ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2"

Transkrypt

1 Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1

2 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio momentach x oraz x + t. Znamy także sposoby na wyznaczenie tp x wtedy, gdy t / N 0. Hipoteza jednostajności. Hipoteza przedzia lami sta lego nat eżenia zgonów. Hipoteza Balducciego. 2

3 Tablice trwania życia x l x d x p x µ x e x , , , , , , , , , l x liczebność kohorty w momencie x d x = l x l x+1 Problem: Wyznaczyć 3 p 40 = P (T 40 > 3). I sposób: p 40 p 41 p 42 = 3 p 40 = 0, II sposób: 3 p 40 = l 43 l 40 = 0,

4 Nat eżenie śmiertelności w tablicach obliczone ze wzoru µ x = 8(l x 1 l x+1 ) (l x 2 l x+2 ) 12l x. Zagadka: jak to si e ma do definicji: µ [x]+t = f x(t) 1 F x (t)? 4

5 Ważna konsekwencja HJP i hipotez interpolacyjnych Niech t, x R \ N, wówczas tp x = P (T x > t) = P (T 0 > x + t). P (T 0 > x) Zatem jeżeli HU, to tp x = (1 u) 0p 0 + u 1p 0 (1 v) 0p 0 + v 1p 0, gdzie u = x + t x + t oraz v = x x. 5

6 Oczekiwany ca lkowity przysz ly czas życia osoby w wieku x podany w tablicach e x = k=1 l x+k l x e x = EK x = = = = k=1 k=1 k=1 k=1 k P (K x = k) k P (k T x < k + 1) k ( P (T x < k + 1) P (T x < k) ) k ( P (T x > k) P (T x > k + 1) ) ( lx+k = k l ) x+k+1 l k=1 x l x = 1 [ (lx+1 ) ( ) l x lx+2 l x+3 l x + 3 ( l x+3 l x+4 )

7 Konsekwencje HJP Obserwacja 1 Jeżeli zachodzi HJP, to µ [x]+t = µ [0]+x+t = µ x+t. Dowód: Z definicji µ [x]+t = f x(t) 1 F x (t) d = dτ F x(τ) τ=t P (T x > t) [ d dτ P (Tx > τ) ] (t) = P (T x > t) ] (t) = = d dτ d dτ [ P (T0 >x+τ) P (T 0 >x) P (T 0 >x+t) P (T 0 >x) [ P (T0 > x + τ) ] (t) P (T 0 > x + t) 7

8 Pokazaliśmy: µ [x]+t = d dτ [ P (T0 > x + τ) ] (t). P (T 0 > x + t) Niech g(τ) = P (T 0 > τ). Wówczas d [ P (T0 > x + τ) ] ( d (t) = g(x + τ) dτ ( ) dτ d = dτ g (x + t) i w rezultacie [ d dτ P (T0 > τ) ] (x + t) µ [x]+t = P (T 0 > x + t) = f 0(x + t) 1 F 0 (x + t) = µ [0]+x+t. ) (t) 8

9 Obserwacja 2 Jeżeli zachodzi HJP, to tq [x]+s = t q x+s, tp [x]+s = t p x+s. Dowód: Przypomnijmy, że tp [x]+s = P (T x > t + s T x > s) i w konsekwencji P (T x > t + s T x > s) = P (T x > t + s) P (T x > s) = P (T 0 > x + t + s) P (T 0 > x + s) = P (T x+s > t). 9

10 Hipoteza Balducciego (1 u) q [x]+n+u = (1 u)q [x]+n. Równoważnie: P (T x n + 1 T x > n + u) = (1 u)p (T x n + 1 T x > n). Zatem na przyk lad P (T x n + 1 T x > n ) = 1 12 P (T x n + 1 T x > n) 10

11 Hipoteza Balducciego (HB) (1 u) q [x]+n+u = (1 u)q [x]+n. Obserwacja 3 Jeżeli T x spe lnia hipotez e Balducciego, to p [x]+n n+up x = n p x u + (1 u)p [x]+n = n+1p x. 1 (1 u)q [x]+n 11

