Matematyka finansowa w pakiecie Matlab

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka finansowa w pakiecie Matlab"

Transkrypt

1 Matematyka finansowa w pakiecie Matlab Wykład 4. Instrumenty pochodne podstawy Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka w ekonomii i finansach Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 1/33

2 Instrumenty pochodne Instrumenty pochodne, derywaty, derywatywy (ang. derivatives) są instrumentami finansowymi, których wartość uzależniona jest od ceny innego instrumentu, który nazywamy instrumentem pierwotnym bądź bazowym. Instrumentami bazowymi mogą być akcje, obligacje, zboża, ropa, metale szlachetne lub inne surowce naturalne. Cena instrumentu pochodnego może również zależeć od wartości pewnych wskaźników finansowych: kursów walut, poziomów stóp procentowych, bądź wartości indeksów giełdowych. Instrument pochodny jest umową o przeprowadzeniu w przyszłości transakcji typu kupno-sprzedaż. W momencie zawierania umowy określa się termin wykonania takiej transakcji oraz cenę kupna (sprzedaży). Wynik finansowy takiej transakcji (tzn. która ze stron na niej zarobi, a która straci) jest w momencie zawierania umowy nieznany, zależy bowiem od przyszłej ceny instrumentu bazowego. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 2/33

3 Kontrakty i opcje Instrumenty pochodne możemy podzielić na dwa podstawowe typy: kontrakty charakteryzują się tym, że obie strony transakcji muszą wypełnić swoje zobowiązania, opcje są to transakcje niesymetryczne, jedna ze stron (posiadacz opcji) może (ale nie musi) skorzystać ze swojego prawa do realizacji umowy, druga strona (wystawca opcji) musi wypełnić swoje zobowiązanie, jeżeli posiadacz opcji tego zażąda. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 3/33

4 Rynek idealny Zakładamy, że rynek, na którym działamy jest rynkiem idealnym, tzn.: wolna od ryzyka stopa procentowa r jest stała, oprocentowanie kredytów i depozytów jest jednakowe, nie ma ograniczeń w dostępie do kredytów, ich wysokość jest nieograniczona, inwestorzy nie ponoszą żadnych dodatkowych kosztów, rynek jest płynny, tzn. zawsze możemy kupić lub sprzedać dowolną liczbę aktywów, dopuszczalna jest krótka sprzedaż instrumentów finansowych, instrumenty bazowe są podzielne, wszyscy inwestorzy mają taki sam dostęp do informacji, uczestnicy rynku są małymi inwestorami, ich samodzielne działanie nie zmienia cen, uczestnicy rynku zachowują się racjonalnie, tzn. preferują większe bogactwo, na rynku brak jest możliwości arbitrażu, tzn. osiągania zysku bez ponoszenia ryzyka. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 4/33

5 Kontrakty forward Kontrakt terminowy typu forward jest umową zawartą w chwili początkowej, w której jedna ze stron zobowiązuje się kupić, druga zaś sprzedać, pewne dobro w ustalonej chwili T w przyszłości za z góry określona cenę K. Stronę, która zobowiązuje się do dostarczenia przedmiotu kontraktu, nazywamy wystawcą kontraktu lub mówimy, że zajmuje tzw. krótką pozycję (ang. short position). Drugą stronę, która zobowiązuje się do zapłaty za dostarczony towar, nazywamy nabywcą kontraktu, bądź mówimy, że zajmuje długą pozycję (ang. long position). Termin T rozliczenia kontraktu nazywamy zwykle terminem wygaśnięcia (rozliczenia, wykonania ang. maturity), a cenę K ceną rozliczenia (dostarczenia, wykonania, forward ang. exercise price). Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 5/33

6 Kontrakty forward Strony kontraktu ustalają, czy w terminie wygaśnięcia wymagana jest fizyczna dostawa towaru, czy rozliczenie gotówkowe (ang. cash settlement), czyli wypłata różnicy między ceną umówioną a ceną bieżącą przedmiotu transakcji. Kontrakty forward nie są standaryzowane. Mogą być zawierane na dowolną ilość towaru i na dowolny termin. Z tego powodu handluje się nimi tylko na rynku pozagiełdowym. Przy zawieraniu takich kontraktów zazwyczaj nie jest wymagane wnoszenie depozytu, a płatność następuje dopiero po dostawie. Kontrakty forward mogą być obarczone dużym ryzykiem niedotrzymania umowy przez jedną ze stron. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 6/33

7 Kontrakty forward przykład Firma A wie, że za pół roku będzie musiała zapłacić swoim podwykonawcom 1 milion dolarów za wykonane usługi. Obecny kurs wynosi 3,25 zł za dolara. Firma zawiera z bankiem kontrakt forward, zobowiązując się, że za 6 miesięcy kupi potrzebne dolary za zł (tzn. po kursie 3,2 zł za 1 dolara). Jeżeli po pól roku cena dolara wzrośnie do 3,50 zł, to firma będzie mogła kupić dolary taniej i zarobi (zaoszczędzi) zł. Jeżeli cena dolara spadnie do 3,10 zł, to firma poniesie stratę w wysokości zł. Oczywiście w przypadku banku sytuacja wygląda odwrotnie zarabia on kiedy firma traci i traci kiedy firma zarabia. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 7/33

8 Wycena kontraktów forward Wycena kontraktów forward sprowadza się do znalezienia właściwej ceny rozliczenia K. Będziemy szukać ceny sprawiedliwej, tzn. takiej, która nie dopuszcza arbitrażu. Niech S 0 będzie ceną instrumentu bazowego w momencie zawierania kontraktu, a S T ceną w chwili rozliczenia kontraktu. Jeżeli S T jest większa od ceny wykonania K, to nabywca kontraktu osiągnie zysk w wysokości S T K (kupuje on towar po cenie K i może go natychmiast sprzedać po wyższej cenie S T ). Jeżeli S T będzie niższa niż K, to nabywca kontraktu poniesie stratę w wysokości K S T. Sytuacja wystawiającego kontrakt jest odwrotna. Nietrudno zauważyć, że jedyną ceną kontraktu forward, która nie dopuszcza arbitrażu, jest K = S 0 e rt, (1) gdzie r jest wysokością rocznej stopy procentowej. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 8/33

9 Wycena kontraktów forward Istotnie, gdyby cena kontraktu była wyższa i wynosiła K 1 > K, to zysk mógłby osiągnąć wystawca kontraktu. W momencie jego zwarcia: pożyczyłby z banku kwotę S 0, kupiłby za to jedną jednostkę instrumentu bazowego. W chwili T na mocy zawartego kontraktu otrzymałby kwotę K 1, zwróciłby do banku pożyczkę wraz z odsetkami S 0 e rt. Jego zysk osiagnięty bez żadnego wkładu własnego wyniósłby K 1 S 0 e rt > K 1 S 0 e rt = 0. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 9/33

