prostoliniowego. Mówiliśmy o wózku, który porusza się ruchem jednostajnym po linii prostej i zostaje popchnięty w kierunku ruchu, co zwiększa jego prędkość. Graficznie można to przedstawić za pomocą dwóch wektorów krótszego, oznaczającego prędkość przed popchnięciem, i dłuższego, tak samo skierowanego, oznaczającego prędkość po popchnięciu. Znaczenie wektora przerywanego jest jasne: przedstawia on zmianę prędkości, spowodowaną jak wiemy przez popchnięcie. W przypadku, gdy siła jest skierowana przeciwnie do ruchu, co powoduje jego zwolnienie, wykres jest nieco inny. Również i tu wektor przerywany odpowiada zmianie prędkości, jednakże jego kierunek jest w tym wypadku inny. Jest rzeczą oczywistą, że wektorami są nie tylko same prędkości, ale również ich zmiany. Jednakże każda zmiana prędkości spowodowana jest działaniem siły zewnętrznej, a zatem również siła musi być przedstawiona w postaci wektora. Do tego, by scharakteryzować siłę, nie wystarczy stwierdzić, jak mocno popychamy wózek; trzeba jeszcze powiedzieć, w którym kierunku go popychamy. Siła, podobnie jak prędkość lub zmiana prędkości, musi być przedstawiana w formie wektora, a nie samej tylko liczby. Zatem siła zewnętrzna jest też wektorem, a jej kierunek musi być taki sam, jak kierunek zmiany prędkości. Na obu rysunkach wektory przerywane wskazują zarówno zmianę prędkości, jak i kierunek siły. Sceptyk może w tym miejscu zauważyć, że nie widzi korzyści z wprowadzenia wektorów. Dokonano jedynie przetłumaczenia uznanych już dawniej faktów na mało zrozumiały i skomplikowany język. Rzeczywiście, w obecnym stanie rzeczy trudno by było 11

12 przekonać sceptyka, że nie ma racji. Na razie istotnie, ma rację. Przekonamy się jednak, że właśnie ten dziwny język prowadzi do ważnego uogólnienia, w którym wektory odgrywają podstawową rolę. Zagadka ruchu Dopóki zajmujemy się ruchem po linii prostej, daleko nam do zrozumienia ruchów, które obserwujemy w przyrodzie. Musimy się zająć ruchami po torach zakrzywionych, toteż nasz następny krok polegać będzie na określeniu praw rządzących takimi właśnie ruchami. Nie jest to łatwe zadanie. Nasze pojęcia prędkości, zmiany prędkości i siły okazały się bardzo pożyteczne w przypadku ruchu prostoliniowego. Nie widać jednak, jak można by je zastosować do ruchu po torze zakrzywionym. Można by nawet przypuścić, że stare pojęcia nie nadają się do opisu ruchu ogólnego i że trzeba stworzyć nowe. Czy powinniśmy próbować postępować starą drogą, czy też wypadnie nam szukać nowej? Uogólnianie pojęcia jest procesem często w nauce spotykanym. Metoda uogólniania nie jest określona w sposób jednoznaczny, ponieważ uogólniać można zwykle na liczne sposoby. Jeden warunek musi być wszakże ściśle spełniony: pojęcie uogólnione powinno się sprowadzać do pojęcia początkowego, gdy spełnione są te same, co na początku warunki. Można to najlepiej wytłumaczyć na przykładzie, którym się właśnie zajmujemy. Możemy spróbować uogólnić stare pojęcia prędkości, zmiany prędkości i siły tak, aby obejmowały one również przypadek ruchu po torze zakrzywionym. W języku fachowym, mówiąc o liniach krzywych, włączamy w to również linie proste. Linia prosta jest szczególnym i banalnym przykładem krzywej. Jeśli więc wprowadzić prędkość, zmianę prędkości i siłę dla ruchu po linii krzywej, to są one tym samym automatycznie wprowadzone dla ruchu po linii prostej. Wynik ten nie może jednak być sprzeczny z danymi uzyskanymi uprzednio. Gdy krzywa staje się linią prostą, wszystkie pojęcia uogólnione muszą się sprowadzać do dobrze już znanych pojęć opisujących ruch prostoliniowy. To ograniczenie nie wystarcza jednak, by uogólnienie było wyznaczone w sposób jednoznaczny. Pozostaje jeszcze wiele otwartych możliwości. Historia nauki uczy, że najprostsze uogólnienia czasem okazują się pożyteczne, a czasem nie. Musimy z początku zdać się na domysł. W naszym przypadku łatwo jest odgadnąć właściwą metodę uogólniania. Nowe pojęcia okazują się bardzo udatne, pomagając nam w zrozumieniu zarówno ruchu rzuconego kamienia, jak i ruchu planet. Cóż więc oznaczają słowa prędkość, zmiana prędkości i siła w ogólnym przypadku ruchu po linii krzywej? Zacznijmy od prędkości. Przypuśćmy, że bardzo małe ciało porusza się po krzywej z lewa na prawo. Takie małe ciało bywa często nazywane cząstką. Na naszym rysunku kropka na krzywej wskazuje położenie cząstki w pewnej chwili. Jaka prędkość odpowiada tej chwili i temu położeniu? 12

