UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki"

Transkrypt

1 UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki Prognozowanie procesów gospodarczych prowadzący: dr inż. Tomasz Bartłomowicz Konspekt do ćwiczeń nr 1

2 START Sformułowanie zadania prognostycznego Określenie przesłanek prognostycznych Zebranie, statystyczna obróbka i analiza danych prognostycznych Wybór metody prognozowania Konstrukcja Aktualizacja danych prognostycznych prognoza trafna Ocena dopuszczalności prognoza dopuszczalna Zastosowanie Ocena trafności prognoza nietrafna prognoza niedopuszczalna Rezygnacja z budowy STOP Rys. Procedura prognozowania Źródło: Opracowanie na podstawie P. Dittmann, Prognozowanie w przedsiębiorstwie. Metody i ich zastosowanie, Oficyna Ekonomiczna, Kraków

3 Etapy prognozowania (budowy prognoz) 1. Sformułowanie zadania prognostycznego 2. Określenie przesłanek prognostycznych 3. Zebranie, statystyczna obróbka i analiza danych prognostycznych 4. Wybór metody prognozowania 5. Konstrukcja 6. Ocena dopuszczalności 7. Zastosowanie 8. Ocena trafności Źródło: P. Dittmann, Prognozowanie w przedsiębiorstwie. Metody i ich zastosowanie, Oficyna Ekonomiczna, Kraków Etap I. Sformułowanie zadania prognostycznego Określenie: 1) obiekt prognozowany (jednostka statystyczna, zbiorowość statystyczna, cecha/zmienna statystyczna), 2) zjawisko prognozowane (liczba zmiennych opisujących/definiujących zjawisko prognozowane): proste; złożone, 3) cel : pragmatyczny najbardziej prawdopodobne, realistyczne; poznawczy badawcze/ostrzegawcze, (funkcje prognoz: preparacyjna, aktywizująca, informacyjna) 4) zmienna/e prognozowane (opisujące zjawisko prognozowane): kryterium możliwości kwantyfikacji zmiennej (metryczne/ilościowe/mierzalne i niemetryczne/jakościowe/opisowe/niemierzalne) - ( ilościowe oraz jakościowe: punktów zwrotnych, monotoniczności ciągów realizacji, przewyższeń); kryterium zbioru wartości, jakie może zmienna przyjmować (skokowe i ciągłe) - ( punktowe i przedziałowe); 3

4 kryterium preferencji wartości zmiennej (stymulanta, destymulanta, nominanta), 5) wymagania co do dopuszczalności, 6) horyzont (daty ) krótkookresowe (krótkoterminowe) średniookresowe (średnioterminowe) długookresowe (długoterminowe) Etap II. Określenie przesłanek prognostycznych - obejmuje hipotezy badawcze określające wstępnie mechanizm rozwojowy prognozowanego zjawiska oraz dostępne o nim informacje jakościowe i ilościowe. Analiza tych hipotez prowadzi do zajęcia przez prognostę określonej postawy wobec przyszłości prognozowanego zjawiska. Wyróżnia się dwie, ekstremalne postawy, postawę pasywna i postawę aktywną, co oznacza, że w praktyce są możliwe również postawy pośrednie. Postawa pasywna oznacza widzenie przyszłości zjawiska jako nieuniknionego, pojedynczego następstwa przeszłości, określonego przez konieczne, niezależne od woli ludzi związki między zjawiskami. Siła tych związków i ich trwałość czynią ich naruszenie zdarzeniami mało prawdopodobnymi, co oznacza, iż zjawisko charakteryzuje duża inercja. W tej sytuacji zadaniem prognosty jest odgadniecie praw ruchu zjawiska, wyrażających jego przyszłe stany przez stany przeszłe. Prognozę uzyskuje się z owych praw ruchu. Postawa aktywna charakteryzuje się uznaniem przyszłości za stosunkowo niezależną od przyszłości. Przyszłość zależy oczywiście od przeszłych zjawisk naturalnych i działań ludzi, ale także w mniejszym lub większym stopniu od pragnień, intencji, celów i dążeń ludzi. Przyszłość jest więc otwarta, pluralistyczna. Przewidywanie przyszłości nie jest w tej sytuacji przenoszeniem praw ruchu z przeszłości w przyszłość, lecz poszukiwaniem w teraźniejszości faktów niosących przyszłość, antycypacją ludzkich potrzeb i działań, próbą odgadnięcia, czego ludzie będą chcieli, a 4