10 Wycena kontraktów forward Gdyby cena kontraktu była niższa i wynosiła K 1 < K, to nabywca kontraktu mógłby w momencie jego zawarcia: dokonać krótkiej sprzedaży instrumentu bazowego (po cenie S 0 ), pieniądze ze sprzedaży wpłacić na rachunek bankowy, W chwili T nabywca kontraktu wypłaciłby z rachunku bazowego S 0 e rt, na mocy zawartego kontraktu odkupiłby pożyczony instrument bazowy za cenę K 1. Bez żadnego własnego wkładu osiągnąłby zysk w wysokości S 0 e rt K 1 > S 0 e rt K = 0. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 10/33

11 Wycena kontraktów forward Wzór K = S 0 e rt, możemy łatwo uogólnić na przypadek instrumentu bazowego, który wypłaca dywidendę (np. akcji). Jeżeli wypłacana jest ona w sposób ciągły według stopy d w skali rocznej, to cena sprawiedliwa kontraktu forward jest równa K = S 0 e (r d)t. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 11/33

12 Wycena walutowych kontraktów forward Kontrakt walutowy polega na tym, że wystawca kontraktu zobowiązuje się sprzedać, a nabywca kupić ustaloną ilość waluty po określonym kursie. W tym przypadku ceną instrumentu podstawowego S t jest kurs walutowy w momencie t. Ceną wykonania będzie kurs, po jakim ma być dostarczona waluta. Przy wycenie takich kontraktów musimy uwzględnić dwie stopy procentowe: stopę r dla rynku krajowego i stopę r f dla rynku związanego z walutą, na którą zawierany jest kontrakt. Można pokazać, że cena sprawiedliwa (czy może raczej sprawiedliwy kurs) takiego kontraktu wynosi: K = S 0 e (r r f )T. (2) Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 12/33

13 Wycena walutowych kontraktów forward Istotnie, załóżmy, że cena ta jest wyższa i wynosi K 1 > K. Wówczas w chwili t = 0: pożyczamy (w walucie krajowej) kwotę S 0 e r f T, kupujemy za tę sumę dokładnie e r F T jednostek waluty obcej i wpłacamy je na lokatę walutową. wystawiamy kontrakt walutowy na 1 jednostkę obcej waluty. W chwili T wypłacamy z lokaty dokładnie 1 jednostkę obcej waluty (e r f T e r f T = 1) dostarczamy tę jednostkę nabywcy kontraktu i otrzymujemy z tego tytułu kwotę K 1. Na spłatę kredytu musimy przeznaczyć Nasz bilans końcowy w chwili T to S r f T 0 e rt = S 0 e (r r f )T K 1 S 0 e (r r f )T > K S 0 e (r r f )T = 0. Osiągnęliśmy zysk bez angażowania żadnych środków własnych. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 13/33

14 Kontrakty futures Wadą kontraktów forward jest duże ryzyko niedotrzymania warunków umowy przez jedną ze stron. Zasada działania kontraktu futures jest taka sama jak w przypadku kontraktu forward. Dwie strony umawiają się na kupno-sprzedaż określonego instrumentu bazowego w określonym terminie po z góry określonej cenie. Kontrakty futures są przedmiotem obrotu giełdowego, dlatego wszystkie ich parametry: ilość i jakość towaru, termin i miejsce dostarczenia, są ściśle zestandaryzowane. Główna różnica między kontraktami forward a futures polega na tym, że kontrakty futures zawierane są za pośrednictwem wyspecjalizowanej instytucji izby rozliczeniowej (ang. clearing house). Każda ze stron zawierających kontrakt musi wpłacić na konto izby pewną kwotę tzw. wstępny depozyt zabezpieczający (ang. initial margin). Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 14/33

15 Kontrakty futures Przy rozliczaniu kontraktów futures stosuje się rozliczenie dzienne. Na koniec każdego dnia porównujemy cenę kontraktu z ceną rynkową. Jeżeli zmiana ceny rynkowej spowodowała zysk inwestora, to jest on dopłacany do jego depozytu, jeżeli stratę, to jest ona od depozytu odejmowana. Jeżeli sytuacja na rynku ułoży się niekorzystnie i stan depozytu zabezpieczającego spadnie poniżej pewnej ustalonej kwoty minimum podtrzymującego izba rozliczeniowa wezwie inwestora do uzupełnienia stanu tego depozytu. Jeżeli nie spełni on tego wymagania, to kontrakt zostanie zamknięty i inwestor będzie musiał pogodzić się ze stratą. Kontrakt futures jest równoważny serii jednodniowych kontraktów forward. Pod koniec każdego dnia rozliczany jest kontrakt poprzedni i zawierany następny. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 15/33

16 Kontrakty futures Strony kontraktu mogą się zmieniać w trakcie jego trwania. Nie jest to istotne, gdyż kontrakt zawierany jest za pośrednictwem izby i obie strony nie mają ze sobą bezpośredniego kontaktu. Kontakty futures na ogół nie kończą się dostawą towaru, ale są zamykane przed terminem wygaśnięcia. Kontrakty te są przedmiotem obrotu giełdowego, zatem ich ceny kształtuje popyt i podaż na nie. Można jednak pokazać, że w warunkach rynku idealnego ceny kontraktów forward i futures (o takich samych parametrach) są zbliżone do siebie. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 16/33

17 Opcje Opcja (ang option) to kontrakt dający jednej z umawiających się stron (nabywcy kontraktu) możliwość wycofania się z umowy. Opcją kupna (ang. call option lub call) nazywamy kontrakt, który daje nabywcy (posiadaczowi) prawo do kupienia określonego w umowie instrumentu bazowego w ustalonej chwili (lub przez ustalony okres czasu) po z góry ustalonej cenie. Opcja sprzedaży (ang. put option lub put) daje nabywcy prawo do sprzedaży określonego instrumentu bazowego w ustalonej chwili (lub przez ustalony okres czasu) po z góry ustalonej cenie. Instrumentem bazowym mogą być akcje, towary, waluty obce, indeksy giełdowe itp. Opcje rozliczane są pieniężnie, w przypadku niektórych instrumentów jest to wygodniejsze, w przypadku innych, np. indeksów giełdowych, fizyczna dostawa jest po prostu niemożliwa. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 17/33

18 Opcje Opcja jest instrumentem niesymetrycznym. Posiadacz opcji (ang. holder) ma prawo, a nie obowiązek kupna lub sprzedaży instrumentu bazowego. Oczywiście skorzysta on z tego prawa tylko wtedy, gdy będzie mu się to opłacało. Wystawiający opcję (ang. writer) ma obowiązek odsprzedać (opcja kupna) lub odkupić (opcja sprzedaży) instrument bazowy, jeżeli posiadacz opcji tego zażąda. Najważniejsze parametry charakteryzujące opcję to cena wykonania (ang. strike price, exercise price) i termin wygaśnięcia (ang. expiration date, maturity). Cena wykonania to cena, za jaką właściciel opcji może kupić(sprzedać) instrument bazowy, jeżeli skorzysta ze swojego prawa. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 18/33

