Przedmiot: Fizyka PRACA I ENERGIA. Wykład 7, 2015/2016 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przedmiot: Fizyka PRACA I ENERGIA. Wykład 7, 2015/2016 1"

Transkrypt

1 PRACA I ENERGIA Wykład 7, 015/016 1

2 ENERGIA A PRACA Enegia jest to wielkość skalana, chaakteyzująca stan, w jakim znajduje się jedno lub wiele ciał. Enegia kinetyczna jest związana ze stanem uchu ciała. Paca jest to enegia pzekazana ciału lub od niego odebana w wyniku działania na ciało siłą. Gdy enegia jest pzekazana ciału, paca jest dodatnia, a gdy enegia jest ciału odebana, paca jest ujemna. Paca jest ówna zmianie enegii. Jednostką pacy i enegii w układzie SI jest 1J. Wykład 7, 015/016

3 PRACA STAŁEJ SIŁY W = F o s = Fscos ϕ F φ φ A v A B Wekto pzesunięcia v B s = AB v > v B A Wskutek wykonanej nad ciałem pacy wzasta jego pędkość od v A do v B czyli ośnie enegia kinetyczna Wykład 7, 015/016 3

4 Pzykład 1: Koalik może się ślizgać (bez tacia) po żyłce ozciągniętej wzdłuż poziomej osi OX. Stała siła F, skieowana pod kątem φ do żyłki powoduje uch jednostajnie pzyspieszony koalika wzdłuż żyłki. Jaki jest związek pacy wykonanej pzez siłę F z enegią kinetyczną koalika? F φ F F v A F v B Oś OX Pacę wykonuje tylko składowa F. Zatem W = F s = ma s Wykład 7, 015/016 4

5 F φ F F v A F v B Oś OX v = v + B A a s W AB = m a s a = v B v s A W AB = 1 mv B 1 mv A = E kb E ka Wykład 7, 015/016 5

6 Paca wykonana pzez siłę nad cząstką swobodną jest ówna zmianie enegii kinetycznej cząstki W = ΔE k Im większa pędkość ciała, tym większa jego enegia kinetyczna. Gdy ciało pozostaje w spoczynku jego enegia kinetyczna jest ówna zeu. E = k 1 mv ale p = mv E k = p m Wykład 7, 015/016 6

7 Zadanie domowe 7.1 Chłopiec ciągnie sanki o masie m=5kg, ze stałą pędkością, po poziomej powiezchni, na dodze d=9 m. Jaką pacę wykona on pzy ciągnięciu, jeżeli współczynnik tacia kinetycznego wynosi μ k =0,0 a sznuek twozy kąt φ=45 o z poziomem? Diagam sił Wykład 7, 015/016 Q 7

8 PRACA SIŁY ZMIENNEJ Załóżmy, że siła F zależy od położenia czyli F() Dzielimy pzedział < 1, > na odcinki, na któych można pzyjąć, że siła jest stała. Obliczamy pacę W wykonaną pzez siłę stałą na odcinku W = F Wykład 7, 015/016 Pace cząstkowe W sumujemy W = 1 F Δ 8

9 PRACA JAKO CAŁKA Gdy 0 Wykład 7, 015/016 W = lim Δ 0 F Δ = 1 1 Fd 9

10 PRACA JAKO CAŁKA W = dw = 1 Fd Paca elementana dw wykonana pzez siłę stałą na odcinku d dw = F d Elementane pace dw sumujemy Wykład 7, 015/016 10

11 Wykład 7, 015/016 UOGÓLNIENIE NA PRZYPADEK 3D Definicja pacy wykonanej pzez dowolną siłę pzy pzesunięciu od A do B Z definicji pędkości: Zatem pacę można wyazić: W AB v = Moc jest definiowana : P = dw/dt = B Fod A d dt t W = B AB F o vd t W AB t A t = B Pdt t A P = F o v 11

12 Wiemy z doświadczenia, że paca wykonana nad ciałem może zmienić nie tylko enegię kinetyczną lecz ównież lub tylko enegię potencjalną ciała ZADANIE DOMOWE 7. Podnosimy ciało o masie m na wysokość h działając siłą zewnętzną ównoważącą siłę ciężkości. Jaką pacę wykonała siła zewnętzna, a jaką siła ciężkości? Jaką pacę wykonają te siły pzy opuszczaniu ciała na ziemię? Wykład 7, 015/016 1