5 co odrzucą. Jest projektowaniem możliwych wariantów przyszłości i wskazaniem wariantów najbardziej przez ludzi pożądanych, a więc na ogół najbardziej realistycznych. Etap III. Zebranie, statystyczna obróbka i analiza danych prognostycznych Do samodzielnego opracowania (zapoznania się): 1. Dittmann P., Prognozowanie w przedsiębiorstwie, s , 2. Prognozowanie w przedsiębiorstwie, red. M. Cieślak, s Kryteria wyboru danych gromadzonych na potrzeby budowy prognoz 1. Rzetelność (dokładność, prawdziwość, wiarygodność) danych 2. Jednoznaczność danych 3. Identyfikowalność zjawiska przez zmienną (zmienne) 4. Kompletność danych 5. Odpowiedniość (istotność) danych 6. Aktualność danych 7. Koszt gromadzenia i przetwarzania danych 8. Porównywalność danych Rys. Dane wykorzystywane w prognozowaniu Dane o obiekcie Dane zewnętrzne Dane wewnętrzne Źródło: M. Cieślak, Prognozowanie gospodarcze metody i zastosowania, Wydawnictwo naukowe PWN, Warszawa

6 Rys. Statystyczna obróbka danych Metody statystycznej obróbki danych Transformacja danych danych Uzupełnianie brakujących danych Rys. danych danych rzeczowa przestrzenna czasowa Rys. Statystyczna analiza danych Metody statystycznej analiza danych Identyfikacja składowych szeregu Identyfikacja zależności zmiennych Eliminacja obserwacji nietypowych 6

UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki

UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki UE, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Prognozowanie procesów gospodarczych wykład ćwiczenia laboratorium prowadzący: dr inż. Tomasz Bartłomowicz konsultacje:

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Podstawowe pojęcia statystyczne

Podstawowe pojęcia statystyczne Podstawowe pojęcia statystyczne Istnieją trzy rodzaje kłamstwa: przepowiadanie pogody, statystyka i komunikat dyplomatyczny Jean Rigaux Co to jest statystyka? Nauka o metodach ilościowych badania zjawisk

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność

Bardziej szczegółowo

METODY ILOŚCIOWE W ZARZĄDZANIU

METODY ILOŚCIOWE W ZARZĄDZANIU 1.1.1 Metody ilościowe w zarządzaniu I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE METODY ILOŚCIOWE W ZARZĄDZANIU Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: RiAF_PS5 Wydział Zamiejscowy

Bardziej szczegółowo

STATYSTYKA EKONOMICZNA

STATYSTYKA EKONOMICZNA STATYSTYKA EKONOMICZNA Analiza statystyczna w ocenie działalności przedsiębiorstwa Opracowano na podstawie : E. Nowak, Metody statystyczne w analizie działalności przedsiębiorstwa, PWN, Warszawa 2001 Dr

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

Prognozowanie gospodarcze - opis przedmiotu

Prognozowanie gospodarcze - opis przedmiotu Prognozowanie gospodarcze - opis przedmiotu Informacje ogólne Nazwa przedmiotu Prognozowanie gospodarcze Kod przedmiotu 11.9-WZ-EkoP-PrG-S16 Wydział Kierunek Wydział Ekonomii i Zarządzania Ekonomia Profil

Bardziej szczegółowo

23 Zagadnienia - Prognozowanie i symulacje

23 Zagadnienia - Prognozowanie i symulacje 1. WYJAŚNIJ POJĘCIE PROGNOZY I OMÓW PODSTAWOWE PEŁNIONE PRZEZ PROGNOZĘ FUNKCJE. Prognoza - jest to sąd dotyczący przyszłej wartości pewnego zjawiska o następujących właściwościach: jest sformułowany w

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Wykład ze statystyki. Maciej Wolny

Wykład ze statystyki. Maciej Wolny Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/12 KARTA PRZEDMIOTU. 2. Kod przedmiotu ZP-Z1-19