19 Klasyfikacja opcji Termin wygaśnięcia określa moment, po którym opcja nie może już być wykonana i traci swoją ważność. Termin ten nie zawsze jest taki sam jak termin wykonania opcji (ang. exercise date), czyli moment, w którym nabywca korzysta ze swego prawa. Opcje możemy podzielić na: europejskie (ang. European) mogą być wykonane jedynie w dniu wygaśnięcia (w tym przypadku termin wykonania jest taki sam jak termin wygaśnięcia), amerykańskie (ang. American) mogą być wykonane dowolnym dniu od momentu nabycia do momentu wygaśnięcia, bermudzkie (ang. Bermudan) mogą być wykonane w pewnych ściśle określonych datach pomiędzy momentem nabycia a terminem wygaśnięcia. Nazwy te mają jedynie znaczenie historyczne, opcjami amerykańskimi handluje się również w Europie, a europejskimi w Ameryce. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 19/33

20 Przykład Załóżmy, że posiadamy europejską opcję kupna na akcję PZU z ceną wykonania K = 100 zł i terminem wykonania T = 1 lipca 2010 roku. Jeżeli 1 lipca rynkowa cena akcji S T będzie mniejsza niż 100 zł, to opcja będzie bezwartościowa, nie opłaca się kupować akcji po 100 zł, skoro na rynku można kupić je taniej. Jeżeli 1 lipca rynkowa cena akcji S T będzie wyższa niż 100 zł, to opcję opłaca się wykonać, a nasz zysk wyniesie S T 100. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 20/33

21 Przykład Zysk posiadacza europejskiej opcji kupna o cenie wykonania K i terminie wykonania T jest równy { f (S T ) = (S T K) + S T K, gdy S T > K = max{s T K, 0} = 0, gdy S T K. Funkcje f nazywamy funkcją wypłaty, bądź wypłatą opcji (ang. payoff). Dla europejskiej opcji sprzedaży funkcja wypłaty jest określona wzorem { f (S T ) = (K S T ) + K S T, gdy S T < K = max{k S T, 0} = 0, gdy S T K. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 21/33

22 Cena opcji Opcja daje swojemu posiadaczowi pewne prawo. Za to prawo musi on zapłacić wystawcy opcji pewną opłatę wstępną, którą nazywamy ceną opcji lub premią (ang. option price, option premium). Cena ta jest kształtowana przez rynek i zmienia się w czasie. Problem wyceny opcji jest jednym z głównych zagadnień, jakimi zajmuje się matematyka finansowa. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 22/33

23 Opcje jako zabezpieczenie Opcje służą do zabezpieczania się przed niekorzystnymi zmianami cen. Opcje kupna zabezpieczają nas przed wzrostem cen, dają gwarancję, że w najgorszym wypadku będziemy mogli kupić instrument bazowy po cenie wykonania K. Oczywiście, jeżeli ceny spadną, nasza opcja będzie bezwartościowa. Opcja sprzedaży zabezpiecza przed spadkiem cen, daje gwarancję, że w najgorszym razie sprzedamy nasz instrument po cenie K. Jeżeli ceny wzrosną, opcji sprzedaży nie będzie się opłacało wykonać. Opcje można porównać do polisy ubezpieczeniowej, cenę opcji możemy traktować jak składkę ubezpieczeniową. Jeżeli zdarzy nam się nieszczęście, polisa pozwoli nam przynajmniej częściowo zrekompensować straty, jeżeli nic złego się nie wydarzy, składka przepadnie. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 23/33

24 Opcje jako instrument spekulacyjny Opcje można również wykorzystać w celach spekulacyjnych. Pozwalają one zwielokrotnić zarówno zyski, jak i straty. Załóżmy, że posiadamy 500 zł i chcemy je zainwestować w akcje PKO, gdyż spodziewamy się, że ich cena wzrośnie. Aktualna cena 1 akcji wynosi 100 zł, za posiadaną sumę możemy więc nabyć 5 akcji. Jeżeli w przyszłości cena akcji wzrośnie do 120 zł, to nasz zysk wyniesie 5 ( ) = 100 zł. Stopa zwrotu naszej inwestycji to ( )/500 = 0,2. Jeżeli pomyliliśmy się w naszych przewidywaniach i cena akcji spadnie do 90 zł, to posiadane 5 akcji przyniesie nam stratę równą 50 zł. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 24/33

25 Opcje jako instrument spekulacyjny Zamiast akcji możemy nabyć opcje kupna na akcje PKO. Cena opcji jest zazwyczaj o wiele niższa od ceny instrumentu bazowego. Załóżmy, że w naszym wypadku opcja o cenie wykonania K = 105 kosztuje 10 zł. Nasz kapitał pozwoli nam nabyć 50 opcji. Jeżeli cena akcji wzrośnie do 120 zł, to każda z 50 opcji przyniesie nam zysk = 15 zł. Nasz zysk wyniesie zatem = 250 zł, a stopa zwrotu inwestycji będzie równa ( )/500 = 0,5. Jeżeli pomyliliśmy się w naszych przewidywaniach i cena akcji spadnie do 90 zł, to nasze opcje są bezwartościowe i tracimy całą zainwestowaną sumę. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 25/33

26 Opcje waniliowe i egzotyczne Standardowe europejskie i amerykańskie opcje kupna i sprzedaży określa się czasem wspólną nazwą opcje waniliowe (ang. vanilla). Nazwa ta pochodzi podobno od podstawowego smaku amerykańskich lodów, czyli właśnie lodów waniliowych i w języku angielskim oznacza wersję podstawową, nieskażoną, czystą. Na rynku funkcjonują również opcje o bardziej skomplikowanych funkcjach wypłaty, nazywamy je opcjami egzotycznymi (ang. exotic). Skonstruowano bardzo wiele takich opcji, tutaj omówimy tylko najważniejsze z nich. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 26/33

27 Opcje binarne Opcje binarne, nazywane też cyfrowymi, to opcje, których funkcja wypłaty zależy w sposób nieciągły (skokowy) od ceny instrumentu bazowego w momencie wygaśnięcia T. Najpopularniejsze opcje tego typu to: opcje cash-or-nothing, których wypłata zależy jedynie od tego, czy cena w momencie wygaśnięcia przekroczy pewien poziom, funkcje wypłaty opcji kupna i opcji sprzedaży to odpowiednio: f (S T ) = X 1 {ST >K}, f (S T ) = X 1 {ST <K}, gdzie X i K są z góry ustalone, opcje asset-or-nothing, podobne do poprzednich, ale zamiast ustalonej kwoty posiadacz otrzymuje instrument bazowy, funkcje wypłaty opcji kupna i opcji sprzedaży to odpowiednio: f (S T ) = S T 1 {ST >K}, f (S T ) = S T 1 {ST <K}, gdzie K jest z góry ustalone. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 27/33