12 Dowód Obserwacji 3: n+1p x = P (T x > n + 1) Zatem = P (T x > n + u) P (T x > n + 1) P (T x > n + u) = P (T x > n + u) P (T x > n + 1 T x > n + u). }{{} (1 u) p [x]+n+u Z HB mamy n+up x = n+1p x (1 u) p [x]+n+u (1 u) p [x]+n+u = 1 (1 u) q [x]+n+u = 1 (1 u)q [x]+n. Co uzasadnia druga z podanych równości. Dalej, mamy 1 (1 u)q [x]+n = 1 (1 u)q [x]+n = 1 (1 u)(1 p [x]+n ) = u + (1 u)p [x]+n, co kończy uzasadnienie pierwszej. 12

13 Dla oswojenia sie z Hipoteza Balducciego Zadanie 3.25, s. 87 [B laszczyszyn, Rolski] Jaka jest oczekiwana liczba osób z populacji miliona 35-latków, które umra po ukończeniu 36 lat i 4 miesiecy i przed ukończeniem 37 lat i 8 miesiecy. Zak ladamy HB oraz q 35 = , q 36 = , q 37 =

14 Weźmy pod uwage nastepuj ace prawdopodobieństwo P ( T 35 < ) = P (T 35 > ) P (T 35 > ) Z jednej strony P (T 35 > l ) = l 35 P (T 35 > l ) = l 35 i oczywiście l 35 = Z drugiej, P (T 35 > n + 1) = P (T 35 > n+u) P (T 35 > n+1 T 35 > n+u)

15 Zatem P (T 35 > ) = 2p 35 P (T 35 > 2 T 35 > ) = 2 p q 36 = (1 q 35)(1 q 36 ) q 36 oraz P (T 35 > ) = 3 p q

16 Model tymczasowej selekcji Motywacja: Zarówno HJP, jak i HP zak ladaja, że przysz ly czas życia wszystkich osobników kohorty jest w pewnym sensie taki sam. Dok ladniej: przysz lym czasem życia wszystkich osobników kohorty rzadzi to samo prawo. 16

17 Rozsadne za lożenie Dla pewnego podzbioru osobników kohorty prawo rzadz ace ich przysz lym czasem życia jest w pewnym okresie inne. Na przyk lad sa zdrowsi albo wrecz przeciwnie. Zatem prawdopodobieństwo ich śmierci jest istotnie inne niż prawdopodobieństwo śmierci przecietnego osobnika kohorty. Inne jest wiec prawdopodobieństwo, że konieczna bedzie wyp lata sumy ubezpieczenia! 17

18 Prosty przyk lad W jaki sposób można uwzglednić fakt, że, na przyk lad, osoby wysportowane żyja d lużej? Powiedzmy, że obserwowane dane statystyczne pozwalaja przyjać wniosek, że prawdopodobieństwo śmierci w ciagu roku osoby powyżej 40 roku życia jest o 5% mniejsze niż osoby nie biegajacej. Powiedzmy, że tak jest aż do 65 roku życia, kiedy to wp lyw regularnego uprawiania sportu s labnie na tyle, że nie ma już podstaw, aby wyróżniać te osoby ca lej populacji. Czy takie stwierdzenie jest zgodne z HTS? 18

19 Hipoteza tymczasowej selekcji (HTS) Rodzina rozk ladów (K [x] ) x spe lnia hipotez e tymczasowej selekcji z okresem selekcji ζ, jeżeli dla każdego x = 0, 1,... P (K [x] ζ) > 0 P (K 0 > x + ζ) > 0 i wówczas P (K [x] ζ + k) K [x] ζ) = P (K 0 x + ζ + k K 0 x + ζ). 19

20 Zwiazki z HA (HA): P (K x = k) = P (K 0 = x + k K 0 x) (HTS): P (K [x] ζ + k) K [x] ζ) = P (K 0 x + ζ + k K 0 x + ζ) Zauważmy, że konsekwencja HA jest P (K x l) = = k=l k=l Wniosek: jeżeli HA, to P (K x = k) P (K 0 = x + k K 0 x) = P (K 0 x + l K 0 x). P (K x k) = P (K 0 x + k K 0 x). 20

21 Co mówi HTS, jeżeli ζ = 0? P (K [x] k K [x] 0) = P (K 0 x + k K 0 x) 21

22 Sens HTS (przy za lożeniu HA) P (K [x] ζ + k K [x] ζ) = P (K x ζ + k K x ζ) = P (K x+ζ k) Zatem, rozk lady K [x] spe lniajace HTS musza mieć te w lasność, że po up lywie czasu selekcji musza zgadzać z K x. 22