Załącznik Nr 5 do Zarz. Nr 33/11/12 KARTA PRZEDMIOTU. 2. Kod przedmiotu ZP-Z1-19 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: BADANIA MARKETINGOWE 3. Karta przedmiotu ważna od roku akademickiego: 2014/2015

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. [1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej

Bardziej szczegółowo

CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH. 1.2.1. Faza identyfikacji problemów decyzyjnych lub okoliczności sprzyjających

CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH. 1.2.1. Faza identyfikacji problemów decyzyjnych lub okoliczności sprzyjających Badania marketingowe. Podstawy metodyczne Autor: Stanisław Kaczmarczyk Wstęp CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH Rozdział 1. Badania marketingowe a zarządzanie 1.1. Rozwój praktyki i teorii

Bardziej szczegółowo

Wytyczne do projektów

Wytyczne do projektów Wytyczne do projektów Prognozowanie i symulacje wszystkie rodzaje studiów Politechnika Śląska Wydział Organizacji i Zarządzania w Zabrzu rok akademicki 2012/13 Wytyczne do projektów Prognozowanie i symulacje

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

egzamin oraz kolokwium

egzamin oraz kolokwium KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/PSY w języku polskim Prognozowanie i symulacje Nazwa przedmiotu w języku angielskim Forecasting and simulation USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO

ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Wydział Nauk Ekonomicznych i Zarządzania Kierunek Analityka Gospodarcza Studia stacjonarne I stopnia ZAKRES TEMATYCZNY EGZAMINU LICENCJACKIEGO Zagadnienia ogólnoekonomiczne 1. Aktualna sytuacja na europejskim

Bardziej szczegółowo

Ekonometria dynamiczna i finansowa Kod przedmiotu

Ekonometria dynamiczna i finansowa Kod przedmiotu Ekonometria dynamiczna i finansowa - opis przedmiotu Informacje ogólne Nazwa przedmiotu Ekonometria dynamiczna i finansowa Kod przedmiotu 11.5-WK-IiED-EDF-W-S14_pNadGenMOT56 Wydział Kierunek Wydział Matematyki,

Bardziej szczegółowo

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej

Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Wykład 1 Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Informacje o przedmiocie prowadzący: strona internetowa: wykład ćwiczenia forma zaliczenia: dr Marek Sobolewski www.msobolew.sd.prz.edu.pl

Bardziej szczegółowo

Ekonometria_FIRJK Arkusz1

Ekonometria_FIRJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Metodologia badań psychologicznych

Metodologia badań psychologicznych Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania

Bardziej szczegółowo

Management Systems in Production Engineering No 1(5), 2012

Management Systems in Production Engineering No 1(5), 2012 METODY I TECHNIKI PROGNOZOWANIA WARTOŚCI KLUCZOWYCH WSKAŹNIKÓW EFEKTYWNOŚCI DLA POTRZEB WPROWADZANIA ZMIAN W ORGANIZACJI UTRZYMANIA RUCHU METHODS AND TECHNIQUES OF PREDICTION OF KEY PERFORMANCE INDICATORS

Bardziej szczegółowo

Projektowanie (design) Eurostat

Projektowanie (design) Eurostat Projektowanie (design) Eurostat Podstawa prezentacji moduł Overall design autor Eva Elvers ze Statistics Sweden Prezentacja autora na szkoleniu w Hadze 28-29 listopada 2013 r. Zarys Badanie statystyczne

Bardziej szczegółowo

Czynniki determinujące opłacalność produkcji wybranych produktów rolniczych w perspektywie średnioterminowej

Czynniki determinujące opłacalność produkcji wybranych produktów rolniczych w perspektywie średnioterminowej Czynniki determinujące opłacalność produkcji wybranych produktów rolniczych w perspektywie średnioterminowej Konferencja nt. WPR a konkurencyjność polskiego i europejskiego sektora żywnościowego 26-28

Bardziej szczegółowo

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Statystyka Wszystkie specjalności Data wydruku: 31.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane podstawowe

Bardziej szczegółowo

Prognozy analogowe.metody heurystyczne.