13 Pytanie: Co to jest enegia potencjalna? Czy jest związana wyłącznie z polem gawitacyjnym czyli E p =mgh? Czy znamy inne niż gawitacyjna, odzaje enegii potencjalnej? Wykład 7, 015/016 13

14 PRACA SIŁY ZALEŻNEJ OD POŁOŻENIA SIŁY HARMONICZNEJ k F = k( ) 1 k k k Wykład 7, 015/016 k-współczynnik spężystości Pzyjmując 1 =0 F = k lub ogólnie F = k 14

15 W = W dw = 1 1 Fd = = k d = k 1 ( k)d 1 k k W = k ( 1 ) W = ΔE p k Enegia potencjalna spężystości E = p k k Wykład 7, 015/016 15

16 Kittel, Mechanika Wykład 7, 015/016 16

17 ENERGIA POTENCJALNA Pzedmiot: Fizyka Enegia potencjalna E p jest to enegia związana z konfiguacją układu ciał, działających na siebie siłami. Aby móc wpowadzić pojęcie enegii potencjalnej, pole sił musi mieć okeśloną własność, taką, że paca wykonana w tym polu nie może zależeć od dogi, wzdłuż któej zachodzi pzemieszczenie Takie pola i siły nazywamy zachowawczymi Wykład 7, 015/016 17

18 B Doga 1 Doga 3 Wykład 7, 015/016 Doga A Paca wykonana pzez siłę zachowawczą nie zależy od dogi lecz zależy jedynie od położeń punktów A i B. W AB doga1 = W AB doga = W AB doga3 Paca wykonana pzez siłę zachowawczą nad cząstką pouszającą się po dodze zamkniętej jest ówna zeu. W AA = W AB + W BA = 0 18

19 ISTOTNE SIŁY RZECZYWISTE: Siła ciężkości (siła gawitacji) Siła oddziaływania elektostatycznego (siła Coulomba) są siłami zachowawczymi Siła tacia to pzykład siły, któa nie jest zachowawcza Wykład 7, 015/016 19

20 PRACA W JEDNORODNYM POLU GRAWITACYJNYM Pzedmiot: Fizyka W = F 1 s = Q s h / sinα ale Q s = Q sin α i Q = mg g czyli W = mgh F h α F 1 Q s Q Q paca siły zewnętznej Wykład 7, 015/016 W = E p zmiana enegii potencjalnej 0

21 JEDNORODNE POLE GRAWITACYJNE JEST ZACHOWAWCZE g C Paca siły zewnętznej ównoważącej siłę ciężkości nie zależy od sposobu pzemieszczania ciała lecz od położeń punktów początkowego i końcowego F h α F 1 Q B Q A W AC = W AB + W BC = E p Wykład 7, 015/

22 SIŁA CENTRALNA JEST SIŁĄ ZACHOWAWCZĄ Siła centalna F = f () ˆ Pzykłady sił centalnych: Mm siła gawitacji F( ) = G ˆ siła Coulomba 1 Qq F( ) = 4π ε 0 ˆ siła spężystości F( ) = kˆ Wykład 7, 015/016

23 Wykład 7, 015/016 Pzedmiot: Fizyka JAK OBLICZAĆ ENERGIĘ POTENCJALNĄ? Według definicji, óżnica enegii potencjalnej cząstki w punktach A i B jest ówna pacy wykonanej pzez siłę pzyłożoną do cząstki pzy jej pzesunięciu od A do B Watość enegii potencjalnej w punkcie jest okeślona z dokładnością do stałej E p (A), któą można obać umownie. Sens fizyczny ma jedynie óżnica enegii potencjalnej pomiędzy dwoma punktami. E E p E (B) E p ( ) = p E (A) p = (A) W(A A F o d B) siła oddziaływania (siła pola) Umowa: A leży w nieskończoności czyli E p ( )=0 p ( ) = F o d 3

24 Siła zachowawcza Enegia potencjalna układu: F = mg E p () = mg masa m - Ziemia Mm F( ) = G ˆ E p () Mm G = masa m masa M 1 Qq F( ) = 4π ε 0 ˆ E p () = ± 1 4πε 0 Qq ładunek q ładunek Q F( ) = kˆ Wykład 7, 015/016 1 E p() = k masa m spężyna k 4