23 P (K [40] 25 + k K [40] 25) = P (K [40] 25 + k) P (K [40] 25) = P (K k) P (K 40 25) = P (K k K ). 23

24 Przysz ly u lamkowy czas życia x-latka S x := T x K x = T x T x Obserwacja 4 Jeżeli T x ma rozk lad ciag ly, to S x ma także rozk lad ciag ly oraz n=0 jest gestości a rozk ladu S x. f x (t + n) (1) Dowód: Na mocy definicji i za lożenia P (T x t) = t f x(τ)dτ. Wyrażenie (1) jest dobrze określone. 24

25 Zauważmy, że dla 0 u < 1 mamy P (S x u) = P (T x T x u) = P = = = k=0 k=0 k+u k=0 k u k=0 To znaczy, że funkcja g x (u) = {T x T x u T x = k} P ( {T x T x u T x = k} ) f x (τ)dτ 0 f x(τ + k)dτ. n=0 f x (n + u), 0 u < 1, 0, t / [0, 1), jest gestości a rozk ladu zmiennej losowej S x. 25

26 Zdefiniujmy nastepuj ac a zmienna losowa S (m) = 1 ms + 1. m S (m) 1/m to zaokraglenie S do wielokrotości S (m) { 1,..., m }. Obserwacja 5 Jeżeli zachodzi HU, to K oraz S (m) sa niezależne. 26

27 Należy pokazać P (K x = k S (m) = j m ) = P (K x = k) P (S (m) = j m ) dla dowolnych k N 0 oraz j = 1,..., m. P (K x = k S (m) = j m ) = P (k + j 1 m T x < k + j m ) = P (T x > k + j 1 m ) P (T x > k + j m ) = (1 j 1 m ) kp x + j 1 m k+1 p x (1 j m ) kp x + j m k+1 p x 27

28 Zatem P (K x = k S (m) = j m ) = 1 m k p x 1 m k+1 p x = 1 ) (kp x k+1 p x m = 1 ( ) P (T x > k) P (T x > k + 1) m = 1 m P (k K x < k + 1). Pozostaje wiec uzasadnić nastepn a obserwacje Obserwacja 6 Jeżeli prawdziwa jest HU, to P (S (m) = j m ) = 1 m. 28

29 Dowód: P (S (m) = j m ) = P ( = = = k=0 k=0 k=0 k=0 = 1 m P ( {K x = k} {S (m) = j m } ) P (K x = k S (m) = j m ) P (k + j 1 m T x < k + j m ) 1 m P (K x = k) k=0 ) {K x = k} = 1 m. 29

30 Wracajac do obserwacji 5 mamy P (K x = k S (m) = j m ) = 1 m P (k K x < k + 1) = P (S (m) = j m )P (K x = k). 30

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia. Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1,

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 1 Wprowadzajacy 1 Matematyka aktuarialna 1. matematyka w ubezpieczeniach, 2. dok ladniej, matematyka ubezpieczeń na życie, 3. czasami szerzej,

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 6 Kalkulacja sk ladki netto II. Funkcje komutacyjne. 1 Przypomnienie Umowa ubezpieczenia zawiera informacje o: Przedmiocie ubezpieczenia Czasie

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. 1 Zadanie (29) zawar l umowe kredytu w momencie ukończenia

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

3 Ubezpieczenia na życie

3 Ubezpieczenia na życie 3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Matematyka ubezpieczeń na życie. Piotr Kowalski

Matematyka ubezpieczeń na życie. Piotr Kowalski Matematyka ubezpieczeń na życie Piotr Kowalski 27 stycznia 212 Spis treści 1 Elementy matematyki finansowej 1 1.1 Oznaczenia.............................. 1 1.2 Związki................................

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 10 marca 2014 Zmienna losowa - wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie one z rejestracja jakiś sygna lów (danych). Moga to być

Bardziej szczegółowo

Elementy teorii przeżywalności

Elementy teorii przeżywalności Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 21 marca 2011 Zmienna losowa wst ep Przeprowadzane w praktyce badania i eksperymenty maja bardzo różnorodny charakter, niemniej jednak wiaż a sie z rejestracja jakiś sygna lów (danych). Moga to być na

Bardziej szczegółowo

Matematyka Finansowa i Ubezpieczeniowa Ubezpieczenia na Życie

Matematyka Finansowa i Ubezpieczeniowa Ubezpieczenia na Życie Matematyka Finansowa i Ubezpieczeniowa Ubezpieczenia na Życie Rafał Kucharski rafal.kucharski@ue.katowice.pl Literatura [1] B. Błaszczyszyn, T. Rolski, Podstawy matematyki ubezpieczeń na życie, WNT Warszawa,