28 Opcje barierowe Opcje barierowe (ang. barrier) to opcje, których wypłata zależy od tego, czy w trakcie trwania kontraktu cena instrumentu bazowego spadnie poniżej albo przekroczy pewną ustaloną wartość (barierę). Najczęściej spotykane rodzaje opcji barierowych to: opcje kupna typu down-and-out tracą wartość, gdy cena instrumentu bazowego spadnie poniżej bariery B, ich funkcja wypłaty ma postać f (S t ) = (S T K) + 1 {mint T S t B}, opcje kupna typu up-and-out tracą wartość, gdy cena instrumentu bazowego przekroczy barierę B, ich funkcja wypłaty ma postać f (S t ) = (S T K) + 1 {maxt T S t B}, Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 28/33

29 Opcje barierowe opcje kupna typu up-and-in uzyskują wartość, gdy cena instrumentu bazowego przekroczy barierę B, ich funkcja wypłaty ma postać f (S t ) = (S T K) + 1 {maxt T S t B}, opcje kupna typu down-and-in uzyskują wartość, gdy cena instrumentu bazowego spadnie poniżej bariery B, ich funkcja wypłaty ma postać f (S t ) = (S T K) + 1 {mint T S t B}. W zależności od wzajemnego umiejscowienia bariery B i ceny wykonania K opcje barierowe możemy jeszcze podzielić na opcje in-the-money, jeżeli B > K i out-the-money, jeżeli B < K. W podobny sposób definiujemy barierowe opcje sprzedaży. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 29/33

30 Opcje azjatyckie Opcje azjatyckie nazywane również uśrednionymi. Ich funkcje wypłaty zależą od średniej ceny instrumentu bazowego w czasie ważności opcji. Średnią cenę możemy obliczać w sposób dyskretny: S sr = 1 n n S i/n, k=1 gdzie S i/n jest ceną zamknięcia w i-tym dniu, a N liczbą dni handlowych w roku. Rozważa się też średnie ciągłe : S sr = 1 T S t dt. T t 0 t 0 Średnią arytmetyczną czasem zastępujemy średnią geometryczną. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 30/33

31 Opcje azjatyckie Funkcja wypłaty azjatyckiej opcji kupna ma postać: dla opcji typu average value lub dla opcji typu average strike. f (S t ) = (S sr K) + f (S t ) = (S T S sr ) + Funkcje wypłaty dla azjatyckich opcji sprzedaży definiujemy analogicznie. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 31/33

32 Opcje typu lookback Opcje typu lookback to opcje, których wypłata zależy od maksymalnej lub minimalnej ceny instrumentu bazowego. Opcja kupna tego typu pozwala jej posiadaczowi kupić instrument bazowy po najniższej cenie, jaką osiągnął w okresie ważności opcji. Funkcja wypłaty tej opcji ma postać f (S t ) = S T min t [0,T ] S t. Opcja sprzedaży typu lookback pozwala jej właścicielowi sprzedać instrument podstawowy po najwyższej cenie, jaką osiągnął on w okresie ważności opcji, jej funkcja wypłaty to f (S t ) = max t [0,T ] S t S T. Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 32/33

33 Opcje zależne od trajektorii Wypłata europejskich opcji kupna oraz sprzedaży, a także opcji binarnych, zależy jedynie od ceny instrumentu bazowego w momencie wygaśnięcia T. W przypadku opcji barierowych, azjatyckich i lookback cena zależy od cen instrumentu w całym okresie [0, T ]. Takie opcje nazywamy opcjami zależnymi od trajektorii (ang. path-dependent options). Bartosz Ziemkiewicz Matematyka finansowa w pakiecie Matlab 33/33

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Wyróżniamy trzy rodzaje kontraktów terminowych: Forwards Futures Opcje

Wyróżniamy trzy rodzaje kontraktów terminowych: Forwards Futures Opcje Echo ćwiczeń... Transakcje terminowe (kontrakty terminowe) Transakcja terminowa polega na zawarciu umowy zobowiązującej sprzedającego do dostarczenia określonego co do ilości i jakości dobra, będącego

Bardziej szczegółowo

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE Opcja jest umową, która daje posiadaczowi prawo do kupna lub sprzedaży

Bardziej szczegółowo

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options).

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options). Opcje na GPW (I) Opcje (ang. options) to podobnie jak kontrakty terminowe bardzo popularny instrument notowany na rynkach giełdowych. Ich konstrukcja jest nieco bardziej złożona od kontraktów. Opcje można

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo

Sprzedający => Wystawca opcji Kupujący => Nabywca opcji

Sprzedający => Wystawca opcji Kupujący => Nabywca opcji Opcja walutowa jest to umowa, która daje kupującemu prawo (nie obowiązek) do kupna lub sprzedaży instrumentu finansowego po z góry ustalonej cenie przed lub w określonym terminie w przyszłości. Kupujący

Bardziej szczegółowo

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony

Bardziej szczegółowo

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia.

Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia. Opcje na GPW (II) Wbrew ogólnej opinii, inwestowanie w opcje nie musi być trudne. Na rynku tym można tworzyć strategie dla doświadczonych inwestorów, ale również dla początkujących. Najprostszym sposobem

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Zarządzanie ryzykiem. Wykład 3 Instrumenty pochodne

Zarządzanie ryzykiem. Wykład 3 Instrumenty pochodne Zarządzanie ryzykiem Wykład 3 Instrumenty pochodne Definicja instrumenty pochodne to: prawa majątkowe, których cena rynkowa zależy bezpośrednio lub pośrednio od ceny lub wartości papierów wartościowych,

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Do końca 2003 roku Giełda wprowadziła promocyjne opłaty transakcyjne obniżone o 50% od ustalonych regulaminem.

Do końca 2003 roku Giełda wprowadziła promocyjne opłaty transakcyjne obniżone o 50% od ustalonych regulaminem. Opcje na GPW 22 września 2003 r. Giełda Papierów Wartościowych rozpoczęła obrót opcjami kupna oraz opcjami sprzedaży na indeks WIG20. Wprowadzenie tego instrumentu stanowi uzupełnienie oferty instrumentów

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Instrumenty pochodne Instrumenty wbudowane

Instrumenty pochodne Instrumenty wbudowane www.pwcacademy.pl Instrumenty pochodne Instrumenty wbudowane Jan Domanik Instrumenty pochodne ogólne zasady ujmowania i wyceny 2 Instrument pochodny definicja. to instrument finansowy: którego wartość

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii).