Prognozy analogowe.metody heurystyczne. Notatki do wykładu 1009 Prognozy analogowe.metody heurystyczne. - metody analogowe - metody heurystyczne -- burza mózgów -- metoda delficka M. Cieślak (red. Nauk) Prognozowanie Gospodarcze. Metody i zastosowania.

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

BADANIA RYNKOWE I MARKETINGOWE

BADANIA RYNKOWE I MARKETINGOWE 1.1.1 Badania rynkowe i marketingowe I. OGÓLNE INFORMACJE PODSTAWOWE O PRZEDMIOCIE BADANIA RYNKOWE I MARKETINGOWE Nazwa jednostki organizacyjnej prowadzącej kierunek: Kod przedmiotu: P15 Wydział Zamiejscowy

Bardziej szczegółowo

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana

Bardziej szczegółowo

MARKETINGOWY SYSTEM INFORMACJI

MARKETINGOWY SYSTEM INFORMACJI MARKETINGOWY SYSTEM INFORMACJI INFORMACJA MARKETINGOWA...... (jako specyficzny rodzaj informacji zarządczej) to wszelka informacja wykorzystywana w procesie marketingowego zarządzania przedsiębiorstwem,

Bardziej szczegółowo

Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk

Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk Badania marketingowe stanowią jeden z najważniejszych elementów działań marketingowych w każdym przedsiębiorstwie. Dostarczają decydentom

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

2011-11-25. Jego rezultatem są wybory strategiczne i programy działań zmierzających do zapewnienia realizacji tych wyborów.

2011-11-25. Jego rezultatem są wybory strategiczne i programy działań zmierzających do zapewnienia realizacji tych wyborów. 2011-11-25 Planowanie działalności - istota Planowanie działalności stowarzyszenia jest sformalizowanym procesem podejmowania decyzji, w którym wypracowuje się pożądany obraz przyszłego stanu organizacji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Wykaz publikacji. Pozycje zwarte:

Wykaz publikacji. Pozycje zwarte: Wykaz publikacji Pozycje zwarte: 1. Zadania z metod ilościowych w ekonomii. Skrypt. Praca zbiorowa pod red. M. Montygierda-Łoyby. Wrocław AE 1988, 209 s. (Współautorzy: Z. Bobowski, T. Borys, M. Budrewicz,

Bardziej szczegółowo

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH

PAWEŁ SZOŁTYSEK WYDZIAŁ NAUK EKONOMICZNYCH PROGNOZA WIELKOŚCI ZUŻYCIA CIEPŁA DOSTARCZANEGO PRZEZ FIRMĘ FORTUM DLA CELÓW CENTRALNEGO OGRZEWANIA W ROKU 2013 DLA BUDYNKÓW WSPÓLNOTY MIESZKANIOWEJ PRZY UL. GAJOWEJ 14-16, 20-24 WE WROCŁAWIU PAWEŁ SZOŁTYSEK

Bardziej szczegółowo

Metody badań marketingowych

Metody badań marketingowych Metody badań marketingowych Prof. dr hab. Krzysztof Opolski Dr Jarosław Górski Program zajęć 1. Marketing w praktyce od marketingu neandertalskiego do marketingu strategicznego 2. Obszary badań marketingowych

Bardziej szczegółowo

Wykaz publikacji. Pozycje zwarte:

Wykaz publikacji. Pozycje zwarte: Wykaz publikacji Pozycje zwarte: 1. Zadania z metod ilościowych w ekonomii. Skrypt. Praca zbiorowa pod red. M. Montygierda-Łoyby. Wrocław AE 1988, 209 s. (Współautorzy: Z. Bobowski, T. Borys, M. Budrewicz,

Bardziej szczegółowo

Dr hab. prof. AWF Jolanta Żyśko Akademia Wychowania Fizycznego w Warszawie

Dr hab. prof. AWF Jolanta Żyśko Akademia Wychowania Fizycznego w Warszawie Planowanie jako funkcja kierowania Dr hab. prof. AWF Jolanta Żyśko Akademia Wychowania Fizycznego w Warszawie Planowanie Kontrola Organizo wanie Motywowanie Planowanie Hierarchia planów Planowanie - definicja

Bardziej szczegółowo

Badania marketingowe 2013_2. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2013_2. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2013_2 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. System informacji rynkowej i jego składowe 2. Istota oraz klasyfikacja