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Uzgadnianie wyrażeń rachunku predykatów. Adam i orzeszki. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Podstawienia Motywacja Podstawienie 2 Sk ladanie podstawień Motywacja Z lożenie podstawień

Bardziej szczegółowo

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach:

Niech X bȩdzie dowolnym zbiorem. Dobry porz adek to relacja P X X (bȩdziemy pisać x y zamiast x, y P ) o w lasnościach: Teoria miary WPPT IIr semestr zimowy 2009 Wyk lad 4 Liczby kardynalne, indukcja pozaskończona DOBRY PORZA DEK 14/10/09 Niech X bȩdzie dowolnym zbiorem Dobry porz adek to relacja P X X (bȩdziemy pisać x

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. T O P O L O G I A WPPT I, sem. letni WYK LAD 8 Zwartość D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a. Wroc law, 1 kwietnia 008 Definicja 1. (X, d) jest ca lkowicie ograniczona jeśli dla

Bardziej szczegółowo

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak

w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane

Bardziej szczegółowo

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010

Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 R. Rȩbowski 1 WPROWADZENIE Metoda Simplex bez użycia tabel simplex 29 kwietnia 2010 1 Wprowadzenie Powszechnie uważa siȩ, że metoda simplex, jako uniwersalny algorytm pozwalaj acyznaleźć rozwi azanie optymalne

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań Micha l Ziembowski m.ziembowski@mini.pw.edu.pl www.mini.pw.edu.pl/ ziembowskim/ October 2, 2016 M. Ziembowski (WUoT) Elementy logiki i teorii

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Architektura systemów komputerowych

Architektura systemów komputerowych Architektura systemów komputerowych Grzegorz Mazur Zak lad Metod Obliczeniowych Chemii Uniwersytet Jagielloński 12 kwietnia 2011 Grzegorz Mazur (ZMOCh UJ) Architektura systemów komputerowych 12 kwietnia

Bardziej szczegółowo

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie. 176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

Rozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej

Rozdzia l 6. Wstȩp do statystyki matematycznej. 6.1 Cecha populacji generalnej Rozdzia l 6 Wstȩp do statystyki matematycznej 6.1 Cecha populacji generalnej W rozdziale tym zaprezentujemy metodȩ probabilistycznego opisu zaobserwowanego zjawiska. W takim razie (patrz rozdzia l 2.4)zjawiskotobȩdziemy

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Dana jest następująca macierz wypłat gry o sumie zero: Podaj rozwiązanie tej gry. M = 3 2 2 2 3 4 5 2 3 3 2 2 4 2 0 3 3 3 Kredyt ma być spłacany na początku roku

Bardziej szczegółowo

Liniowe uk lady sterowania.

Liniowe uk lady sterowania. Liniowe uk lady sterowania Rozwi azywanie liniowych rownań stanu Uk lady z czasem ci ag lym Liniowe stacjonarne równania stanu Przyk lad: Uk lad sterowania tarcz a obrotow a prȩt sprȩżysty tarcza obrotowa

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Problemy cz lowieka za szafa Cz lowiek za szafa rzuca razy moneta. Może on rzucać : 1 moneta symetryczna; 2 moneta, która ma or la z dwu stron. Zadania 1 Wymyśl procedure pozwalajac a stwierdzić

Bardziej szczegółowo

O agregacji kapita lu ludzkiego w heterogenicznych kohortach populacji

O agregacji kapita lu ludzkiego w heterogenicznych kohortach populacji O agregacji kapita lu ludzkiego w heterogenicznych kohortach populacji Jakub Growiec 1,2 Christian Groth 3 1 Narodowy Bank Polski 2 Szko la G lówna Handlowa 3 Uniwersytet w Kopenhadze Seminarium IE NBP,

Bardziej szczegółowo

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: = . Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność

Bardziej szczegółowo

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne

Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne Rozdzia l 9. Zbiory liczb porz adkowych. Liczby porz adkowe izolowane i graniczne 1. Kresy wzglȩdem dowolnego zbioru liczb porz adkowych Poświȩcimy teraz uwagȩ przede wszystkich kratowym w lasnościom klasy