25 F = F ˆi + y + F ˆj SIŁY ZACHOWAWCZE F kˆ z W AB = B Fod A d = dˆi + dyˆj + dzkˆ WAB = F d + Fydy + F dz z Jest to całka kzywoliniowa, któa może zależeć od dogi całkowania a nie tylko od położenia punktów A i B. Gdy paca nie zależy od dogi całkowania, siłę nazywamy zachowawczą Paca wykonana po dodze zamkniętej jest ówna zeu Wykład 7, 015/016 WAA = Fod = 0 L 5

26 Pzykład : Na cząstkę działa siła F = (3 N)ˆi + (4y N) ˆj gdzie i y są wyażone w metach. W wyniku działania siły cząstka pzemieszcza się z punktu A( m, 3 m) do punktu B( m, 0). Zakładamy, że cząstka w punktach A i B spoczywa względem pzyjętego układu odniesienia. Jaką pacę wykonuje ta siła nad cząstką? Jaki jest skutek enegetyczny wykonanej pacy? Rozwiązanie: WAB = F d + Fydy + F dz z F F F y z = 3 = 4y = 0 Wykład 7, 015/016 W AB 0 = 3 d + 3 4ydy Zmalała enegia potencjalna WAB = 0 + y 3 = 18J 0 6

27 ZADANIE DOMOWE 7.3 (dla ambitnych) Pole sił dane jest wzoem: F = ( y - )ˆi + 3y ˆj Obliczyć całkę kzywoliniową od punktu (0,0) do punktu ( 0,y 0 ) wzdłuż dogi składającej się dwóch postych odcinków od (0,0) do ( 0,0) i ( 0,0) do ( 0,y 0 ). Poównać z wynikiem otzymanym pzy pzyjęciu dwóch innych boków postokąta jako dogi całkowania. Czy siła jest zachowawcza? Wykład 7, 015/016 7

28 E Pzedmiot: Fizyka ZWIĄZEK POMIĘDZY SIŁĄ A ENERGIĄ POTENCJALNĄ Pzypadek jednowymiaowy p () = F d Uogólnienie na 3D E p ( ) = F o d F de p p p p = = i j k = gad Ep = Ep d F E ˆ E y ˆ E z ˆ Wykład 7, 015/016 Opeato nabla = ˆi + y ˆj + z kˆ 8

29 Pzykład 3: Enegia potencjalna układu masa-spężyna dana jest wzoem: E () = Spawdzić, stosując poznany wzó: p 1 k F = gad E p czy siła oddziaływania spowadza się do znanej postaci: F( ) = k Wykład 7, 015/016 9

30 Rozwiązanie: 1 1 Ep () = k = k( + y + z Współzędne opeatoa gadientu: ( + y + z ) k 1 Ep (, y,z) = k = E y E z 1 = k y ( + y + z ) ky p = 1 = k z ( + y + z ) kz p = ) gad E k ˆi ky ˆ p = + j + zatem: kz kˆ F = gad E p = k(ˆi + yˆj + zkˆ ) = k Wykład 7, 015/016 30

31 POŁOŻENIE RÓWNOWAGI Waunek ównowagi F=0 czyli de p /d=0 Wykład 7, 015/016 31

32 Równowaga nietwała, E p wykazuje maksimum Równowaga twała, E p wykazuje minimum Równowaga obojętna, enegia potencjalna E p jest stała, niezależna od położenia Wykład 7, 015/016 3

33 ZADANIE DOMOWE 7.4 Enegia potencjalna cząsteczki dwuatomowej (tzn. układu złożonego z dwóch atomów w odległości, jak H lub O ) jest dana wzoem: E p () = A 1 gdzie A i B są stałymi dodatnimi. Znaleźć odległość ównowagową dla atomów twozących cząsteczkę. Czy jest to ównowaga twała czy nietwała? Wykonać wykes E p () B 6 Wykład 7, 015/016 33

34 ZWIĄZEK PRACY I ENERGII MECHANICZNEJ W = E k + E p Paca siły zewnętznej Zmiana enegii kinetycznej Zmiana enegii potencjalnej Paca siły zewnętznej wykonanej nad układem powadzi do zmiany enegii mechanicznej W= E mech = E k + E p Wykład 7, 015/016 34