Opcje. istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). 1 Mała powtórka: instrumenty liniowe Takie, w których funkcja wypłaty jest liniowa (np. forward, futures,

Bardziej szczegółowo

OPCJE W to też możesz inwestować na giełdzie

OPCJE W to też możesz inwestować na giełdzie OPCJE NA WIG 20 W to też możesz inwestować na giełdzie GIEŁDAPAPIERÓW WARTOŚCIOWYCH WARSZAWIE OPCJE NA WIG 20 Opcje na WIG20 to popularny instrument, którego obrót systematycznie rośnie. Opcje dają ogromne

Bardziej szczegółowo

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego Opcje giełdowe i zabezpieczenie inwestycji Filip Duszczyk Dział Rynku Terminowego Agenda: Analiza Portfela współczynnik Beta (β) Opcje giełdowe wprowadzenie Podstawowe strategie opcyjne Strategia Protective

Bardziej szczegółowo

R NKI K I F I F N N NSOW OPCJE

R NKI K I F I F N N NSOW OPCJE RYNKI FINANSOWE OPCJE Wymagania dotyczące opcji Standard opcji Interpretacja nazw Sposoby ustalania ostatecznej ceny rozliczeniowej dla opcji na GPW OPCJE - definicja Kontrakt finansowy, w którym kupujący

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

Krzysztof Jajuga. Instrumenty pochodne. Anatomia sukcesu. Instytucje i zasady funkcjonowania rynku kapitałowego

Krzysztof Jajuga. Instrumenty pochodne. Anatomia sukcesu. Instytucje i zasady funkcjonowania rynku kapitałowego Krzysztof Jajuga Instrumenty pochodne Anatomia sukcesu P Instytucje i zasady funkcjonowania rynku kapitałowego ANATOMIA SUKCESU INSTYTUCJE I ZASADY FUNKCJONOWANIA RYNKU KAPITAŁOWEGO prof. dr hab. Krzysztof

Bardziej szczegółowo

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. OPCJE Slide 1 Informacje ogólne definicje opcji: kupna (call)/sprzedaŝy (put) terminologia typy opcji krzywe zysk/strata Slide 2 Czym jest opcja KUPNA (CALL)? Opcja KUPNA (CALL) jest PRAWEM - nie zobowiązaniem

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System finansowy gospodarki Zajęcia nr 10 Pośrednicy finansowi, instrumenty pochodne Rodzaje rynków finansowych (hybrydowe kryterium podziału: przedmiot obrotu oraz zapadalność instrumentu) Rynki walutowe:

Bardziej szczegółowo

OPCJE WALUTOWE. kurs realizacji > kurs terminowy OTM ATM kurs realizacji = kurs terminowy ITM ITM kurs realizacji < kurs terminowy ATM OTM

OPCJE WALUTOWE. kurs realizacji > kurs terminowy OTM ATM kurs realizacji = kurs terminowy ITM ITM kurs realizacji < kurs terminowy ATM OTM OPCJE WALUTOWE Opcja walutowa jako instrument finansowy zdobył ogromną popularność dzięki wielu możliwości jego wykorzystania. Minimalizacja ryzyka walutowego gdziekolwiek pojawiają się waluty to niewątpliwie

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty dla

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo

Opcje jako uzupełnienie portfela inwestycyjnego

Opcje jako uzupełnienie portfela inwestycyjnego Opcje jako uzupełnienie portfela inwestycyjnego forex, wszystkie towary, rynki giełda w jednym miejscu Istota opcji Łac. optio- oznacza wolna wola, wolny wybór Kontrakt finansowy, który nabywcy daje prawo

Bardziej szczegółowo

Kontrakty terminowe na akcje

Kontrakty terminowe na akcje Kontrakty terminowe na akcje Zawartość prezentacji podstawowe informacje o kontraktach terminowych na akcje, zasady notowania, wysokość depozytów zabezpieczających, przykłady wykorzystania kontraktów,

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r.

Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC OMEGA Funduszu Inwestycyjnego

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

OSWOIĆ OPCJE WARSZAWA 2009

OSWOIĆ OPCJE WARSZAWA 2009 OSWOIĆ OPCJE ASPEKTY FINANSOWE ŚWIADOMEGO ZARZĄDZANIA RYZYKIEM WALUTOWYM WARSZAWA 2009 PLAN PREZENTACJI 1. INSTYTUCJE RYNKU WALUTOWEGO I ICH ROLA [MODEL A RZECZYWISTOŚĆ]. 2. RODZAJE OPCJI-ICH PRZYDATNOŚĆ

Bardziej szczegółowo

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Wydział Matematyki Informatyki i Mechaniki UW 25 października 2011 1 Kontrakty OIS 2 Struktura kontraktu IRS Wycena kontraktu IRS 3 Struktura kontraktu

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap

Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem. Temat wykładu: Wycena kontraktów swap Materiały do samodzielnego kształcenia Inżynieria finansowa i zarządzanie ryzykiem Temat wykładu: Wycena kontraktów swap Podstawowe zagadnienia: 1. Wycena swapa procentowego metodą wyceny obligacji 2.

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. SPRZEDAŻ OPCJI SPRZEDAŻY (Short Put)

STRATEGIE NA RYNKU OPCJI. SPRZEDAŻ OPCJI SPRZEDAŻY (Short Put) STRATEGIE NA RYNKU OPCJI SPRZEDAŻ OPCJI SPRZEDAŻY (Short Put) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE Listopad 2014 r. Warszawa, Szkoła Główna Handlowa Opcje - typy Opcja jest asymetrycznym instrumentem. Opcja (standardowa, prosta,

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Inżynieria finansowa Wykład I Wstęp

Inżynieria finansowa Wykład I Wstęp Wykład I Wstęp Wydział Matematyki Informatyki i Mechaniki UW 4 października 2011 1 Podstawowe pojęcia Instrumenty i rynki finansowe 2 Instrumenty i rynki finansowe to dyscyplina, która zajmuje się analizą

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KRÓTKI STELAŻ (Short Straddle)

STRATEGIE NA RYNKU OPCJI. KRÓTKI STELAŻ (Short Straddle) STRATEGIE NA RYNKU OPCJI KRÓTKI STELAŻ (Short Straddle) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

Kontrakty terminowe w teorii i praktyce. Marcin Kwaśniewski Dział Rynku Terminowego

Kontrakty terminowe w teorii i praktyce. Marcin Kwaśniewski Dział Rynku Terminowego Kontrakty terminowe w teorii i praktyce Marcin Kwaśniewski Dział Rynku Terminowego Czym jest kontrakt terminowy? Kontrakt to umowa między 2 stronami Nabywca/sprzedawca zobowiązuje się do kupna/sprzedaży