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI Łukasz MACH Streszczenie: W artykule przedstawiono wybrane aspekty prognozowania czynników istotnie określających sytuację na

Bardziej szczegółowo

Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie

Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie Projekt prognostyczny ElŜbieta Bulak Piotr Olszewski Michał Tomanek Tomasz Witka IV ZI gr. 13. Wrocław 2007 I. Sformułowanie zadania

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. dr Tomasz Głuszkowski (wykłady)

PROGNOZOWANIE I SYMULACJE. dr Tomasz Głuszkowski (wykłady) PROGNOZOWANIE I SYMULACJE dr Tomasz Głuszkowski (wykłady) LITERATURA PRZEDMIOTU: 1. P. Dittmann Metody prognozowania sprzedaży w przedsiębiorstwie (AE, Wrocław 1999 - wyd. 4) 2. Red. M.Cieślak Prognozowanie

Bardziej szczegółowo

Ekonometria_EkonJK Arkusz1

Ekonometria_EkonJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Badania Statystyczne

Badania Statystyczne Statystyka Opisowa z Demografią oraz Biostatystyka Badania Statystyczne Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Graficzna prezentacja danych statystycznych

Graficzna prezentacja danych statystycznych Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych Katowice, 12 i 26 czerwca 2014 r. Dopasowanie narzędzia do typu zmiennej Dobór narzędzia do

Bardziej szczegółowo

Księgarnia PWN: Magdalena Śmieja, Jarosław Orzechowski (red.) - Inteligencja emocjonalna. Spis treści

Księgarnia PWN: Magdalena Śmieja, Jarosław Orzechowski (red.) - Inteligencja emocjonalna. Spis treści Księgarnia PWN: Magdalena Śmieja, Jarosław Orzechowski (red.) - Inteligencja emocjonalna Spis treści Wprowadzenie (Magdalena Śmieja, Jarosław Orzechowski)....... 11 Część I. Teoria 1. Inteligencja emocjonalna:

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Płocku Instytut Nauk Ekonomicznych i Informatyki KARTA PRZEDMIOTU Część A

Państwowa Wyższa Szkoła Zawodowa w Płocku Instytut Nauk Ekonomicznych i Informatyki KARTA PRZEDMIOTU Część A Przedmiot: Mikroekonomia Wykładowca odpowiedzialny za przedmiot: dr Barbara Felic Cele zajęć z przedmiotu: Państwowa Wyższa Szkoła Zawodowa w Płocku Instytut Nauk Ekonomicznych i Informatyki KARTA PRZEDMIOTU

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Jakość życia w koncepcji rozwoju regionalnego. prof. WSB, dr hab. Krzysztof Safin

Jakość życia w koncepcji rozwoju regionalnego. prof. WSB, dr hab. Krzysztof Safin Jakość życia w koncepcji rozwoju regionalnego prof. WSB, dr hab. Krzysztof Safin Jakość życia w koncepcji rozwoju Wytyczne polityki gospodarczej wymagają definiowania jej głównych celów (i środków realizacji).

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Rola Mazowieckiego Systemu Informacji Przestrzennej w programowaniu i monitorowaniu rozwoju województwa

Rola Mazowieckiego Systemu Informacji Przestrzennej w programowaniu i monitorowaniu rozwoju województwa Rola Mazowieckiego Systemu Informacji Przestrzennej w programowaniu i monitorowaniu rozwoju województwa KRZYSZTOF MĄCZEWSKI ANETA STANIEWSKA BIURO GEODETY WOJEWÓDZTWA MAZOWIECKIEGO STRATEGIA ROZWOJU WOJEWÓDZTWA

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMOWIENIA Szkolenie pt. Zastosowanie metod statystycznych w badaniach środowiskowych

OPIS PRZEDMIOTU ZAMOWIENIA Szkolenie pt. Zastosowanie metod statystycznych w badaniach środowiskowych Załącznik nr 1 OPIS PRZEDMIOTU ZAMOWIENIA Szkolenie pt. Zastosowanie metod statystycznych w badaniach środowiskowych 1. Przedmiotem zamówienia jest usługa szkolenia z zastosowania metod statystycznych