35 ZASADA ZACHOWANIA ENERGII MECHANICZNEJ W układzie izolowanym, w któym zmiany enegii pochodzą jedynie od sił zachowawczych enegia kinetyczna i potencjalna mogą się zmieniać, lecz ich suma czyli enegia mechaniczna E mech nie może ulegać zmianie. 0 = E k + E p 0 = E k -E k1 + E p -E p1 E k1 +E p1 = E k + E p Wykład 7, 015/016 d dt E k +E p = const (E + E ) 0 k p = 35

36 ZASADA ZACHOWANIA ENERGII MECHANICZNEJ DLA OSCYLATORA HARMONICZNEGO k E k = m v E p = k Układ masa m-spężyna k d dt (Ek + Ep) = 0 d dt v ( m + k ) = 0 m v dv dt Wykład 7, 015/016 k d + dt = 0 d dt m + k = 0 Równanie ogólne, óżniczkowe oscylatoa hamonicznego 36

37 Zmiany enegii w układzie wahadło-ziemia E k +E p =const Wykład 7, 015/016 37

38 ZADANIE DOMOWE 7.5 Z jakiej najmniejszej wysokości h musi się stoczyć klocek aby nie odewał się od tou w najwyższym punkcie pętli kołowej? Wykład 7, 015/016 38

39 ZWIĄZEK PRACY I ENERGII W = E mech + E tem + E wew Paca siły zewnętznej Pzyost enegii mechanicznej Pzyost enegii temicznej Pzyost wszystkich innych fom enegii wewnętznej Wykład 7, 015/016 39

40 PODSUMOWANIE Istnieje ścisły związek pomiędzy pacą a enegią O enegii potencjalnej układu można mówić tylko dla sił zachowawczych Zasada zachowania enegii mechanicznej pozwala ozwiązywać zagadnienia, któe są tudne lub niemożliwe do ozwiązania na guncie zasad dynamiki Całkowita enegia jest wielkością stałą. Enegia może być pzekształcana z jednej fomy w inną, ale nie może być wytwazana ani niszczona Wykład 7, 015/016 40

41 TEST 5P 1. Ciało o masie 1g pousza się po okęgu o pomieniu ównym 0.5 m w płaszczyźnie pionowej ze stałą pędkością liniową m/s. Paca wykonana nad tym ciałem podczas jednego pełnego obotu wynosi : A) 0 B) 1 J C) J D) 4 J E) 16 J. Ciało o masie kg pousza się z pędkością 3 m/s. Siła zewnętzna o watości 4N działa na ciało w kieunku jego uchu i zostaje usunięta po pzebyciu pzez ciało dogi 5m. Paca wykonana pzez tę siłę wynosi: A) 1 J B) 15 J C) 18 J D) 0 J E) 38 J Wykład 7, 015/016 41

42 3. Sanie ważą 5000 N łącznie z obciążeniem. Sanie są ciągnięte po śniegu pzez psy, któe działają siłą poziomą na sanie. Współczynnik tacia kinetycznego pomiędzy saniami i śniegiem wynosi Jaką pacę wykonają psy ciągnące sanie ze stałą pędkością na dodze 1000 m? A) J B) J C) J D) J E) J 4. Pzyczepa kempingowa o ciężaze 6000 N jest ciągnięta po zamazniętym jezioze za pomocą poziomej liny. Współczynnik tacia kinetycznego wynosi Jaka paca została wykonana pzez siłę ciągnącą pzyczepę na dodze 1000 m, jeżeli wiadomo, że pędkość pzyczepy wzastała ze stałą szybkością 0.0 m/s? A) J D) J B) J E) J C) J Wykład 7, 015/016 4

43 5. Człowiek popycha cięża 80 N po góę ówni pochyłej, któa twozy kąt 30 o z poziomem. Siła jaką człowiek działa na ciało jest ównoległa do powiezchni ówni pochyłej a odległość na jaką pzesuwa cięża wynosi 5.0 m. Tacie można zaniedbać. Jeżeli pędkość, z jaką pzesuwany jest cięża jest stała, to paca wykonana pzez człowieka wynosi: A) -00 J B) 61 J C) 140 J D) 00 J E) 60 J 6. Cząstka jest pzemieszczana wzdłuż osi OX (zgodnie z dodatnim zwotem osi) na odległość 5 m pod wpływem siły stałej danej wzoem F = ( 4 N) iˆ + ( N) ˆj (4 N) kˆ Paca wykonana pzez tę siłę wynosi: A) 0J B) 10J C) -0J D) 30J E) nie można jej obliczyć bez znajomości pozostałych sił Wykład 7, 015/016 43