Bardziej szczegółowo

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala

Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala Zestaw nr 6 Pochodna funkcji jednej zmiennej. Styczna do krzywej. Elastyczność funkcji. Regu la de l Hospitala November 12, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Oblicz pochodne nastȩpuj

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II

PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II PODSTAWY WNIOSKOWANIA STATYSTYCZNEGO czȩść II Szkic wykładu 1 Wprowadzenie 2 3 4 5 Weryfikacja hipotez statystycznych Obok estymacji drugim działem wnioskowania statystycznego jest weryfikacja hipotez

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Stacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Kierunek studiów: Informatyka Profil: Praktyczny

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2

Matematyka finansowa i ubezpieczeniowa - 11 Ubezpieczenia Ŝyciowe 2 Matematyka finansowa i ubezpieczeniowa - Ubezpieczenia Ŝyciowe 2 Składki netto w ubezpieczeniach Ŝyciowych Zakład ubezpieczeniowy pobiera za ubezpieczenia składkę brutto, składającą się ze składki netto

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Symulacja stosunku liczby ludzi starych do liczby ludzi m lodych w kraju takim jak Polska

Symulacja stosunku liczby ludzi starych do liczby ludzi m lodych w kraju takim jak Polska Symulacja stosunku liczby ludzi starych do liczby ludzi m lodych w kraju takim jak Polska D. Stauffer* and K. Ku lakowski Faculty of Physics and Applied Computer Science, AGH University of Science and

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. 1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Dystrybucje, wiadomości wstępne (I)

Dystrybucje, wiadomości wstępne (I) Temat 8 Dystrybucje, wiadomości wstępne (I) Wielkości fizyczne opisujemy najczęściej przyporządkowując im funkcje (np. zależne od czasu). Inną drogą opisu tych wielkości jest przyporządkowanie im funkcjonałów

Bardziej szczegółowo

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1 3 Szeregi zespolone 3. Szeregi liczbowe Mówimy, że szereg o wyrazach zespolonych jest zbieżny, jeżeli ci ag jego sum czȩściowych {S n }, gdzie S n = z + z +... + jest zbieżny do granicy w laściwej. Granicȩ

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

Literatura: Oznaczenia:

Literatura: Oznaczenia: Literatura: 1. R.R.Andruszkiewicz,,,Wyk lady z algebry ogólnej I, Wydawnictwo UwB, Bia lystok 2005. 2. Cz. Bagiński,,,Wst ep do teorii grup, Wydawnictwo Script, Warszawa 2002. 3. M. Bryński i J. Jurkiewicz,,,Zbiór

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Modelowanie rynków finansowych

Modelowanie rynków finansowych Zaj ecia 2 8 października, 2012 Plan zaj eć 1 Czym nie b edziemy si e zajmować - finanse behawioralne 2 Autokorelacja mi edzy stopami zwrotu Efekt kalendarza Efekt wielkości firmy 3 Pu lapka reprezentatywności

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka Biomatematyka Rozpatrzmy chorobę, która rozprzestrzenia się za pośrednictwem nosicieli, u których nie występują jej symptomy. Niech C(t) oznacza liczbę nosicieli w chwili t. Zakładamy, że nosiciele są

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r. 1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. . W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Współczynnik zmienności Klasycznym współczynnikiem (wskaźnikiem) zmienności zmiennej losowej X nazywamy wyrażenie gdzie E(X) 0. v k z (X) = D(X) E(X), Klasyczny

Bardziej szczegółowo

W poszukiwaniu kszta ltów kulistych

W poszukiwaniu kszta ltów kulistych W poszukiwaniu kszta ltów kulistych Piotr Mankiewicz April 4, 2005 Konwersatorium dla doktorantów Notacje 1 Cia lo wypuk le - wypuk ly, domkniȩty podzbiór ograniczony w R n. Odleg lość geometryczna dwóch

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

166 Wstȩp do statystyki matematycznej

166 Wstȩp do statystyki matematycznej 166 Wstȩp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwi azać nasz zasadniczy problem zwi azany z identyfikacj a cechy populacji generalnej

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Część II Matematyka ubezpieczeń Ŝyciowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x),

Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: F(x) = sin(x), Metody probabilistyczne opracowane notatki 1. Zdefiniuj zmienną losową, rozkład prawdopodobieństwa. Przy jakich założeniach funkcje: Fx sinx, Fx a e x mogą być dystrybuantami?. Podaj twierdzenie Lindeberga

Bardziej szczegółowo