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Zarządzanie bezpieczeństwem Laboratorium 3. Analiza ryzyka zawodowego z wykorzystaniem metody pięciu kroków, grafu ryzyka, PHA

Zarządzanie bezpieczeństwem Laboratorium 3. Analiza ryzyka zawodowego z wykorzystaniem metody pięciu kroków, grafu ryzyka, PHA Zarządzanie bezpieczeństwem Laboratorium 3. Analiza ryzyka zawodowego z wykorzystaniem metody pięciu kroków, grafu ryzyka, PHA Szczecin 2013 1 Wprowadzenie W celu przeprowadzenia oceny ryzyka zawodowego

Bardziej szczegółowo

Badania marketingowe 2016_1. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski

Badania marketingowe 2016_1. Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Badania marketingowe 2016_1 Krzysztof Cybulski Katedra Marketingu Wydział Zarządzania Uniwersytet Warszawski Ramowy program konwersatorium 1. Formułowanie oraz wyjaśnianie tematyki badań 2. Identyfikacja

Bardziej szczegółowo

Rodzaje badań statystycznych

Rodzaje badań statystycznych Rodzaje badań statystycznych Zbieranie danych, które zostaną poddane analizie statystycznej nazywamy obserwacją statystyczną. Dane uzyskuje się na podstawie badania jednostek statystycznych. Badania statystyczne

Bardziej szczegółowo

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO)

OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) Łódź, dn. 23.12.2013r. OGŁOSZENIE O ZAMÓWIENIU nr 1/2013 (POWYŻEJ 14 tys. EURO) 1. Zamawiający Firma i adres: PL Europa S.A. NIP: 725-195-02-28 Regon: 100381252 2. Tryb udzielenia zamówienia Zgodnie z

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2020 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Metodologia badań socjologicznych w zastosowaniach

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU

PROGNOZOWANIE W ZARZĄDZANIU Politechnika Białostocka Wydział Zarządzania Katedra Informatyki Gospodarczej i Logistyki Redaktor naukowy joanicjusz Nazarko PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM Cz. III Prognozowanie na podstawie

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

PROJEKT EWALUACJI PROGRAMU NAUCZANIA. Bożena Belcar

PROJEKT EWALUACJI PROGRAMU NAUCZANIA. Bożena Belcar PROJEKT EWALUACJI PROGRAMU NAUCZANIA ETAPY PROCESU EWALUACJI I. Projektowanie II. Prowadzenie badań i gromadzenie danych III. Analiza danych oraz interpretacja wyników badań; wnioski IV. Raport ewaluacyjny

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE Forecasting is the art of saying what will happen, and then explaining why it didn t. Ch. Chatfield (1986) PROGNOZY I SYMULACJE Katarzyna Chudy Laskowska konsultacje: p. 400A środa 10-12 czwartek 830-10

Bardziej szczegółowo

WIEDZA NAUKOWA WIEDZA POTOCZNA

WIEDZA NAUKOWA WIEDZA POTOCZNA WIEDZA POTOCZNA WIEDZA NAUKOWA (socjalizacja itd.) wiedza zindywidualizowana, subiektywna, różna, zależna od doświadczeń życiowych. Jednolita, systematyczna. Sądy należące do tzw. korpusu wiedzy w danym

Bardziej szczegółowo

Metody badawcze. Metodologia Podstawowe rodzaje metod badawczych

Metody badawcze. Metodologia Podstawowe rodzaje metod badawczych Metody badawcze Metodologia Podstawowe rodzaje metod badawczych Metoda badawcza Metoda badawcza to sposób postępowania (poznania naukowego). planowych i celowych sposobach postępowania badawczego. Muszą

Bardziej szczegółowo

Nazwa modułu w języku angielskim Macroeconomics Obowiązuje od roku akademickiego 2013/2014

Nazwa modułu w języku angielskim Macroeconomics Obowiązuje od roku akademickiego 2013/2014 KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Z-ZIPN1-015 Nazwa modułu Makroekonomia Nazwa modułu w języku angielskim Macroeconomics Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

Metody badań marketingowych

Metody badań marketingowych Metody badań marketingowych Prof. dr hab. Krzysztof Opolski Dr Jarosław Górski Program zajęć 1. Marketing w praktyce od marketingu neandertalskiego do marketingu strategicznego 2. Obszary badań marketingowych

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (2016/ /2018) (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (2016/ /2018) (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 (2016/2017-2017/2018) (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: Turystyka 1. PRZEDMIOT

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

STATYSTYKA. dr Agnieszka Figaj

STATYSTYKA. dr Agnieszka Figaj STATYSTYKA OPISOWA dr Agnieszka Figaj Literatura B. Pułaska Turyna: Statystyka dla ekonomistów. Difin, Warszawa 2011 M. Sobczyk: Statystyka aspekty praktyczne i teoretyczne, Wyd. UMCS, Lublin 2006 J. Jóźwiak,

Bardziej szczegółowo

Aktywa w bilansie sporządzanym przez jednostkę gospodarczą

Aktywa w bilansie sporządzanym przez jednostkę gospodarczą Aktywa w bilansie sporządzanym przez jednostkę gospodarczą Każda spółka na koniec roku obrotowego po zamknięciu ksiąg rachunkowy zobowiązana jest do zrobienia bilansu sprawozdawczego i na jego bazie sprawozdania

Bardziej szczegółowo

PLANOWANIE FINANSOWE D R K A R O L I N A D A S Z Y Ń S K A - Ż Y G A D Ł O I N S T Y T U T Z A R Z Ą D Z A N I A F I N A N S A M I

PLANOWANIE FINANSOWE D R K A R O L I N A D A S Z Y Ń S K A - Ż Y G A D Ł O I N S T Y T U T Z A R Z Ą D Z A N I A F I N A N S A M I PLANOWANIE FINANSOWE D R K A R O L I N A D A S Z Y Ń S K A - Ż Y G A D Ł O I N S T Y T U T Z A R Z Ą D Z A N I A F I N A N S A M I INFORMACJE ORGANIZACYJNE 15 h wykładów 5 spotkań po 3h Konsultacje: pok.313a

Bardziej szczegółowo

METODY I TECHNIKI BADAŃ SPOŁECZNYCH

METODY I TECHNIKI BADAŃ SPOŁECZNYCH METODY I TECHNIKI BADAŃ SPOŁECZNYCH Schemat poznania naukowego TEORIE dedukcja PRZEWIDYWANIA Świat konstrukcji teoret Świat faktów empirycznych Budowanie teorii Sprawdzanie FAKTY FAKTY ETAPY PROCESU BADAWCZEGO

Bardziej szczegółowo

EKONOMIA STUDIA DRUGIEGO STOPNIA. Przedmiot: Analiza finansowa/analiza finansowa przedsiębiorstwa

EKONOMIA STUDIA DRUGIEGO STOPNIA. Przedmiot: Analiza finansowa/analiza finansowa przedsiębiorstwa Przedmiot: Analiza finansowa/analiza finansowa przedsiębiorstwa Dr Edyta Sidorczuk-Pietraszko (semestr I/II) 1. Jakie informacje pochodzące ze sprawozdao finansowych są wykorzystywane przez poszczególne

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

Ewelinko! Przyszłość można jednak chociażby w niewielkim zakresie

Ewelinko! Przyszłość można jednak chociażby w niewielkim zakresie Ewelinko! Przyszłość można jednak chociażby w niewielkim zakresie Projekt okładki: Aleksandra Olszewska Redakcja: Leszek Plak Copyright by: Wydawnictwo Placet 2008 Wszelkie prawa zastrzeżone. Publikacja

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

PODSTAWY PRZEDSIĘBIORCZOŚCI

PODSTAWY PRZEDSIĘBIORCZOŚCI PODSTAWY PRZEDSIĘBIORCZOŚCI Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów /semestr

Bardziej szczegółowo

Finanse behawioralne; badanie skłonności poznawczych inwestorów

Finanse behawioralne; badanie skłonności poznawczych inwestorów Finanse behawioralne; badanie skłonności poznawczych inwestorów Łukasz Małek promotor dr inż. R. Weron Instytut Matematyki i Informatyki Politechnika Wrocławska Wrocław, 13.07.2007 Spis treści 1 Cel pracy

Bardziej szczegółowo