Bardziej szczegółowo

OPCJE MIESIĘCZNE NA INDEKS WIG20

OPCJE MIESIĘCZNE NA INDEKS WIG20 OPCJE MIESIĘCZNE NA INDEKS WIG20 1 TROCHĘ HISTORII 1973 Fisher Black i Myron Scholes opracowują precyzyjną metodę obliczania wartości opcji słynny MODEL BLACK/SCHOLES 2 TROCHĘ HISTORII 26 kwietnia 1973

Bardziej szczegółowo

Charakterystyka. instrumentów finansowych i opis ryzyka AG1006TMS10 1

Charakterystyka. instrumentów finansowych i opis ryzyka AG1006TMS10 1 instrumentów finansowych i opis ryzyka I. WPROWADZENIE II. Celem niniejszego dokumentu jest przedstawienie Klientom istoty instrumentów finansowych rynku nieregulowanego (OTC) oraz powiadomienie o ryzykach

Bardziej szczegółowo

Ryzyko walutowe i zarządzanie nim. dr Grzegorz Kotliński, Katedra Bankowości AE w Poznaniu

Ryzyko walutowe i zarządzanie nim. dr Grzegorz Kotliński, Katedra Bankowości AE w Poznaniu 1 Ryzyko walutowe i zarządzanie nim 2 Istota ryzyka walutowego Istota ryzyka walutowego sprowadza się do konieczności przewalutowania należności i zobowiązań (pozycji bilansu banku) wyrażonych w walutach

Bardziej szczegółowo

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. Kontrakty terminowe Slide 1 Podstawowe zagadnienia podstawowe informacje o kontraktach zasady notowania, depozyty zabezpieczające, przykłady wykorzystania kontraktów, ryzyko związane z inwestycjami w kontrakty,

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

System finansowy gospodarki. Instrumenty pochodne Forward, Futures, Swapy

System finansowy gospodarki. Instrumenty pochodne Forward, Futures, Swapy System finansowy gospodarki Instrumenty pochodne Forward, Futures, Swapy Rynki finansowe Rynek kasowy spot Ustalenie ceny i przeniesienie praw jest jednoczesne Rynek terminowy Termin przeniesienia praw

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI SPRZEDAŻY (Long Put)

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI SPRZEDAŻY (Long Put) STRATEGIE NA RYNKU OPCJI KUPNO OPCJI SPRZEDAŻY (Long Put) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call)

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call) STRATEGIE NA RYNKU OPCJI KUPNO OPCJI KUPNA (Long Call) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

www.skninwestor.com skninwestor@skninwestor.com

www.skninwestor.com skninwestor@skninwestor.com www.skninwestor.com skninwestor@skninwestor.com Homo Economicus V Spotkanie III Instrumenty Pochodne Nie ma głupich pytań, są tylko głupie odpowiedzi Kto pyta nie błądzi Agenda Istota rynku instrumentów

Bardziej szczegółowo

OPCJE - PODSTAWY TEORETYCZNE cz.1

OPCJE - PODSTAWY TEORETYCZNE cz.1 OPCJE - PODSTAWY TEORETYCZNE cz.1 Opcja to prawo do kupna instrumentu bazowego po cenie, która jest z góry określona - głosi definicja opcji. Owa cena, które jest z góry określona to tzw. cena wykonania

Bardziej szczegółowo

Instrumenty pochodne - Zadania

Instrumenty pochodne - Zadania Jerzy A. Dzieża Instrumenty pochodne - Zadania 27 marca 2011 roku Rozdział 1 Wprowadzenie 1.1. Zadania 1. Spekulant zajął krótką pozycję w kontrakcie forward USD/PLN zapadającym za 2 miesiące o nominale

Bardziej szczegółowo

Transakcje repo Swapy walutowe (fx swap)

Transakcje repo Swapy walutowe (fx swap) Rynek pieniężny Transakcje repo Swapy walutowe (fx swap) oraz Reverse Jednoczesna sprzedaż i przyszłe odkupienie papieru wartościowego Cena Nabycia i Cena Odkupu Równoważnych Papierów Wartościowych Sprzedający

Bardziej szczegółowo

K O N T R A K T Y T E R M I N O W E

K O N T R A K T Y T E R M I N O W E "MATEMATYKA NAJPEWNIEJSZYM KAPITAŁEM ABSOLWENTA" projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego K O N T R A K T Y T E R M I N O W E Autor: Lic. Michał Boczek

Bardziej szczegółowo

Zajmujemy pozycję na grupie instrumentów walutowych (Forex)

Zajmujemy pozycję na grupie instrumentów walutowych (Forex) Zajmujemy pozycję na grupie instrumentów walutowych (Forex) Istotą inwestowania za pomocą kontraktów różnic kursowych (KRK, CFD) jest zarabianie na różnicy pomiędzy kursem z momentu rozpoczęcia transakcji,

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Kontrakt terminowy. SKN Profit 2

Kontrakt terminowy. SKN Profit 2 Kontrakty terminowe Kontrakt terminowy Zobowiązanie obustronne do przyjęcia lub dostawy określonej ilości danego instrumentu bazowego w konkretnym momencie w przyszłości po cenie ustalonej w momencie zawarcia

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Nazwy skrócone opcji notowanych na GPW tworzy się w następujący sposób: OXYZkrccc, gdzie:

Nazwy skrócone opcji notowanych na GPW tworzy się w następujący sposób: OXYZkrccc, gdzie: Opcje na GPW (III) Na warszawskiej Giełdzie Papierów Wartościowych notuje się opcje na WIG20 i akcje niektórych spółek o najwyższej płynności. Każdy rodzaj opcji notowany jest w kilku, czasem nawet kilkunastu

Bardziej szczegółowo

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Futures na Wibor najlepszy sposób zarabiania na stopach Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Agenda Wprowadzenie Definicja kontraktu Czynniki wpływające

Bardziej szczegółowo

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu Opcje giełdowe Wprowadzenie teoretyczne oraz zasady obrotu NAJWAŻNIEJSZE CECHY OPCJI Instrument pochodny (kontrakt opcyjny), Asymetryczny profil wypłaty, Możliwość budowania portfeli o różnych profilach

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

(Regulamin TTO) z dnia 12 lutego 2014 r.

(Regulamin TTO) z dnia 12 lutego 2014 r. 1. Postanowienia ogólne 1. Regulamin Towarowych Transakcji Opcyjnych zwany dalej Regulaminem TTO określa zasady i tryb zawierania oraz rozliczania Towarowych Transakcji Opcyjnych na podstawie Umowy Ramowej

Bardziej szczegółowo

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW Opcje Giełdowe Filip Duszczyk Dział Rynku Terminowego GPW Warszawa, 7 maja 2014 Czym są opcje indeksowe (1) Kupno opcji Koszt nabycia Zysk Strata Prawo, lecz nie obligacja, do kupna lub sprzedaży instrumentu

Bardziej szczegółowo

TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1

TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1 TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1 Podstawowym pojęciem dotyczącym transakcji arbitrażowych jest wartość teoretyczna kontraktu FV. Na powyższym diagramie przedstawiono wykres oraz wzór,

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Kontrakty terminowe bez tajemnic. Marcin Kwaśniewski Dział Rynku Terminowego

Kontrakty terminowe bez tajemnic. Marcin Kwaśniewski Dział Rynku Terminowego Kontrakty terminowe bez tajemnic Marcin Kwaśniewski Dział Rynku Terminowego Agenda: ABC kontraktów terminowych Zasady obrotu kontraktami Depozyty zabezpieczające Zabezpieczanie i spekulacja Ryzyko inwestowania

Bardziej szczegółowo

Teraz wiesz i inwestujesz OPCJE WPROWADZENIE DO OPCJI

Teraz wiesz i inwestujesz OPCJE WPROWADZENIE DO OPCJI OPCJE WPROWADZENIE DO OPCJI OPCJA jest instrumentem finansowym, mającym postać kontraktu, w którym kupujący opcję nabywa prawo do nabycia (opcja kupna), bądź prawo do sprzedaży (opcja sprzedaży) określonego

Bardziej szczegółowo

Anatomia Sukcesu Instytucje i zasady funkcjonowania rynku kapitałowego. Komisja Nadzoru Finansowego. Krzysztof Jajuga. Akcje i instrumenty pochodne

Anatomia Sukcesu Instytucje i zasady funkcjonowania rynku kapitałowego. Komisja Nadzoru Finansowego. Krzysztof Jajuga. Akcje i instrumenty pochodne Anatomia Sukcesu Instytucje i zasady funkcjonowania rynku kapitałowego Komisja Nadzoru Finansowego Krzysztof Jajuga Akcje i instrumenty pochodne Anatomia sukcesu Instytucje i zasady funkcjonowania rynku

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ DLA SZKÓŁ PONADGIMNAZJALNYCH Przedmioty podstawy przedsiębiorczości i geografia Temat:,,Euro waluta wspólnej Europy

SCENARIUSZ ZAJĘĆ DLA SZKÓŁ PONADGIMNAZJALNYCH Przedmioty podstawy przedsiębiorczości i geografia Temat:,,Euro waluta wspólnej Europy SCENARIUSZ ZAJĘĆ DLA SZKÓŁ PONADGIMNAZJALNYCH Przedmioty podstawy przedsiębiorczości i geografia Temat:,,Euro waluta wspólnej Europy CELE LEKCJI: Ogólny: - poznanie waluty euro. Szczegółowe: - uczeń zna

Bardziej szczegółowo

OPCJE FOREX NA PLATFORMIE DEALBOOK 360

OPCJE FOREX NA PLATFORMIE DEALBOOK 360 OPCJE FOREX NA PLATFORMIE DEALBOOK 360 Inwestuj na rynku i zabezpieczaj swoje pozycje z wykorzystaniem opcji walutowych, najnowszego produktu oferowanego przez GFT. Jeśli inwestowałeś wcześniej na rynku

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

OPIS RYZYK ZWIĄZANYCH Z INSTRUMENTAMI I PRODUKTAMI FINANSOWYMI OFEROWANYMI W SEGMENCIE BIZNES I BANKOWOŚCI PRZEDSIĘBIORSTW W BANKU MILLENNIUM S.A.

OPIS RYZYK ZWIĄZANYCH Z INSTRUMENTAMI I PRODUKTAMI FINANSOWYMI OFEROWANYMI W SEGMENCIE BIZNES I BANKOWOŚCI PRZEDSIĘBIORSTW W BANKU MILLENNIUM S.A. Wydział Gospodarczy Krajowego Rejestru Sądowego, o numerze identyfikacji podatkowej (NIP) 526-021-29-31 i kapitale OPIS RYZYK ZWIĄZANYCH Z INSTRUMENTAMI I PRODUKTAMI FINANSOWYMI OFEROWANYMI W SEGMENCIE

Bardziej szczegółowo

Poradnik inwestora. Poradnik inwestora

Poradnik inwestora. Poradnik inwestora Poradnik inwestora 1 Inwestycja to przeznaczenie pewnej części środków finansowych na realizację pomysłów, które w przyszłości przyniosą zysk. Inwestowanie jest działaniem aktywnym, które go celem jest

Bardziej szczegółowo

Podstawy finansów i inwestowania w biznesie. Wykład 6

Podstawy finansów i inwestowania w biznesie. Wykład 6 Podstawy finansów i inwestowania w biznesie Wykład 6 Plan wykładu Cechy inwestycji finansowych: dochód ryzyko płynność Depozyty bankowe Fundusze inwestycyjne 2015-11-05 2 Najważniejszymi cechami inwestycji

Bardziej szczegółowo

Ogłoszenie o zmianach w treści statutu PKO Obligacji Korporacyjnych fundusz inwestycyjny zamknięty (nr 5/2013)

Ogłoszenie o zmianach w treści statutu PKO Obligacji Korporacyjnych fundusz inwestycyjny zamknięty (nr 5/2013) Warszawa, dnia 24 kwietnia 2013 roku Ogłoszenie o zmianach w treści statutu PKO Obligacji Korporacyjnych fundusz inwestycyjny zamknięty (nr 5/2013) 1. - w artykule 3 pkt 6 otrzymuje następujące brzmienie:

Bardziej szczegółowo

Rozdział 3. Zarządzanie długiem 29

Rozdział 3. Zarządzanie długiem 29 Wstęp 9 Rozdział 1. Źródła informacji 11 Źródła informacji dla finansów 11 Rozdział 2. Amortyzacja 23 Amortyzacja 23 Rozdział 3. Zarządzanie długiem 29 Finansowanie działalności 29 Jak optymalizować poziom

Bardziej szczegółowo

Charakterystyka. instrumentów finansowych i opis ryzyka AG2805TMS10 1

Charakterystyka. instrumentów finansowych i opis ryzyka AG2805TMS10 1 instrumentów finansowych i opis ryzyka I. WPROWADZENIE Celem niniejszego dokumentu jest przedstawienie Klientom istoty instrumentów finansowych rynku nieregulowanego (OTC) oraz powiadomienie o ryzykach

Bardziej szczegółowo

Ogłoszenie o zmianach w treści statutu PKO GLOBALNEJ MAKROEKONOMII fundusz inwestycyjny zamknięty (nr 9/2013)