44 7. Kiedy gumowa linka jest ozciągana do długości, działa siła o watości F=A, pzywacająca ównowagę; A jest wielkością stałą. Paca wykonana pzez osobę ozciągającą linkę od =0 do =L wynosi: A) AL B) A+L C) A+L D) A/L E) AL / 8. Samochód ważący 8000 N pousza się wzdłuż poziomej dogi z pędkością 1 m/s w chwili gdy ozpoczyna hamowanie. Samochód zatzymuje się po 4.0 s. Ile enegii kinetycznej taci samochód w tym czasie? A) J B) J C) J D) J E) J Wykład 7, 015/016 44

45 9. W chwili t=0 ciało o masie kg ma pędkość ( 4 m / s) iˆ (3 m / s) W chwili t=3s jego pędkość wynosi ( m / s) iˆ + (3 m / s) ˆj ˆj Paca wykonana nad ciałem w tym czasie wynosi: A) 4J B) -4J C) -1J D) -40J E) (4J)i+(36J)j 10. Cząstka statuje ze stanu spoczynku w chwili t=0 i pousza wzdłuż osi. Jeżeli siła wypadkowa działająca na cząstkę jest popocjonalna do t, to jej enegia kinetyczna jest popocjonalna do: A) t B) t C) t 4 D) 1/t E) żadna odpowiedź nie jest pawidłowa Wykład 7, 015/016 45

46 TEST 5A 1. An object moves in a cicle at constant speed. The wok done by the centipetal foce is zeo because: A) the displacement fo each evolution is zeo B) the aveage foce fo each evolution is zeo C) thee is no fiction D) the magnitude of the acceleation is zeo E) the centipetal foce is pependicula to the velocity. Which of the following is NOT a coect unit fo wok: A) eg B) ft lb C) watt D) newton mete E) joule 3. Which of the following goups does NOT contain a scala quantity? A) velocity, foce, powe D) enegy, wok, distance B) displacement, acceleation, foce E) pessue, weight, time C) acceleation, speed, wok Wykład 7, 015/016 46

47 4. The amount of wok equied to stop a moving object is equal to the: A) velocity of the object B) kinetic enegy of the object C) mass of the object times its acceleation D) mass of the object times its velocity E) squae of the velocity of the object 5. The weight of an object on the moon is one-sith of its weight on the Eath. The atio of the kinetic enegy of a body on the Eath moving with the speed v to that of the same body moving with the speed v on the moon is: A) 6:1 D) 1:6 B) 36:1 E) 1:36 C) 1:1 Wykład 7, 015/016 47

48 6. In aising an object to a given height by means of an inclined plane as compaed with aising the object vetically, thee is a eduction in: A) wok equied D) foce equied B) distance pushed E) value of the acceleation due to C) fiction gavity 7. Which of the following five units is NOT the same as the othe fou? A) joule B) eg C) watt D) foot pound E) newton mete 8. Which of the following five quantities is NOT an epession fo enegy? Hee m is a mass, g is the acceleation due to gavity, h and d ae distances, F is a foce, v is a speed, a is an acceleation, P is powe, and t is time: A) mgh B) Fd C) ½ mv D) ma E) Pt Wykład 7, 015/016 48

Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. Wykład 5, 2011/2012. Wydział EAIiE Kierunek: Elektrotechnika

Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. Wykład 5, 2011/2012. Wydział EAIiE Kierunek: Elektrotechnika PRACA I ENERGIA 1 ENERGIA A PRACA Enegia jest to wielkość skalana, chaakteyzująca stan, w jakim znajduje się jedno lub wiele ciał. Enegia kinetyczna jest związana ze stanem uchu ciała. Paca jest to enegia

Bardziej szczegółowo

PRACA I ENERGIA ENERGIA A PRACA

PRACA I ENERGIA ENERGIA A PRACA PRACA I ENERGIA 1 ENERGIA A PRACA Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia kinetyczna jest związana ze stanem ruchu ciała. Praca jest

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 6: Paca i enegia d inż. Zbigniew Szklaski szkla@agh.edu.l htt://laye.uci.agh.edu.l/z.szklaski/ negia a aca negia jest to wielkość skalana, okeślająca stan, w jakim znajduje się jedno lub wiele ciał.