13 Znów trop Galileusza podsuwa sposób wprowadzenia prędkości. Raz jeszcze musimy się odwołać do naszej wyobraźni i przedstawić sobie wyidelizowane doświadczenie. Cząstka porusza się po krzywej z lewa na prawo pod wpływem sił zewnętrznych. Przypuśćmy, że w pewnej chwili, w punkcie oznaczonym kropką wszystkie te siły przestają nagle działać. Zgodnie z prawem bezwładności ruch musi wtedy być jednostajny. Oczywiście w praktyce nigdy nie możemy całkowicie uwolnić ciała od wszystkich wpływów zewnętrznych. Możemy się tylko domyślać co by było gdyby...?, a trafność przewidywania oceniać na podstawie wniosków, które z niego można wyciągnąć, i ich zgodności z doświadczeniem. Wektor na następnym rysunku oznacza przewidywany kierunek ruchu jednostajnego, jeśliby wszystkie siły zewnętrzne zniknęły. Jest to kierunek tak zwanej linii stycznej. Patrząc na poruszającą się cząstkę przez mikroskop, widzimy bardzo mały fragment krzywej, który wydaje się krótkim odcinkiem. Styczna jest przedłużeniem tego odcinka. Tak więc narysowany wektor przedstawia prędkość w danej chwili. Wektor prędkości leży na stycznej. Jego długość przedstawia wielkość prędkości, czyli szybkość tak jak ją wskazuje na przykład szybkościomierz samochodu. Naszego wyidealizowanego doświadczenia, polegającego na zniszczeniu ruchu w celu znalezienia wektora prędkości, nie należy brać zbyt poważnie. Pomaga nam ono tylko zrozumieć, co powinniśmy nazwać wektorem prędkości, i pozwala określić ten wektor w danej chwili i w danym punkcie. Na następnym rysunku pokazano wektory prędkości odpowiadające trzem różnym położeniom cząstki poruszającej się po krzywej. W tym przypadku zmianie w trakcie ruchu ulega nie tylko kierunek, ale również wielkość prędkości, na co wskazuje długość wektorów. Czy to nowe pojęcie prędkości spełnia wymagania sformułowane dla wszystkich uogólnień? To znaczy czy w przypadku, gdy krzywa staje się linią prosta, sprowadza się ono do pojęcia już znanego? Oczywiście, tak. Styczną do linii prostej jest sama linia prosta. Wektor prędkości leży na linii ruchu, tak samo jak to się działo w przypadku poruszającego się wózka czy toczących się kul. 13

14 Naszym następnym krokiem będzie wprowadzenie zmiany prędkości cząstki, poruszającej się po krzywej. Również i tego można dokonać na kilka sposobów, z których wybierzemy najprostszy i najwygodniejszy. Na poprzednim rysunku pokazano kilka wektorów prędkości, przedstawiających ruch w różnych punktach toru. Pierwsze dwa można przerysować tak, by miały wspólny początek, co jak widzieliśmy jest dla wektorów możliwe. Wektor przerywany nazywamy zmianą prędkości. Jego początek leży w końcu wektora pierwszego, a koniec w końcu wektora drugiego. Taka definicja zmiany prędkości może się na pierwszy rzut oka wydawać sztuczna i bez sensu. Staje się ona znacznie jaśniejsza w przypadku szczególnym, w którym wektory (1) i (2) mają ten sam kierunek. Oznacza to oczywiście przejście do przypadku ruchu prostoliniowego. Jeżeli oba wektory mają wspólny początek, to teraz wektor kreskowany łączy ich końce. Rysunek jest teraz identyczny z rysunkiem z poprzedniego fragmentu, a poprzednie pojęcie okazuje się szczególnym przypadkiem nowego. Należy zaznaczyć, że na rysunku musieliśmy dwie linie rozdzielić, gdyż inaczej pokrywałyby się one nawzajem i nie można by ich było odróżnić. W naszym procesie uogólniania dokonamy teraz ostatniego kroku. Będzie to najważniejsze z wszystkich dotychczasowych przewidywań. Musimy ustalić związek pomiędzy siłą i zmianą prędkości, aby móc znaleźć trop, który pozwoli nam zrozumieć ogólny problem ruchu. Klucz do objaśnienia ruchu po linii prostej był nieskomplikowany: zmiana prędkości spowodowana jest działaniem siły zewnętrznej, wektor siły ma kierunek taki sam jak zmiana prędkości. A co przyjąć za klucz do objaśnienia ruchu krzywoliniowego? Dokładnie to samo! Jedyna różnica polega na tym, że zmiana prędkości ma teraz szersze niż uprzednio znaczenie. Sprawę wyjaśnia rzut oka na wektory przerywane z ostatnich dwóch rysunków. Jeżeli znana jest prędkość w każdym punkcie krzywej, to można natychmiast znaleźć kierunek siły w dowolnym punkcie. Trzeba narysować wektory prędkości w dwóch chwilach oddzielonych bardzo krótkim odstępem czasu, a więc odpowiadających bardzo bliskim sobie położeniom. Wektor przeprowadzony z końca pierwszego wektora do końca drugiego wskazuje kierunek siły działającej. Istotne jest jednak, aby oba wektory prędkości oddzielone były bardzo krótkim odstępem czasu. Ścisła analiza słów takich, jak bardzo bliski, bardzo krótki, bynajmniej nie jest prosta. Właśnie ta analiza doprowadziła Newtona i Leibniza do wynalezienia rachunku różniczkowego. Droga wiodąca do uogólnienia tropu Galileusza jest żmudna i uciążliwa. Nie możemy tu wykazać, jak liczne i owocne są wnioski, które z tego uogólnienia wynikają. Jego 14