Ogłoszenie o zmianach w treści statutu PKO GLOBALNEJ MAKROEKONOMII fundusz inwestycyjny zamknięty (nr 9/2013) Warszawa, dnia 13 czerwca 2013 roku Ogłoszenie o zmianach w treści statutu PKO GLOBALNEJ MAKROEKONOMII fundusz inwestycyjny zamknięty (nr 9/2013) 1. w artykule 3 ust. 7 otrzymuje następujące brzmienie:

Bardziej szczegółowo

OPIS RYZYK ZWIĄZANYCH Z INSTRUMENTAMI I PRODUKTAMI FINANSOWYMI OFEROWANYMI W SEGMENCIE BIZNES I BANKOWOŚCI PRZEDSIEBIORSTW

OPIS RYZYK ZWIĄZANYCH Z INSTRUMENTAMI I PRODUKTAMI FINANSOWYMI OFEROWANYMI W SEGMENCIE BIZNES I BANKOWOŚCI PRZEDSIEBIORSTW OPIS RYZYK ZWIĄZANYCH Z INSTRUMENTAMI I PRODUKTAMI FINANSOWYMI OFEROWANYMI W SEGMENCIE BIZNES I BANKOWOŚCI PRZEDSIEBIORSTW W BANKU MILLENNIUM S.A. Niniejszy opis ryzyk składa się z: opisu ryzyk związanych

Bardziej szczegółowo

Top 5 Polscy Giganci

Top 5 Polscy Giganci lokata ze strukturą Top 5 Polscy Giganci Pomnóż swoje oszczędności w bezpieczny sposób inwestując w lokatę ze strukturą Top 5 Polscy Giganci to możliwy zysk nawet do 45%. Lokata ze strukturą Top 5 Polscy

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty podniesione.

Bardziej szczegółowo

Wykaz zmian wprowadzonych do statutu KBC LIDERÓW RYNKU Funduszu Inwestycyjnego Zamkniętego w dniu 10 czerwca 2010 r.

Wykaz zmian wprowadzonych do statutu KBC LIDERÓW RYNKU Funduszu Inwestycyjnego Zamkniętego w dniu 10 czerwca 2010 r. Wykaz zmian wprowadzonych do statutu KBC LIDERÓW RYNKU Funduszu Inwestycyjnego Zamkniętego w dniu 10 czerwca 2010 r. art. 12 ust. 2 Statutu Brzmienie dotychczasowe: 2. Cel Subfunduszu Global Partners Kredyt

Bardziej szczegółowo

Opcje i strategie opcyjne czyli co to jest i jak na tym zarobić?

Opcje i strategie opcyjne czyli co to jest i jak na tym zarobić? Opcje i strategie opcyjne czyli co to jest i jak na tym zarobić? forex, wszystkie towary, rynki giełda w jednym miejscu Istota opcji Łac. optio- oznacza wolna wola, wolny wybór Kontrakt finansowy, który

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Część X opcje indeksowe. Filip Duszczyk Dział Rozwoju Rynku Terminowego

Część X opcje indeksowe. Filip Duszczyk Dział Rozwoju Rynku Terminowego Część X opcje indeksowe Filip Duszczyk Dział Rozwoju Rynku Terminowego Agenda 1. Co to jest indeks? 2. Obliczanie indeksu 3. Kontrakty indeksowe 4. Opcje indeksowe 5. Syntetyki Co to jest indeks? Indeks

Bardziej szczegółowo

lokata ze strukturą Czarne Złoto

lokata ze strukturą Czarne Złoto lokata ze strukturą Czarne Złoto Lokata ze strukturą Czarne Złoto jest produktem łączonym. Składa się z lokaty promocyjnej i produktu strukturyzowanego Czarne Złoto inwestycji w formie ubezpieczenia na

Bardziej szczegółowo

Inwestycje Dwuwalutowe

Inwestycje Dwuwalutowe Inwestycje Dwuwalutowe Co to są Inwestycje Dwuwalutowe? Inwestycja Dwuwalutowa to krótkoterminowa inwestycja, w ramach której Klient może otrzymać wysokie oprocentowanie zainwestowanego kapitału w zamian

Bardziej szczegółowo

Opis Transakcji Walutowych

Opis Transakcji Walutowych Opis Transakcji Walutowych mbank.pl Spis treści 1. Definicje...3 2. Natychmiastowa Transakcja Wymiany Walutowej...4 3. Walutowa Transakcja Terminowa...4 4. Opcje Walutowe...5 5. Niedostarczenie środków...6

Bardziej szczegółowo

Kontrakty terminowe i forex SPIS TREŚCI

Kontrakty terminowe i forex SPIS TREŚCI Kontrakty terminowe i forex Grzegorz Zalewski SPIS TREŚCI Część I Teoria Rozdział pierwszy: Zasady działania rynków terminowych Otwieranie i zamykanie pozycji Pozycje długie i krótkie Równanie do rynku

Bardziej szczegółowo

Wyciąg z Zarządzeń Dyrektora Domu Maklerskiego BOŚ S.A. według stanu na dzień 28 maja 2012 roku (zarządzenia dotyczące obrotu derywatami)

Wyciąg z Zarządzeń Dyrektora Domu Maklerskiego BOŚ S.A. według stanu na dzień 28 maja 2012 roku (zarządzenia dotyczące obrotu derywatami) 1 Wyciąg z Zarządzeń Dyrektora Domu Maklerskiego BOŚ S.A. według stanu na dzień 28 maja 2012 roku (zarządzenia dotyczące obrotu derywatami) Zarządzenie nr 1 Dyrektora Domu Maklerskiego BOŚ S.A. z dnia

Bardziej szczegółowo

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r.

OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. OGŁOSZENIE O ZMIANACH PROSPEKTU INFORMACYJNEGO COMMERCIAL UNION SPECJALISTYCZNY FUNDUSZ INWESTYCYJNY OTWARTY, z dnia 14 stycznia 2009 r. Na podstawie 28 ust. 4 Rozporządzenia Rady Ministrów z dnia 6 listopada

Bardziej szczegółowo

1. Za pieniądze wpłacone do funduszu inwestycyjnego jego uczestnik nabywa:

1. Za pieniądze wpłacone do funduszu inwestycyjnego jego uczestnik nabywa: 1. Za pieniądze wpłacone do funduszu inwestycyjnego jego uczestnik nabywa: akcje, obligacje i bony skarbowe 3,92% 6 prawa poboru 0,00% 0 jednostki uczestnictwa 94,12% 144 dywidendy 1,96% 3 2. W grupie

Bardziej szczegółowo

PRODUKTY STRUKTURYZOWANE

PRODUKTY STRUKTURYZOWANE PRODUKTY STRUKTURYZOWANE WYŁĄCZENIE ODPOWIEDZIALNOŚCI Niniejsza propozycja nie stanowi oferty w rozumieniu art. 66 Kodeksu cywilnego. Ma ona charakter wyłącznie informacyjny. Działając pod marką New World

Bardziej szczegółowo