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasada zachowania pędu p Δp i 0 p i const. Zasady zachowania: pęd W układzie odosobnionym całkowity pęd (suma pędów wszystkich ciał) jest wielkością stałą. p 1p + p p + = p 1k + p

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

PRACA I ENERGIA. 1. Praca stałej siły. 2. Praca zmiennej siły. 3. Moc: szybkość wykonywania pracy. 4. Energia kinetyczna

PRACA I ENERGIA. 1. Praca stałej siły. 2. Praca zmiennej siły. 3. Moc: szybkość wykonywania pracy. 4. Energia kinetyczna PRACA I ENERGIA 1. Paca stałej siły. Paca zmiennej siły 3. Moc: szybkość wykonywania pacy 4. Enegia kinetyczna 5. Siły zachowawcze i enegia potencjalna 6. Zasada zachowania enegii mechanicznej 7. Enegia

Bardziej szczegółowo

Podstawy fizyki sezon 1 III. Praca i energia

Podstawy fizyki sezon 1 III. Praca i energia Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Fizyka. Wykład 2. Mateusz Suchanek

Fizyka. Wykład 2. Mateusz Suchanek Fizyka Wykład Mateusz Suchanek Zadanie utwalające Ruch punktu na płaszczyźnie okeślony jest ównaniai paaetycznyi: x sin(t ) y cos(t gdzie t oznacza czas. Znaleźć ównanie tou, położenie początkowe punktu,

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Guma Guma. Szkło Guma

Guma Guma. Szkło Guma 1 Ładunek elektyczny jest cechą mateii. Istnieją dwa odzaje ładunków, nazywane dodatnimi i ujemnymi. Ładunki jednoimienne się odpychają, podczas gdy ładunki óżnoimeinne się pzyciągają Guma Guma Szkło Guma

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Co to jest praca? Dla punktu

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Zasady zachowania, zderzenia ciał

Zasady zachowania, zderzenia ciał Naa -Japonia -7 (Jaoszewicz) slajdów Zasady zachowania, zdezenia ciał Paca, oc i enegia echaniczna Zasada zachowania enegii Zasada zachowania pędu Zasada zachowania oentu pędu Zasady zachowania a syetia

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Nierelatywistyczne równania ruchu = zasady dynamiki Newtona

Nierelatywistyczne równania ruchu = zasady dynamiki Newtona DYNAMIKA: siły ównania uchu uch Nieelatywistyczne ównania uchu zasady dynaiki Newtona Pojęcia podstawowe dla punktu ateialnego Masa - iaa bezwładności Pęd iaa ilości uchu v v p v p v v v Siła wywołuje

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

ZJAWISKA ELEKTROMAGNETYCZNE

ZJAWISKA ELEKTROMAGNETYCZNE ZJAWISKA LKTROMAGNTYCZN 1 LKTROSTATYKA Ładunki znajdują się w spoczynku Ładunki elektyczne: dodatnie i ujemne Pawo Coulomba: siły pzyciągające i odpychające między ładunkami Jednostką ładunku elektycznego

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18

Siły zachowawcze i energia potencjalna. Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Siły zachowawcze i energia potencjalna Katarzyna Sznajd-Weron Mechanika i termodynamika dla matematyki stosowanej 2017/18 Polecana literatura John R Taylor, Mechanika klasyczna, tom1 Wydawnictwo Naukowe

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Zastosowanie zasad dynamiki Newtona.

Zastosowanie zasad dynamiki Newtona. Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Lista zadań nr 1 - Wektory

Lista zadań nr 1 - Wektory Lista zadań n 1 - Wektoy Zad. 1 Dane są dwa wektoy: a = 3i + 4 j + 5k, b = i + k. Obliczyć: a) długość każdego wektoa, b) iloczyn skalany a b, c) kąt zawaty między wektoami,, d) iloczyn wektoowy a b e)

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (B+C) Wykład XIV: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne dr P F n Θ F F t Praca i energia Praca

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

Mechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne.

Mechanika ogólna. Więzy z tarciem. Prawa tarcia statycznego Coulomba i Morena. Współczynnik tarcia. Tarcie statyczne i kinetyczne. Więzy z tacie Mechanika oólna Wykład n Zjawisko tacia. awa tacia. awa tacia statyczneo Couloba i Moena Siła tacia jest zawsze pzeciwna do występująceo lub ewentualneo uchu. Wielkość siły tacia jest niezależna

Bardziej szczegółowo

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.

Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika. ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana

Bardziej szczegółowo

Energia w geometrii Schwarzshilda

Energia w geometrii Schwarzshilda Enegia w geometii Schwazshilda Doga po jakiej pousza się cząstka swobodna pomiędzy dwoma zdazeniami w czasopzestzeni jest taka aby czas zmiezony w układzie cząstki był maksymalny. Rozważmy cząstkę spadającą

Bardziej szczegółowo

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski

Bardziej szczegółowo

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pęd Rozważamy

Bardziej szczegółowo

10 RUCH JEDNOSTAJNY PO OKRĘGU

10 RUCH JEDNOSTAJNY PO OKRĘGU Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny

Bardziej szczegółowo

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 3. Dynamika punktu materialnego.  Dr hab. inż. Władysław Artur Woźniak Wykład IZYKA I 3. Dynamika punktu materialnego Dr hab. inż. Władysław Artur Woźniak Instytut izyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Dynamika to dział mechaniki,

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Fizyka I (Mechanika) Wykład VI: Praca, siły zachowawcze i energia potencjalna Energia kinetyczna i zasada zachowania energii Zderzenia elastyczne Układ środka masy Praca i energia

Bardziej szczegółowo

ĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI

ĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI ĆWICZEIE 6 POMIAR MOMETU BEZWŁADOŚCI. SPRAWDZEIE DRUGIEJ ZASADY DYAMIKI DLA RUCHU OBROTOWEGO. BADAIE ADDYTYWOŚCI MOMETU BEZWłADOŚCI Wpowadzenie Była sztywna to układ punktów mateialnych o stałych odległościach

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad Poprawna odpowiedź i zasady przyznawania punktów Operon ZAKRES ROZSZERZONY 00% KOD WEWNĄTRZ KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 06 Vademecum Fizyka MATURA 07 VADEMECUM Fizyka Zacznij przygotowania

Bardziej szczegółowo

FIZYKA Kolokwium nr 2 (e-test)

FIZYKA Kolokwium nr 2 (e-test) FIZYKA Kolokwium nr 2 (e-test) Rozwiązał i opracował: Maciej Kujawa, SKP 2008/09 (więcej informacji na końcu dokumentu) Zad. 1 Cegłę o masie 2kg położono na chropowatej desce. Następnie jeden z końców

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2 1 Zadania wstępne (dla wszystkich) Zadanie 1. Pewne ciało znajduje się na równi, której kąt nachylenia względem poziomu można regulować.

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

KINEMATYCZNE WŁASNOW PRZEKŁADNI

KINEMATYCZNE WŁASNOW PRZEKŁADNI KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Energia i praca Energia inny sposób badania ruchu Energia jest wielkością skalarną charakteryzującą stan ciała lub układu ciał. Energia

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie

Bardziej szczegółowo

WPROWADZENIE. Czym jest fizyka?

WPROWADZENIE. Czym jest fizyka? WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych

Bardziej szczegółowo

Moment pędu w geometrii Schwarzshilda

Moment pędu w geometrii Schwarzshilda Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Plan wykładu. Rodzaje pól

Plan wykładu. Rodzaje pól Plan wykładu Pole gawitacyjne d inż. Ieneusz Owczaek CMF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 2013/14 1 Wielkości chaakteyzujace pole Pawo Gaussa wewnatz Ziemi 2 Enegia układu ciał

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

DYNAMIKA ZADANIA. Zadanie DYN1

DYNAMIKA ZADANIA. Zadanie DYN1 DYNAMIKA ZADANIA Zadanie DYN1 Na ciało działa siła (przy czym i to stałe). W chwili początkowej ciało miało prędkość i znajdowało się w punkcie. Wyznacz położenie i prędkość ciała w funkcji czasu., Zadanie

Bardziej szczegółowo