15 zastosowanie prowadzi do prostego i przekonującego wyjaśnienia wielu faktów, które przedtem wydawały się nie związane z sobą i niezrozumiałe. Z ogromnego bogactwa rozmaitych ruchów wybierzemy najprostsze i zastosujemy do nich sformułowane przed chwilą prawo. Tor pocisku wystrzelonego z działa, tor kamienia rzuconego pod kątem do poziomu, tor strumienia wody tryskającego z sikawki te wszystkie dobrze znane tory są jednakowego typu: mają kształt paraboli. Wyobraźmy sobie na przykład, że do kamienia przymocowany jest szybkościomierz; możemy więc narysować wektor prędkości w dowolnej chwili. Przypuśćmy, że wynik jest taki, jak przedstawiono na rysunku poniżej. Kierunek siły działającej na kamień jest taki sam, jak kierunek zmiany prędkości, a ten umiemy już określać. Wynik przedstawiony na następnym rysunku wskazuje, że siła jest pionowa i skierowana w dół. Mamy tu sytuację zupełnie taką samą, jak w przypadku kamienia puszczonego swobodnie ze szczytu wieży. Tory, a także prędkości, są w obu wypadkach zupełnie różne, jednakże zmiana prędkości ma kierunek ten sam, to znaczy, jest skierowana do środka Ziemi. Kamień, uwiązany na sznurku i wirujący w płaszczyźnie poziomej, porusza się po torze kołowym. Jeżeli szybkość jest stała, to wszystkie wektory na wykresie przedstawiającym ruch mają jednakową długość. Jednakże prędkość nie jest stała, bo tor nie jest linią prostą. Jedynym ruchem, przy którym nie działają siły, jest ruch jednostajny prostoliniowy. Tym razem jednak siły działają i prędkość się zmienia nie co do wielkości, lecz co do kierunku. Zmiana ta, według prawa ruchu, musi być spowodowana przez siłę w tym wypadku przez siłę działającą między kamieniem a ręką trzymającą sznurek. 15

16 Natychmiast nasuwa się kolejne pytanie: w jakim kierunku działa siła? Odpowiedź daje znów wykres wektorowy. Narysowano tu wektory prędkości odpowiadające dwóm bliskim sobie punktom i znaleziono zmianę prędkości. Ten ostatni wektor jest, jak widać, skierowany wzdłuż sznurka, w stronę środka koła i jest zawsze prostopadły do wektora prędkości, czyli do stycznej. Innymi słowy, ręka działa na kamień siłą za pośrednictwem sznurka. Podobnym, ale o wiele ważniejszym przykładem jest obrót Księżyca dokoła Ziemi. Obrót ten można w przybliżeniu przedstawić jako ruch jednostajny po kole. Siła jest tu skierowana ku Ziemi z tego samego powodu, dla którego w naszym poprzednim przykładzie była skierowana ku ręce. Choć Ziemi z Księżycem nie łączy sznurek, to jednak możemy sobie wyobrazić linię łączącą środki obu ciał, siła leży na tej właśnie linii i jest skierowana w stronę środka Ziemi, zupełnie tak samo jak siła działająca na kamień rzucony w powietrze lub puszczony z wieży. Wszystko, cośmy dotąd powiedzieli na temat ruchu, można streścić w jednym zdaniu. Siła i zmiana prędkości są wektorami o jednakowym kierunku. Jest to wstępny trop do rozwiązania problemu ruchu, z pewnością jednak nie wystarczający do pełnego wyjaśnienia wszystkich spotykanych ruchów. Przejście od sposobu myślenia Arystotelesa do sposobu myślenia Galileusza stało się kamieniem węgielnym nauki. Po dokonaniu tego wyłomu droga 16

17 dalszego rozwoju stanęła otworem. Interesujemy się tu wczesnymi stadiami rozwoju, śledzimy pierwsze tropy, wskazujemy, jak w pełnej bólu walce ze starymi ideami rodzą się nowe pojęcia fizyczne. Zajmujemy się tylko pracami pionierskimi dla nauki, polegającymi na odkrywaniu nowych i niespodziewanych dróg rozwoju; zajmujemy się przygodami, jakich doznaje myśl naukowa, stwarzając wiecznie zmieniający się obraz wszechświata. Pierwsze i zasadnicze kroki zawsze mają charakter rewolucyjny. Stare pojęcia, uznane przez wyobraźnię naukową za zbyt ciasne, zostają zastąpione przez nowe. Dalszy rozwój w wytkniętym raz kierunku ma już raczej charakter ewolucji, dopóki w kolejnym punkcie zwrotnym nie zajdzie potrzeba opanowania nowej dziedziny. Aby jednak rozumieć przyczyny i trudności, które zmuszają do zmiany ważnych pojęć, musimy znać nie tylko wstępne tropy, ale także wnioski, jakie można z nich wyciągnąć. Jedną z najważniejszych cech charakterystycznych współczesnej fizyki jest fakt, że wnioski wyciągane ze wstępnych tropów mają charakter nie tylko jakościowy, ale również ilościowy. Powróćmy do kamienia puszczonego z wieży. Widzieliśmy już, że jego prędkość wzrasta w miarę spadania, chcielibyśmy jednak wiedzieć znacznie więcej. Ile mianowicie wynosi ta zmiana? A także: Jakie jest położenie oraz prędkość kamienia w dowolnej chwili po rozpoczęciu spadania? Chcemy móc przewidywać zdarzenia i stwierdzać na podstawie doświadczenia, czy obserwacje potwierdzają te przepowiednie a przez to również założenia początkowe. Aby wyciągnąć wnioski ilościowe, trzeba użyć języka matematyki. Większość podstawowych idei w nauce jest zasadniczo prosta i może być na ogół wyrażona w języku zrozumiałym dla każdego. Jednak śledzenie rozwoju tych idei wymaga znajomości bardzo subtelnej techniki badań. Jeżeli chcemy wyciągać wnioski, które można by porównać z doświadczeniem, to matematyka jako narzędzie rozumowania jest do tego niezbędnie potrzebna. Dopóki jednak zajmujemy się tylko podstawowymi pojęciami fizycznymi, możemy się obyć bez języka matematyki. Ponieważ tej zasady staramy się na kartach naszej książki konsekwentnie przestrzegać, będziemy musieli od czasu do czasu ograniczać się do cytowania bez dowodów niektórych wyników, koniecznych do zrozumienia ważnych tropów, które pojawią się w dalszym ciągu. Cena, jaką za zrezygnowanie z języka matematyki musimy zapłacić, to mniejsza precyzja i konieczność cytowania czasem wyników bez wskazania sposobu ich uzyskania. Bardzo ważnym przykładem ruchu jest ruch Ziemi dokoła Słońca. Wiadomo, że w tym wypadku torem jest linia zamknięta, zwana elipsą. 17

18 Konstrukcja wektorowego wykresu zmian prędkości wykazuje, że siła działająca na Ziemię jest skierowana do Słońca. Wszystko to razem stanowi jednak skąpą informację. Chcielibyśmy móc przewidzieć położenie Ziemi i innych planet w dowolnej chwili, chcielibyśmy przewidzieć datę i czas trwania najbliższego zaćmienia Słońca oraz wiele innych wydarzeń astronomicznych. Wszystko to jest możliwe, jednak nasz wstępny trop nie będzie sam przez się stanowił dostatecznej ku temu podstawy, albowiem teraz musimy znać nie tylko kierunek siły, lecz również jej wartość bezwzględną jej wielkość. Zagadnienie to w natchniony sposób rozwiązał Newton. Według jego prawa powszechnego ciążenia siła, z jaką przyciągają się dwa ciała, zależy w prosty sposób od ich wzajemnej odległości. Gdy odległość wzrasta, siła maleje. Konkretnie gdy odległość wzrasta dwa razy, siła maleje 2 2 = 4 razy; gdy odległość wzrasta trzy razy, siła maleje 3 3 = 9 razy. Widzimy więc, że w przypadku siły ciążenia udało nam się wyrazić w prosty sposób zależność siły od odległości między poruszającymi się ciałami. Podobnie postępujemy w przypadku wszystkich innych sił, na przykład elektrycznych, magnetycznych lub innych. Próbujemy przedstawić siłę za pomocą prostego wzoru. Wzór ten będzie słuszny pod warunkiem, że wyciągnięte z niego wnioski zostaną potwierdzone przez doświadczenie. Sama jednak znajomość siły ciążenia nie wystarcza do opisu ruchu planet. Wiemy już, że wektory przedstawiające siłę i zmianę prędkości w dowolnym, krótkim odstępie czasu mają ten sam kierunek; musimy jednak, za Newtonem, pójść o krok dalej i założyć prosty związek między długościami tych wektorów. Jeżeli wszystkie pozostałe warunki są takie same, to znaczy, jeżeli mamy to samo poruszające się ciało i zmiany prędkości rozpatrywane są w jednakowych odstępach czasu, wówczas zmiana prędkości jest, według Newtona, proporcjonalna do siły. Tak więc do wyciągnięcia ilościowych wniosków dotyczących ruchu planet trzeba tylko dwóch uzupełniających się stwierdzeń. Jedno z nich ma charakter ogólny i ustala związek między siłą a zmianą prędkości. Drugie jest szczegółowe i ustala ścisłą zależność wchodzącej w tym wypadku w grę siły od odległości między ciałami. Pierwsze to ogólne prawo ruchu Newtona, drugie to jego prawo powszechnego ciążenia. Oba prawa razem 18

19 wyznaczają ruch. Można to wyjaśnić, używając następującego, na pozór trochę niezręcznego rozumowania. Przypuśćmy, że potrafimy określić położenie i prędkość planety w pewnej chwili oraz że znamy siłę. Zgodnie z prawami Newtona znamy wówczas zmianę prędkości, jaka następuje w krótkim odcinku czasu. Znając prędkość początkową oraz jej zmianę, możemy znaleźć prędkość i położenie planety w końcu tego odcinka czasu. Powtarzając ten proces wielokrotnie można, nie odwołując się już do dalszych danych doświadczalnych, wykreślić cały tor ruchu. W zasadzie, w ten właśnie sposób mechanika przewiduje bieg ruchu ciała, ale użyta tu metoda nie jest zbyt wygodna. W praktyce takie postępowanie krok za krokiem byłoby niesłychanie żmudne, a także niedokładne. Na szczęście nie jest to potrzebne; matematyka dostarcza nam krótszej drogi, umożliwiając ścisły opis ruchu przy użyciu znacznie mniejszej ilości atramentu, niż potrzeba do napisania jednego zdania. Wnioski, do których się w ten sposób dochodzi, mogą być w wyniku obserwacji potwierdzone lub obalone. Zarówno w przypadku ruchu kamienia spadającego w powietrzu, jak i w przypadku obiegu Księżyca po orbicie stwierdza się ten sam rodzaj siły zewnętrznej, a mianowicie siłę, z jaką Ziemia przyciąga ciała materialne. Newton uznał, że ruchy spadających kamieni, Księżyca i planet są tylko bardzo szczególnymi przejawami powszechnej siły ciążenia, która działa pomiędzy dwoma ciałami. W prostych przypadkach można ruch opisać i przewidzieć, posługując się matematyką. W przypadkach bardziej złożonych, gdy w grę wchodzi wzajemne oddziaływanie na siebie wielu ciał, opis matematyczny nie jest tak prosty, ale podstawowe zasady pozostają te same. Widzimy, że wnioski, do których doszliśmy, idąc po naszych wstępnych tropach, sprawdzają się w ruchu rzuconego kamienia, w ruchu Księżyca, Ziemi i planet. Zauważmy, że nasz system przewidywań musi być przez doświadczenie albo w całości przyjęty, albo w całości odrzucony. Żadnego z założeń nie można wyodrębnić do osobnego sprawdzenia. W przypadku planet krążących dokoła Słońca okazuje się, że system mechaniki działa znakomicie. Można sobie jednak z powodzeniem wyobrazić inny system, oparty na innych założeniach, który działałby równie dobrze. Pojęcia fizyczne są swobodnymi tworami umysłu ludzkiego i nie są, choć by się tak mogło wydawać, w sposób jednoznaczny wyznaczone przez świat zewnętrzny. W naszym dążeniu do zrozumienia rzeczywistości jesteśmy trochę podobni do człowieka, który próbuje zrozumieć mechanizm zamkniętego zegarka. Widzi on tarczę i poruszające się wskazówki, słyszy nawet tykanie, jednakże nie zna sposobu otworzenia koperty. Może on, jeśli jest pomysłowy, stworzyć sobie pewne wyobrażenie mechanizmu obraz, który tłumaczyłby wszystkie obserwowane fakty nigdy jednak nie miałby całkowitej pewności, że jest to jedyny obraz, który objaśnia jego obserwacje. Nigdy też nie będzie mógł porównać swego obrazu z rzeczywistym mechanizmem; nie może sobie nawet wyobrazić możliwości ani sensu takiego porównania. Z pewnością jednak wierzy, że w miarę jak rośnie zasób jego wiedzy, stworzony przezeń obraz rzeczywistości będzie się upraszczał, objaśniając coraz to szerszy zakres jego wrażeń zmysłowych. Może on również wierzyć w istnienie wyidealizowanej granicy poznania, do której zbliża się umysł ludzki. Tę idealną granicę może nazwać prawdą obiektywną. 19

20 Jeszcze jeden trop Gdy ktoś pierwszy raz uczy się mechaniki, odnosi wrażenie, że w tej dziedzinie wiedzy wszystko jest proste, podstawowe i raz na zawsze rozwiązane. Trudno byłoby podejrzewać, że istnieje ważny trop, którego przez trzysta lat nikt nie zauważył. Ten nie dostrzeżony trop wiąże się z jednym z najbardziej podstawowych pojęć fizyki z pojęciem masy. Znów wracamy do prostego wyidealizowanego doświadczenia z wózkiem na doskonale gładkiej drodze. Jeżeli wózek, pozostający początkowo w spoczynku, zostanie popchnięty, to będzie się on poruszał ruchem jednostajnym z pewną prędkością. Przypuśćmy, że działanie siły można powtarzać dowolną ilość razy, przy czym mechanizm popychania jest zawsze taki sam i za każdym razem ten sam wózek jest popychany taką samą siłą. Niezależnie od tego, ile razy byśmy doświadczenie powtarzali, prędkość końcowa będzie zawsze jednakowa. Co się jednak stanie, jeżeli zmienimy warunki doświadczenia i zamiast, jak poprzednio, wózka pustego, użyjemy naładowanego? Wózek naładowany będzie miał prędkość końcową mniejszą niż pusty. Wynika stąd następujący wniosek: jeżeli jedna i ta sama siła działa na dwa różne ciała, które początkowo pozostają w spoczynku, to prędkości, z jakimi się one w rezultacie poruszają, nie będą jednakowe. Mówimy, że prędkość zależy od masy ciała, przy czym jest tym mniejsza, im masa jest większa. Wiemy więc, przynajmniej teoretycznie, jak wyznaczyć masę ciała; a raczej jak stwierdzić, ile razy jedna masa jest większa od drugiej. Mamy dwie spoczywające masy, na które działają jednakowe siły. Jeżeli stwierdzimy, że prędkość pierwszej masy jest trzy razy większa od prędkości drugiej, to można stąd wywnioskować, że pierwsza masa jest trzy razy mniejsza od drugiej. Nie jest to z pewnością zbyt praktyczna metoda wyznaczania stosunku dwóch mas. Niemniej można sobie doskonale wyobrazić stosowanie zarówno tej metody, jak i innych, podobnych, opartych na prawie bezwładności. Jak wyznaczamy masę w praktyce? Oczywiście, nie w sposób wyżej opisany. Każdy zna poprawną odpowiedź: masę wyznaczamy ważąc. Rozpatrzmy bardziej szczegółowo dwa różne sposoby wyznaczania masy. Pierwsze doświadczenie nie miało nic wspólnego z ciążeniem, z przyciąganiem Ziemi. Popchnięty wózek porusza się po doskonale gładkiej i poziomej płaszczyźnie. Siła ciążenia, która sprawia, że wózek pozostaje na płaszczyźnie, nie zmienia się i nie odgrywa przy wyznaczaniu masy żadnej roli. W przypadku ważenia sytuacja jest zupełnie inna. Gdyby Ziemia nie przyciągała ciał, gdyby nie było ciążenia nigdy nie moglibyśmy użyć wagi. Różnica pomiędzy dwoma omówionymi sposobami wyznaczania masy polega na tym, że pierwszy z nich nie ma nic wspólnego z ciążeniem, podczas gdy drugi opiera się właśnie na istnieniu ciążenia. Pytamy: czy wyznaczając stosunek dwóch mas obydwoma opisanymi sposobami, otrzymamy ten sam wynik? Odpowiedź, jaką daje doświadczenie, nie pozostawia wątpliwości. Wyniki są dokładnie takie same! Tego wniosku nie można było przewidzieć; nie jest on oparty na rozumowaniu, lecz na obserwacji. Dla uproszczenia nazwijmy masę wyznaczoną w pierwszy sposób masą bezwładną, zaś wyznaczoną w drugi sposób masą grawitacyjną. Tak się składa, że w naszym świecie są one równe, można sobie jednak doskonale wyobrazić, że mogłoby być inaczej. Od razu nasuwa się nowe pytanie: czy ta tożsamość dwóch rodzajów mas jest czysto przypadkowa, czy też ma ona głębsze znaczenie? Odpowiedź z punktu widzenia fizyki klasycznej brzmi: tożsamość obu mas jest przypadkowa i nie należy przypisywać jej głębszego znaczenia. Odpowiedź fizyki współczesnej jest wprost przeciwna: tożsamość obu mas ma znaczenie podstawowe i stanowi nowy, istotny trop wiodący ku głębszemu zrozumieniu zjawisk. W istocie był to jeden z najważniejszych tropów, które doprowadziły do powstania tak zwanej ogólnej teorii względności. 20

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

DYNAMIKA SIŁA I JEJ CECHY

DYNAMIKA SIŁA I JEJ CECHY DYNAMIKA SIŁA I JEJ CECHY Wielkość wektorowa to wielkość fizyczna mająca cztery cechy: wartość liczbowa punkt przyłożenia (jest początkiem wektora, zaznaczamy na rysunku np. kropką) kierunek (to linia

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Wielcy rewolucjoniści nauki

Wielcy rewolucjoniści nauki Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II Energia mechaniczna Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia

Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 1. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo

Bardziej szczegółowo

Ruch jednostajny prostoliniowy

Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy Ruch jednostajny prostoliniowy to taki ruch, którego torem jest linia prosta, a ciało w jednakowych odcinkach czasu przebywa jednakową drogę. W ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia

DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia ODDZIAŁYWANIA DZIAŁ TEMAT NaCoBeZu kryteria sukcesu w języku ucznia 1. Organizacja pracy na lekcjach fizyki w klasie I- ej. Zapoznanie z wymaganiami na poszczególne oceny. Fizyka jako nauka przyrodnicza.

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Treści dopełniające Uczeń potrafi:

Treści dopełniające Uczeń potrafi: P Lp. Temat lekcji Treści podstawowe 1 Elementy działań na wektorach podać przykłady wielkości fizycznych skalarnych i wektorowych, wymienić cechy wektora, dodać wektory, odjąć wektor od wektora, pomnożyć

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA ROK SZKOLNY: 2018/2019 KLASY: 2mT OPRACOWAŁ: JOANNA NALEPA OCENA CELUJĄCY OCENA BARDZO DOBRY - w pełnym zakresie - w pełnym opanował zakresie opanował

Bardziej szczegółowo

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń: Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Pole grawitacyjne*

Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 1. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Zasady dynamiki przypomnienie wiadomości z klasy I

Zasady dynamiki przypomnienie wiadomości z klasy I Zasady dynamiki przypomnienie wiadomości z klasy I I zasada dynamiki Newtona Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą, to ciało pozostaje w spoczynku lub porusza się ruchem

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego)

09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Włodzimierz Wolczyński 09P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (dynamika ruchu prostoliniowego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji)

14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do grawitacji) Włodzimierz Wolczyński 14P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do grawitacji) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

4. Jeżeli obiekt waży 1 kg i porusza się z prędkością 1 m/s, to jaka jest jego energia kinetyczna? A. ½ B. 1 C. 2 D. 2

4. Jeżeli obiekt waży 1 kg i porusza się z prędkością 1 m/s, to jaka jest jego energia kinetyczna? A. ½ B. 1 C. 2 D. 2 ENERGIA I JEJ PRZEMIANY czas testu minut, nie piszemy po teście, właściwą odpowiedź wpisujemy na kartę odpowiedzi, tylko jedno rozwiązanie jest prawidłowe najpierw wykonaj zadania nieobliczeniowe Trzymamy

Bardziej szczegółowo

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki

Anna Nagórna Wrocław, r. nauczycielka chemii i fizyki Anna Nagórna Wrocław, 1.09.2015 r. nauczycielka chemii i fizyki Plan pracy dydaktycznej na fizyce wraz z wymaganiami edukacyjnymi na poszczególne oceny w klasach pierwszych w roku szkolnym 2015/2016 na

Bardziej szczegółowo

I zasada dynamiki Newtona

I zasada dynamiki Newtona I zasada dynamiki Newtona Każde ciało pozostaje w spoczynku lub porusza się ze stałą prędkością po linii prostej dopóki nie zadziała na nie niezrównoważona siła z zewnątrz. Jeśli! F i = 0! i v = 0 lub

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska

Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Przykłady: zderzenia ciał

Przykłady: zderzenia ciał Strona 1 z 5 Przykłady: zderzenia ciał Zderzenie, to proces w którym na uczestniczące w nim ciała działają wielkie siły, ale w stosunkowo krótkim czasie. Wynikają z tego ważne dla praktycznej analizy wnioski

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Geometria. Rozwiązania niektórych zadań z listy 2

Geometria. Rozwiązania niektórych zadań z listy 2 Geometria. Rozwiązania niektórych zadań z listy 2 Inne rozwiązanie zadania 2. (Wyznaczyć równanie stycznej do elipsy x 2 a 2 + y2 b 2 = 1 w dowolnym jej punkcie (x 0, y 0 ). ) Przypuśćmy, że krzywa na

Bardziej szczegółowo

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska) KLASA I PROGRAM NAUZANIA LA GIMNAZJUM TO JEST FIZYKA M.RAUN, W. ŚLIWA (M. Małkowska) Kursywą oznaczono treści dodatkowe Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Zasady dynamiki Newtona Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Podstawowa teoria, która pozwala przewidywać ruch ciał, składa

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM

KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM KRYTERIA OCEN Z FIZYKI DLA KLASY I GIMNAZJUM WŁASNOŚCI MATERII - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. - Wie, że substancja występuje w trzech stanach skupienia. - Wie,

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

mgr Ewa Socha Gimnazjum Miejskie w Darłowie

mgr Ewa Socha Gimnazjum Miejskie w Darłowie mgr Ewa Socha Gimnazjum Miejskie w Darłowie LP. PLAN WYNIKOWY Z FIZYKI DLA II KL. GIMNAZJUM MA ROK SZKOLNY 2003/04 TEMATYKA LEKCJI LICZBA GODZIN 1. Lekcja organizacyjna. 1 2. Opis ruchów prostoliniowych.

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.

Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy. I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz

Bardziej szczegółowo

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox 1. Uruchom program Modellus. 2. Wpisz x do okna modelu. 3. Naciśnij przycisk Interpretuj

Bardziej szczegółowo

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Siły zachowawcze i niezachowawcze. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2018 Siły zachowawcze i niezachowawcze Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Praca wykonana przez siłę wypadkową działającą

Bardziej szczegółowo

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.

SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca

Bardziej szczegółowo

Zajęcia nr. 3 notatki

Zajęcia nr. 3 notatki Zajęcia nr. 3 notatki 22 kwietnia 2005 1 Funkcje liczbowe wprowadzenie Istnieje nieskończenie wiele funkcji w matematyce. W dodaktu nie wszystkie są liczbowe. Rozpatruje się funkcje które pobierają argumenty

Bardziej szczegółowo

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu

Zadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych

Bardziej szczegółowo

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad: III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

ZASADY DYNAMIKI NEWTONA

ZASADY DYNAMIKI NEWTONA ZASADY DYNAMIKI NEWTONA I. Jeżeli na ciało nie działa żadna siła lub działające siły się równoważą to ciało pozostaje w spoczynku lub porusza sie ruchem jednostajnym po linii prostej. Ta zasada często

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1 KOOF Szczecin: www.of.szc.pl XIXOLIMPIADA FIZYCZNA (1969/197). Stopień W, zadanie doświadczalne D. Źródło: Olimpiady fizyczne XIX i XX Autor: Waldemar Gorzkowski Nazwa zadania: Drgania gumy. Działy: Drgania

Bardziej szczegółowo

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Prowadzący: dr Krzysztof Polko PLAN WYKŁADÓW 1. Podstawy kinematyki 2. Ruch postępowy i obrotowy bryły 3. Ruch płaski bryły 4. Ruch złożony i ruch względny 5. Ruch kulisty i ruch ogólny bryły

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.

Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa. NAUCZYCIEL FIZYKI mgr Beata Wasiak KARTY INFORMACYJNE Z FIZYKI DLA POSZCZEGÓLNYCH KLAS GIMNAZJUM KLASA I semestr I DZIAŁ I: KINEMATYKA 1. Pomiary w fizyce. Umiejętność dokonywania pomiarów: długości, masy,

Bardziej szczegółowo

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa

Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Pokazy Rozładowanie promieniowaniem nadfioletowym elektroskopu naładowanego ujemnie, do którego przymocowana jest płytka cynkowa Zjawisko fotoelektryczne Zjawisko fotoelektryczne polega na tym, że w wyniku

Bardziej szczegółowo

Wykłady z Fizyki. Grawitacja

Wykłady z Fizyki. Grawitacja Wykłady z Fizyki 04 Zbigniew Osiak Grawitacja OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

NIE FAŁSZOWAĆ FIZYKI!

NIE FAŁSZOWAĆ FIZYKI! * Jacek Własak NIE FAŁSZOWAĆ FIZYKI! Zdania: 1. Ziemia krąży wokół Słońca 2. Słońce krąży wokół Ziemi Są jednakowo prawdziwe!!! RUCH JEST WZGLĘDNY. Podział Fizyki 1. Budowa materii i oddziaływania 2. Mechanika

Bardziej szczegółowo

Aktualizacja, maj 2008 rok

Aktualizacja, maj 2008 rok 1 00015 Mechanika nieba C Dane osobowe właściciela arkusza 00015 Mechanika nieba C Arkusz I i II Czas pracy 120/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

SPRAWDZIAN Nr 1 (wersja A)

SPRAWDZIAN Nr 1 (wersja A) SPRAWDZIAN Nr 1 (wersja A) 1. Parasol leżący na fotelu jadącego samochodu względem tego samochodu Ojest w ruchu spoczywa względem szosy, po której jedzie samochód x (m)n Qjest w ruchu spoczywa 4^> 2. Chłopiec

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA Podstawy fizyki sezon 1 II. DYNAMIKA Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka a dynamika Kinematyka

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Elementy fizyki relatywistycznej

Elementy fizyki relatywistycznej Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności

Bardziej szczegółowo

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.

Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty

Blok 2: Zależność funkcyjna wielkości fizycznych. Rzuty Blok : Zależność funkcyjna wielkości fizycznych. Rzuty ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przeanalizuj wykresy zaprezentowane na rysunkach. Załóż, żę w każdym przypadku ciało poruszało się zgodnie ze

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo