Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka)"

Transkrypt

1 Fotometria F. obiektywa = radiometria: Jaka NRGIA dopływa ze źródła F. subiektywa: Jak JASNO świei to źródło? (w oeie przeiętego złowieka)

2 Potrzebujemy kilku defiiji: defiija Gęstość spektrala (widmo) Mo promieiowaia emitowaa eergia jed. zasu dq dt J s W dq dt d W m Natężeie promieiowaia mo jed. kąt bryłowy I d d W sr I d d d W sr m Lumiaja eergetyza atężeie prom. pow. w kier. emisji L di da os W srm L di dad os W srm m gzytaja e. = zdolość emisyja mo we wszystkih kier jed. powierzhi M d da źr W m M d da d źr W m m Natężeie promieiowaia I d uwaga: dobrze opisuje albo źródło puktowe albo pukt źródła roziągłego Fotometria

3 Lumiaja eergetyza L () = L di da os atężeie promieiowaia wielkość powierzhi w kieruku emisji albo: powierzhiowa gęstość atężeia źródła światła da di L obserwator, daos obserwator os Źródło jest typu Lamberta gdy L ie zależy od, w takim przypadku atężeie promieiowaia I zależy od jak os() Fotometria

4 gzytaja eergetyza, albo zdolość emisyja = mo emitowaa we wszystkih kierukah jedostka powierzhi M d da źr W m, os d Rsi M L d d Rd R R Rd M d d L, os si Rsi Rsi d Fotometria 4

5 Natężeie apromieieia mo dopływająa ze wszystkih kier jed. powierzhi oświetlaej d ds osw W m d ds d osw W m m R z elemet da powierzhi źródła d ds osw I d ds osw I dsosw os R ds osw os os d L, R I os R da źr elemet ds powierzhi oświetlaej os L, daźr os podstawowe prawo fotometrii R Fotometria 5

6 Ciało doskoale zare = otwór w pewej węe z promieiowaiem harakteryzowaej przez parametr - temperaturę. Gęstość eergii wewątrz węki z promieiowaiem (RM). misja przez dziurkę tak małą, że ie zaburza pola wewątrz w(t) Ad. a) gęstość modów: Rówaie falowe: U U y U z U t l l l U Waruki brzegowe: U(,y,z=) Rozwiązaie (jedozaze dla fali mohromat. o zęstośi ): y, y, z, t U si si si si t przy zym: y z z Fotometria 6

7 Fotometria 7 m l albo m l zyli l : si wstawiają otrzymujemy: Waruki brzegowe: U(,y,z=l) wówzas: z y z y m m m m m m l m y m m z d mod opisujemy lizbami aturalymi: (m, m y, m z ) ilość modów o zęstośi.. +d objętość warstwy o promieiu i grubośi d objętość komórki modu = = ilość modów o zęstośi.. +d = l d d gęstość modów o polaryzajah: d d N 8 [m - ]

8 Ad. b) średia eergia modu o daej zęstośi Q mody różią się ilośią fotoów: wszystkie ilośi są możliwe, ale - lizba fotoów ie może być ułamkowa - mody ie występują rówoześie: (albo jest albo fotoów) Q Q P P Q Q PQ Q h względe (ieuormowae) prawdopodobieństwo wystąpieia modu o fotoah założeie: prawdopodobieństwo opisuje Rozkład Boltzma a Q ep P Q k B T Q h h ep kbt h ep kbt h ep h kbt [J s Hz] Fotometria 8

9 średia gęstość eergii we węe w w = gęstość modów. średia eergia modu N Q 8 h Jak to przelizyć a skalę długośi fali: w d w d d ep [m - /Hz] [J] h kbt d d d m J Hz w 8 h 5 h ep kbt m J m Fotometria 9

10 . misja przez dziurkę tak małą, że ie zaburza pola wewątrz powierzhia wewątrz zewątrz d eergia dopływa z objętośi dv = da dt widziaej pod kątem d : d Q dv da dw da dt L d d d L L Q dq d d dt di d daos daos d Q dad dt L dadt d dv os = Uwzględiamy tylko te mody, które rozhodzą się w kąie d dw w d 4 w dw 4 4 L d Fotometria

11 gzytaja eergetyza, albo zdolość emisyja iałą doskoale zarego = mo emitowaa we wszystkih kier jed. powierzhi M d da źr W m, os M L d Rd R d Rsi d Rd R Rsi Rsi d M L, os si L, d d dla źródła typu Lamberta Fotometria

12 mitaja (W/m^*m) Dlugos fali w maimum (m) kzytaja iała doskoale zarego: w w 8 h dw 4 4 L d M L h ep kbt M M h h 5 h ep kbt h ep kbt W m Hz W m m T 45K ma ( T) 644m 6 4 ma ( T) 4 m Dlugos fali (m) Temperatura (K) iało_dosk_zare.avi Fotometria

13 Fotometria subiektywa Jak jaso? -te same wielkośi, odoszą się jedak do reakji złowieka Radiometria Fotometria ergia promieiowaia [J] Ilość światła [lm s] Strumień eergetyzy emitowaa eergia jed. zasu [W] Strumień świetly [lm] (lume) Natężeie promieiowaia Lumiaja eergetyza mo jed. kąt bryłowy atężeie prom. pow. w kier. emisji W sr W srm Radiat itesity Radiae Natężeie św. a. Światłość Lumiaja świetla lm sr lm srm kadela gzytaja e. = zdolość emisyja mo we wszystkih kier jed. powierzhi W m itae gzytaja świetla lm m Natężeie apromieieia mo dopływająa jed. powierzhi W m Irradiae Natężeie oświetleia lm m lu Fotometria

14 Jak przelizać? Na przykład związek pomiędzy strumieiem świetlym i eergetyzym Lm W Międzyarodowa krzywa zułośi oka Oto o widzi oko: lm W lm 68 V d Fotometria 4

15 Tak aprawdę oko widzi atężeie światła (źreia oka) Ofijala defiija kadeli (SI): Kadela jest to światłość, jaką ma w określoym kieruku źródło emitująe promieiowaie moohromatyze o zęstośi 54 4 Hz (λ = 555 m w próżi) i którego eergetyze atężeie promieiowaia w tym kieruku wyosi /68 W/sr. lm lm W I 68 V sr W sr I d V 555 m Międzyarodowa krzywa zułośi oka Fotometria 5

16 Stara defiija kadeli: Kadela jest to światłość, jaką ma w kieruku prostopadłym pole o powierzhi /6 m iała doskoale zarego, promieiująego w temperaturze krzepięia platyy pod iśieiem 5 Pa (45. K). I I A L [d] 6 M A m sr V h 5 To wszystko moża oblizyć dla daego T. Dla T=45. K wyhodzi /68 W/sr h ep kbt W d m Fotometria 6

17 Co to jest asi-lume? Wystadaryzowaa metoda pomiaru strumieia świetlego p. projektorów: Regulaja projektora do właśiwyh poziomów szarośi Pomiar właśiwy oświetleia. Fotometria 7

18 % 5% % jasość kotrast 9% 95% % Fotometria 8

19 9 Fotometria 9

20 9 9 i i S ekra lm Fotometria

Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka)

Fotometria. F. obiektywna = radiometria: Jaka ENERGIA dopływa ze źródła. F. subiektywna: Jak JASNO świeci to źródło? (w ocenie przeciętnego człowieka) Fotoetria F. obiektyna = raioetria: Jaka NRGIA opłya ze źróła F. subiektyna: Jak JASNO śiei to źróło? ( oenie przeiętnego złoieka) Potrzebujey kilku efiniji: efinija Gęstość spektralna (io) o proienioania

Bardziej szczegółowo

Elementy optyki. Odbicie i załamanie fal. Siatka dyfrakcyjna. Zasada Huygensa Zasada Fermata. Interferencja Dyfrakcja

Elementy optyki. Odbicie i załamanie fal. Siatka dyfrakcyjna. Zasada Huygensa Zasada Fermata. Interferencja Dyfrakcja Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

λ c λ c λ m asa hc h λ h λ h W lasnosci fotonu = = m = = = c h p c Oblicz energię, pęd i masę fotonu o długości fali λ = 500 nm. + kg m kg m = 1,6 10

λ c λ c λ m asa hc h λ h λ h W lasnosci fotonu = = m = = = c h p c Oblicz energię, pęd i masę fotonu o długości fali λ = 500 nm. + kg m kg m = 1,6 10 W lasosi fotou eergia hv h + p p p p h p h pęd h p h asa h h hv Obliz eergię, pęd i asę fotou o długośi fali 5. D h h p h 3 6,6 J s 6,6 3 7 7 9 + kg kg p,3 5 5 s s 7 8 h p,3 3 J 9 3,9 J ev,6 9 xev 3,9

Bardziej szczegółowo

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna

Elementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna Elemety optyki Odbiie i załamaie fal Zasada Huygesa Zasada Fermata Iterfereja Dyfrakja Siatka dyfrakyja Frot fali złązeie promień padająy Odbiie i załamaie fal elektromagetyzyh a graiah dwóh ośrodków Normala

Bardziej szczegółowo

IM-14 BEZDOTYKOWY POMIAR TEMPERATURY

IM-14 BEZDOTYKOWY POMIAR TEMPERATURY IM-4 EZDOTYKOWY POMIAR TEMPERATURY I. Cel ćwizeia Celem ćwizeia jest pozaie tehiki pomiaru wysokih temperatur w opariu o prawo Plaka. II. Zagadieia do przygotowaia: ) Widmo iał świeąyh, promieiowaie termize,

Bardziej szczegółowo

BARWA. Barwa postrzegana opisanie cech charakteryzujących wrażenie, jakie powstaje w umyśle;

BARWA. Barwa postrzegana opisanie cech charakteryzujących wrażenie, jakie powstaje w umyśle; BARWA Barwa postrzegana opisanie cech charakteryzujących wrażenie, jakie powstaje w umyśle; Barwa psychofizyczna scharakteryzowanie bodźców świetlnych, wywołujących wrażenie barwy; ODRÓŻNIENIE BARW KOLORYMETR

Bardziej szczegółowo

3. Zjawisko wzmocnienia i nasycenia. Rozkład mocy w przekroju poprzecznym (TEM)

3. Zjawisko wzmocnienia i nasycenia. Rozkład mocy w przekroju poprzecznym (TEM) 3. Zjawisko wzmocieia i asyceia. Rozkład mocy w przekroju poprzeczym (TEM) 3.. Zjawisko wzmocieia i asyceia W staie rówowagi termodyamiczej obsadzaie staów eergetyczych opisae jest rozkładem Boltzmaa.

Bardziej szczegółowo

Podstawy chemii. Natura pomiaru. masa 20 ± 1 g

Podstawy chemii. Natura pomiaru. masa 20 ± 1 g Podstawy chemii ) Sposoby badań obiektów (6 h) pomiar i jego atura klasycza aaliza jakościowa i ilościowa obliczeia rówowagi i ph metody aalizy promieiowaie elektromagetycze kwatowa atura atomu oddziaływaie

Bardziej szczegółowo

EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy

EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPULSY LASEROWE. prof. Halina Abramczyk Laboratory of Laser Molecular Spectroscopy EFEKTY DYSPERSYJNE ZNIEKSZTAŁCAJĄCE KRÓTKIE IMPUSY ASEROWE T t N t Dwa główe mehaizmy powoująe ziekształeie impulsów laserowyh: ) GVD-group veloity isspersio ) SMP-self phase moulatio 3 E E τ () 0 t /

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Wydajność konwersji energii słonecznej:

Wydajność konwersji energii słonecznej: Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

Ćwiczenie Nr 11 Fotometria

Ćwiczenie Nr 11 Fotometria Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria

Bardziej szczegółowo

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I

Obliczenie liczby zwojów w uzwojeniu wtórnym 1 pkt n n I = U I WOJEWÓDZKI KONKRS FIZYCZNY DLA CZNIÓW GIMNAZJÓW W ROK SZKOLNYM 205/206 STOPIEŃ WOJEWÓDZKI KLCZ ODPOWIEDZI I SCHEMAT PNKTOWANIA waga: Poprawe rozwiązaie zadań, iym sposobem iż poday w kryteriah, powoduje

Bardziej szczegółowo

Zadanie 1 Probówka I: AgNO 3 + NaCl AgCl + NaNO 3 Probówka II: 3AgNO 3 + AlCl 3 3AgCl + Al(NO 3 ) 3 Zadanie 2 Przykłady poprawnych odpowiedzi

Zadanie 1 Probówka I: AgNO 3 + NaCl AgCl + NaNO 3 Probówka II: 3AgNO 3 + AlCl 3 3AgCl + Al(NO 3 ) 3 Zadanie 2 Przykłady poprawnych odpowiedzi www.ehedukaja.pl Zbiór zadań CKE Roztwory i reakje zahodząe w roztworah wodyh - odpowiedzi Zadaie Probówka I: AgNO + NaCl AgCl + NaNO Probówka II: AgNO + AgCl + Al(NO ) Zadaie Przykłady poprawyh odpowiedzi

Bardziej szczegółowo

Funkcje falowe równanie Schroedingera

Funkcje falowe równanie Schroedingera Fukcje falowe rówaie Schroedigera Fukcja falowa kwatowa iterpretacja jedo wmiarowe pułapki elektroów fukcje falowe ieskończoa i skończoa studia potecjału atom wodoru rówaie Schroedigera wprowadzeie i rozwiązaia

Bardziej szczegółowo

ELEMENTY OPTYKI GEOMETRYCZNEJ

ELEMENTY OPTYKI GEOMETRYCZNEJ ELEMENTY OPTYKI GEOMETRYCZNEJ Optyka to dział fizyki, zajmujący się badaiem atury światła, początkowo tylko widzialego, a obecie rówież promieiowaia z zakresów podczerwiei i adfioletu. Optyka - geometrycza

Bardziej szczegółowo

Rozwiązanie zadania 1.

Rozwiązanie zadania 1. ozwiązaie zadaia. Zagadieie będziemy ozatywali w układzie, w któym stożek jest ieuhomy. a Poieważ zdezeie jest doskoale sężyste, a owiezhia stożka ieuhoma, atom gazu o zdezeiu będzie miał ędkość v skieowaą

Bardziej szczegółowo

ANEMOMETRIA LASEROWA

ANEMOMETRIA LASEROWA 1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki

Bardziej szczegółowo

w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma)

w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma) Przydatne źródła informacji w literaturze i na WWW panuje zamieszanie (przykład: strumień promieniowania dla fizyka to coś innego, niż dla astronoma) wiarygodne źródło informacji to np. Radiometry and

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy.

G:\AA_Wyklad 2000\FIN\DOC\Fourier.doc. Drgania i fale II rok Fizyki BC. zawierają fazy i amplitudy. Elemety aalizy ourierowskiej: W przypadku drgań było: () t A + A ( ω t + φ ) + A os( 2ω t + φ ) gdzie + A ω 0 os 2 2 os( ω t + φ ) +... 2π Moża zapisać jako: [ ] () t A + C exp( iω t) + C ( iω t) gdzie

Bardziej szczegółowo

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+

2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+ MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

I.2 Promieniowanie Ciała Doskonale Czarnego

I.2 Promieniowanie Ciała Doskonale Czarnego I. Promieniowanie Ciała Doskonale Czarnego Jan Królikowski Fizyka IVBC 1 CIAŁO DOSKONALE CZARNE (CDCz) CDCz jest to takie iało, którego zdolność absorpyjna a(, T) nie zależy od długośi fali i wynosi 100%.

Bardziej szczegółowo

Podstawowe przemiany cieplne

Podstawowe przemiany cieplne Podstawowe rzemiay iele Przemiaa izohoryza zahodzi, gdy objętość układu ozostaje stała ( ost), zyli 0. ówaie izohory () ost rzemiaie tej ie jest wykoywaa raa, bo 0, wię zgodie z ierwszą zasadą termodyamiki,

Bardziej szczegółowo

Najwygodniej za energię przekazaną materii uważać energię usuniętą z pola promieniowania z wyłączeniem energii zużytej na wzrost masy spoczynkowej.

Najwygodniej za energię przekazaną materii uważać energię usuniętą z pola promieniowania z wyłączeniem energii zużytej na wzrost masy spoczynkowej. awką pohłoniętą nazywa się energię przekazaną aterii przez proieniowanie jonizjąe na jednostkę asy. energia przekazana energia zżyta na jonizaję, wzbdzenie, wzrost energii heiznej lb energii siei krystaliznej,

Bardziej szczegółowo

Fale rzeczywiste. dudnienia i prędkość grupowa

Fale rzeczywiste. dudnienia i prędkość grupowa Fale rzezywiste dudnienia i rędkość gruowa Czysta fala harmonizna nie istnieje. Rzezywisty imuls falowy jest skońzony w zasie i w rzestrzeni: Rzezywisty imuls falowy (iąg falowy) można rzedstawić jako

Bardziej szczegółowo

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego

Ćw. 20. Pomiary współczynnika załamania światła z pomiarów kąta załamania oraz kąta granicznego 0 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 0. Pomiary współczyika załamaia światła z pomiarów kąta załamaia oraz kąta graiczego Wprowadzeie Światło widziale jest promieiowaiem elektromagetyczym o

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 23, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 23, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elemetami fizyki współczesej wykład 23, 21.05.2012 wykład: pokazy: ćwiczeia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Erest Groder Wykład 22 - przypomieie ieliiowe

Bardziej szczegółowo

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15 Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery i diody elektroluminescencyjne. 2

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Wyznaczanie ciepła właściwego c p dla powietrza Katedra Silików Saliowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyzaczaie cieła właściweo c dla owietrza Wrowadzeie teoretycze Cieło ochłoięte rzez ciało o jedostkowej masie rzy ieskończeie małym rzyroście

Bardziej szczegółowo

Widmo promieniowania elektromagnetycznego

Widmo promieniowania elektromagnetycznego Widmo promieiowaia elektromagetyczego Czułość oka człowieka Płaska fala elektromagetycza w próżi Ciało doskoale czare Prawo promieiowaia Kirchhoffa: Stosuek zdolości emisyjej do zdolości absorpcyjej jest

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty

MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Roy Jay Glauber, ojciec optyki kwantowej - Nagroda Nobla 2005 Polskie Towarzystwo Fizyczne Oddział Łódzki, 19 grudnia 2005 r.

Roy Jay Glauber, ojciec optyki kwantowej - Nagroda Nobla 2005 Polskie Towarzystwo Fizyczne Oddział Łódzki, 19 grudnia 2005 r. Roy Jay Glauber, ojciec optyki kwatowej - Nagroda Nobla 005 Polskie Towarzystwo Fizycze Oddział Łódzki, 19 grudia 005 r. Jarosław Bauer Katedra Fizyki Teoretyczej Uiwersytetu Łódzkiego Ul. Pomorska 149/153,

Bardziej szczegółowo

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3.

VII MIĘDZYNARODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretyczne T3. KOOF Szczeci: www.of.szc.pl VII MIĘDZYNAODOWA OLIMPIADA FIZYCZNA (1974). Zad. teoretycze T3. Źródło: Komitet Główy Olimpiady Fizyczej; Olimpiada Fizycza XXIII XXIV, WSiP Warszawa 1977 Autor: Waldemar Gorzkowski

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15

Wy1. 2 Wy7 Detektory fotonowe i termiczne. 2 Wy8 Test zaliczeniowy 1 Suma godzin 15 Wykład I Wy1 Podział widma promieniowania e.m., prawa promieniowania ciała doskonale czarnego i ciał rzeczywistych. 2 Wy2 Termiczne źródła promieniowania. 2 Wy3 Lasery i diody LED. 2 Wy4 Oddziaływanie

Bardziej szczegółowo

FOTOMETRYCZNE PRAWO ODLEGŁOŚCI (O9)

FOTOMETRYCZNE PRAWO ODLEGŁOŚCI (O9) FOTOMETRYCZNE PRAWO ODLEGŁOŚCI (O9) INSTRUKCJA WYKONANIA ĆWICZENIA I. Zestaw przyrządów: Rys.1 Układ pomiarowy II. Wykonanie pomiarów: 1. Na komputerze wejść w zakładkę student a następnie klikać: start

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu:

1.3. Poziom ekspozycji na promieniowanie nielaserowe wyznacza się zgodnie z wzorami przedstawionymi w tabeli 1, przy uwzględnieniu: Załącznik do rozporządzenia Ministra Pracy i Polityki Społecznej z dnia 27 maja 2010 r. Wyznaczanie poziomu ekspozycji na promieniowanie optyczne 1. Promieniowanie nielaserowe 1.1. Skutki oddziaływania

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE.

Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. W S E i Z WYDZIAŁ. L A B O R A T O R I U M F I Z Y C Z N E Nr ćwicz. 9 Temat: PRAWO SNELLIUSA. WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA W SZKLE I PLEKSIGLASIE. Semestr Grupa Zespół Ocea Data / Podpis Warszawa,

Bardziej szczegółowo

( ) -moc promieniowania o częstości zawartej w zakresie emitowana przez jednostkową powierzchnię (moc-energia emitowana w jednostce czasu)

( ) -moc promieniowania o częstości zawartej w zakresie emitowana przez jednostkową powierzchnię (moc-energia emitowana w jednostce czasu) Promieiowaie iała dosoale zarego Ciało dosoale zare to taie iało, tóre ołaia ałe adająe a iego romieiowaie. mituje oo taże romieiowaie o rozładzie widmowym ałowiie determiowaym rzez jego temeraturę. Jedym

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ STUDIA NIESTACJONARNE I STOPNIA, wersja z dn. 15.10.018 KIERUNEK ELEKTROTECHNIKA, SEM.5 Podstawy Techniki Świetlnej Laboratorium Ćwiczenie nr 4 Temat: WYZNACZANIE OBROTOWO-SYMETRYCZNEJ BRYŁY FOTOMETRYCZNEJ

Bardziej szczegółowo

Własności światła laserowego

Własności światła laserowego Własności światła laserowego Cechy światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy oraz spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność kątową awkącie

Bardziej szczegółowo

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC

= arc tg - eliptyczność. Polaryzacja światła. Prawo Snelliusa daje kąt. Co z amplitudą i polaryzacją? Drgania i fale II rok Fizyka BC 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc Drgaia i fale II rok Fizyka C Polaryzacja światła ( b a) arc tg - eliptyczość Prawo Selliusa daje kąt. Co z amplitudą i polaryzacją? 4-0-0 G:\AA_Wyklad 000\FIN\DOC\Polar.doc

Bardziej szczegółowo

Temat ćwiczenia. Pomiary oświetlenia

Temat ćwiczenia. Pomiary oświetlenia POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary oświetlenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodami pomiaru natęŝenia oświetlenia oraz wyznaczania poŝądanej wartości

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Potencjalne pole elektrostatyczne. Przypomnienie

Potencjalne pole elektrostatyczne. Przypomnienie Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa

Technika laserowa, otrzymywanie krótkich impulsów Praca impulsowa Praca impulsowa Impuls trwa określony czas i jest powtarzany z pewną częstotliwością; moc w pracy impulsowej znacznie wyższa niż w pracy ciągłej (pomiędzy impulsami może magazynować się energia) Ablacja

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 16 KATEDRA INŻYNIERII CHEMICZNEJ I ROCESOWEJ INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH LABORATORIUM INŻYNIERII CHEMICZNEJ, ROCESOWEJ I BIOROCESOWEJ Ćwiczeie r 16 Mieszaie Osoba odpowiedziala: Iwoa Hołowacz Gdańsk,

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

Wykład 8 ELEKTROMAGNETYZM

Wykład 8 ELEKTROMAGNETYZM Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Model Bohra atomu wodoru

Model Bohra atomu wodoru Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ

ν = c/λ [s -1 = Hz] ν = [cm -1 ] ZASADY ZALICZENIA PRZEDMIOTU MBS c = m/s cos x H = H o E = E o cos x c = λν 1 ν = _ λ ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM Z MBS. ROZWIĄZYWANIE WIDM kolokwium NMR 23 kwietia 208 IR maja 208 złożoe czerwca 208 poiedziałek czwartek piątek 9.3 22.3 23.3 26.3 5. 6. 9. 2. 3. H NMR 23.

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Wykład XI. Light Amplification by Stimulated Emission of Radiation (LASER) laser półprzewodnikowy

Wykład XI. Light Amplification by Stimulated Emission of Radiation (LASER) laser półprzewodnikowy Wykład XI Light Amplificatio by Stimulated Emissio of Radiatio (LASER) laser półprzewodikowy Emisja spotaicza Emisja spotaicza i wymuszoa Fotoy emitowae są we wszystkich kierukach z jedakowym prawdopodobieństwem

Bardziej szczegółowo

Podstawy działania laserów

Podstawy działania laserów Prof. Dr Halia Abramczyk Techical Uiversity of Lodz, Faculty of Chemistry Istitute of Applied Radiatio Chemistry Polad, 93-59 Lodz, Wroblewskiego 15 Phoe:(+ 48 4) 631-31-88; fax:(+ 48 4) 684 43 E-mail:abramczy@mitr.p.lodz.pl,

Bardziej szczegółowo

G d y n i a W y k o n a n i e p r a c p i e l g n a c y j- n o r e n o w a c y j n y c h n a o b i e k t a c h s p o r t o w y c h G C S o r a z d o s t a w a n a s i o n t r a w, n a w o z u i w i r u

Bardziej szczegółowo

v! są zupełnie niezależne.

v! są zupełnie niezależne. Zasada ekwiartyji energii 7-7. Zasada ekwiartyji energii ównowaga termizna układów Zerowa zasada termodynamiki Jeżeli układy A i B oraz A i są arami w równowadze termiznej, to również układy B i są w równowadze

Bardziej szczegółowo

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Wielkości i jednostki promieniowania w ujęciu energetycznym i fotometrycznym

Wielkości i jednostki promieniowania w ujęciu energetycznym i fotometrycznym Wilkości i jdnostki prominiowania w ujęciu nrgtycznym i otomtrycznym Ujęci nrgtyczn Ujęci otomtryczn Enrgia prominista prznoszona przz prominiowani W, Q; jdnostka: 1 Ws 1 J Strumiń nrgtyczny (moc prominista)

Bardziej szczegółowo

ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA

ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 255-26, Gliwice 26 ANALIZA KSZTAŁTU SEGMENTU UBIORU TERMOOCHRONNEGO PRZY NIEUSTALONYM PRZEWODZENIU CIEPŁA RYSZARD KORYCKI DARIUSZ WITCZAK Katedra Mechaiki

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Fizyka i astronomia Poziom rozszerzony Modele odpowiedzi do arkuza Próbej Matury z OPEROEM Fizyka i atroomia Poziom rozzerzoy Litopad W klu zu ą pre ze to wa e przy kła do we pra wi dło we od po wie dzi. a le ży rów ież uzać od po wie dzi uzia,

Bardziej szczegółowo

WYKŁAD 6 TRANZYSTORY POLOWE

WYKŁAD 6 TRANZYSTORY POLOWE WYKŁA 6 RANZYSORY POLOWE RANZYSORY POLOWE ZŁĄCZOWE (Juctio Field Effect rasistors) 55 razystor polowy złączowy zbudoway jest z półprzewodika (w tym przypadku typu p), w który wdyfudowao dwa obszary bramki

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych) Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie Zespół Szkół Tehizyh w Skarżysku-Kamieej Sprawozdaie PRCOWN ELEKTRYCZN ELEKTRONCZN imię i azwisko z ćwizeia r 1 Temat ćwizeia: UKŁDY REGULCJ NTĘŻEN PRĄDU rok szkoly klasa grupa data wykoaia. Cel ćwizeia:

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna

Metody Optyczne w Technice. Wykład 3 Optyka geometryczna Metody Optycze w Techice Wykład 3 Optyka geometrycza Promień świetly Potraktujmy światło jako trumień czątek eergii podróżujących w przetrzei Trajektorie takich czątek to promieie świetle W przypadku wiązki

Bardziej szczegółowo

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej. Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1,

1 Zmienne losowe. Własności dystrybuanty F (x) = P (X < x): F1. 0 F (x) 1 dla każdego x R, F2. lim F (x) = 0 oraz lim F (x) = 1, 1 Zmiee loowe Właości dytrybuaty F x = X < x: F1. 0 F x 1 dla każdego x R, F2. lim F x = 0 oraz lim F x = 1, x x + F3. F jet fukcją iemalejącą, F4. lim x x 0 F x = F x 0 dla każdego x R, F5. a X < b =

Bardziej szczegółowo

KATEDRA TELEKOMUNIKACJI I FOTONIKI

KATEDRA TELEKOMUNIKACJI I FOTONIKI ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo