WYKŁAD TRZECI: OCENA ZWIĄZK PRZYCZYNOWO-SKUTKOWYCH W EPIDEMIOLOGII

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD TRZECI: OCENA ZWIĄZK PRZYCZYNOWO-SKUTKOWYCH W EPIDEMIOLOGII"

Transkrypt

1 SUM - WLK 2011 WYKŁAD TRZECI: OCENA ZWIĄZK ZKÓW PRZYCZYNOWO-SKUTKOWYCH W EPIDEMIOLOGII Prof. dr hab. med. Jan E. Zejda! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE

2 TREŚĆ WYKŁADU Koncepcja związku przyczynowo-skutkowego Filary Dobrej Praktyki Epidemiologicznej - reprezentatywność badania - minimalna niezbędna liczebność próby - poprawność badania epidemiologicznego Koncepcja ryzyka i jego pomiar w badaniach epidemiologicznych - ocena zależności - ocena wpływu Kryteria oceny związku przyczynowo-skutkowego wg Hill a epi demos logos

3 TREŚĆ WYKŁADU Koncepcja związku przyczynowo-skutkowego Filary Dobrej Praktyki Epidemiologicznej - reprezentatywność badania - minimalna niezbędna liczebność próby - poprawność badania epidemiologicznego Koncepcja ryzyka i jego pomiar w badaniach epidemiologicznych - ocena zależności - ocena wpływu Kryteria oceny związku przyczynowo-skutkowego wg Hill a epi demos logos

4 OD WSPÓŁZMIENNOŚCI DO ZWIĄZKU PRZYCZYNOWO-SKUTKOWEGO Gdy w stosunku do określonego zjawiska zdrowotnego i określonych okoliczności temu zjawisku towarzyszących współzmienność ma charakter powtarzalnej prawidłowości, wówczas uzasadniona jest podejrzenie związku przyczynowo-skutkowego Definicja związku przyczynowo-skutkowego "takie współwystępowanie zdarzeń, w których zmiana ilości lub jakości jednego z nich powoduje odpowiednią zmianę ilościową lub jakościową drugiego zdarzenia, przy czym za przyczynę uważamy to zdarzenie lub takie warunki, które rozpoczynają lub wywołują wystąpienie określonego skutku".

5 KANONY MILLA ( ) W INTERPRETACJI WSPÓŁZMIENNOŚCI kanon jedynej zgodności, kanon jedynej różnicy, kanon zmian towarzyszących. Kanony Milla reprezentują stanowisko określane jako determinizm (pogląd zakładający, że każde zjawisko ma swoją przyczynę, a określona przyczyna pociąga za sobą określony skutek, taki sam lub prawie taki sam, gdy stałe są warunki, w których relacja ta ma miejsce)

6 POSTULATY HENLE-KOCH a DOWÓD NA RZECZ PATOGENNYCH WŁAŚCIWOŚCI ZARAZKA Dany zarazek powinien być stwierdzany w każdym przypadku danej choroby Dany zarazek nie może być stwierdzany w przypadku innych chorób Daną chorobę można wywołać przez doświadczalne zakażenie zwierzęcia hodowlą danego zarazka Dany zarazek musi dać się identyfikować w przypadku choroby wywołanej w warunkach doświadczalnych

7 WIELOCZYNNIKOWA ETIOLOGIA CHORÓB KONCEPCJA CZYNNIKA KONIECZNEGO I WYSTARCZAJĄCEGO Typ Związku Dla wystąpienia zjawiska Y obecność X: Jest konieczna Jest wystarczająca A + + B + - C - + D - -

8 MOŻLIWE INTERPRETACJE ZJAWISKA WSPÓŁZMIENNOŚCI związek może mieć charakter przypadkowy, wynikający z niereprezentatywnego charakteru badanej próby (taki związek nie występuje w rzeczywistości w populacji, z której pochodzi próba badana); związek może mieć charakter przypadkowy, wynikający z nieujawnionego wpływu innego, rzeczywistego czynnika ryzyka, od którego zależy nie tylko obecność zjawiska, ale także poziom czynnika mylnie przyjętego za czynnik ryzyka w przeprowadzonym badaniu; związek opisuje relację pomiędzy zjawiskiem a czynnikiem, który jest czynnikiem pośrednim, podczas gdy poprzedzający go rzeczywisty czynnik ryzyka pozostaje nieujawniony w przeprowadzonym badaniu epidemiologicznym; związek odzwierciedla wpływ interakcji czynnika ryzyka z innym czynnikiem, którego obecność i poziom warunkuje wystąpienie odpowiedzi biologicznej, nieobecnej gdy dodatkowy czynnik przyjmuje wartości inne niż występujące w trakcie zrealizowanego badania epidemiologicznego.

9 TREŚĆ WYKŁADU Koncepcja związku przyczynowo-skutkowego Filary Dobrej Praktyki Epidemiologicznej - reprezentatywność badania - minimalna niezbędna liczebność próby - poprawność badania epidemiologicznego Koncepcja ryzyka i jego pomiar w badaniach epidemiologicznych - ocena zależności - ocena wpływu Kryteria oceny związku przyczynowo-skutkowego wg Hill a epi demos logos

10 FILARY DOBREJ PRAKTYKI EPIDEMIOLOGICZNEJ REPREZENTATYWNOŚĆ BADANIA

11 PODOBIEŃSTWO rozkładu analizowanych cech w populacji i analizowanych cech w grupie Gdy próba jest reprezentatywna różnice mają charakter przypadkowy, związane z tzw. błędem próby ( błędem losowania) Reprezentatywność próby osiąga się losowym doborem badanych, co oznacza, że każdy badany ma jednakowe szanse (prawdopodobieństwo) zostania wylosowanym

12 PODSTAWOWE METODY DOBORU REPREZENTATYWNEJ PRÓBY Losowanie Proste Losowanie Systematyczne Losowanie Warstwowe Losowanie Zespołowe

13 PODSTAWOWE METODY DOBORU REPREZENTATYWNEJ PRÓBY Losowanie Proste wszyscy członkowie populacji ponumerowani, losowaniem kieruje przypadek

14 PODSTAWOWE METODY DOBORU REPREZENTATYWNEJ PRÓBY Losowanie Systematyczne wszyscy członkowie populacji ponumerowani, losowany jest co n-ty numer

15 PODSTAWOWE METODY DOBORU REPREZENTATYWNEJ PRÓBY Losowanie Warstwowe wszyscy członkowie populacji pogrupowani (np. grupa kobiet i grupa mężczyzn) i ponumerowani w grupach (warstwach), losowanie osobno w każdej grupie

16 PODSTAWOWE METODY DOBORU REPREZENTATYWNEJ PRÓBY Losowanie Zespołowe wszyscy członkowie populacji pogrupowani w systematyczny sposób (np. grupy studenckie na roku, klasy w szkole), zespoły ponumerowane, losowanie zespołów, zbadani wszyscy w wylosowanych zespołach

17 BADANIE ZJAWISKA W GRUPIE pars pro toto grupa badana, populacja źródłowa, populacja docelowa

18 FILARY DOBREJ PRAKTYKI EPIDEMIOLOGICZNEJ MINIMALNA NIEZBĘDNA LICZEBNOŚĆ PRÓBY

19 ZBADANIE 300 CHORYCH JEST BŁĘDEM W SZTUCE (ETYKA, KOSZT ) MINIMALNA NIEZBĘDNA LICZEBNOŚĆ PRÓBY Wielkość próby trzeba obliczyć przed rozpoczęciem badania! (kalkulatory dostępne w zasobach internetowych) PRZYKŁAD Jak duża musi być próba, aby poznać rzeczywistą częstość zaburzeń rytmu serca u leczonych przewlekle preparatem PANACEUM. ZAŁOŻENIA (AUTOR!) Częstość zaburzeń rytmu u leczonych podobnymi preparatami wynosi 35%, a badanie ma określić rzeczywistą częstość z dokładnością +/- 4% ODPOWIEDŹ Próba musi liczyć 350 badanych

20 FILARY DOBREJ PRAKTYKI EPIDEMIOLOGICZNEJ Reprezentatywna i odpowiednio duża próba to warunki koniecznie (chociaż niewystarczające) dla uzyskania wiarygodnych wyników w badaniach epidemiologicznych

21 POPRAWNOŚĆ BADANIA EPIDEMIOLOGICZNEGO DWA OBSZARY POPRAWNOŚCI BADANIA Poprawność wewnętrzna (wobec grupy badanej) Poprawność zewnętrzna (wobec populacji źródłowej, wobec populacji docelowej).. Poprawność wewnętrzna jest kształtowana przez obecność / brak błędów przypadkowych i systematycznych oraz ich nasilenie Poprawność zewnętrzna jest kształtowana przez poprawność wewnętrzną i na drodze wnioskowania naukowego umożliwia uogólnianie wyników (np. palenie tytoniu powoduje raka płuc )

22 TREŚĆ WYKŁADU Koncepcja związku przyczynowo-skutkowego Filary Dobrej Praktyki Epidemiologicznej - reprezentatywność badania - minimalna niezbędna liczebność próby - poprawność badania epidemiologicznego Koncepcja ryzyka i jego pomiar w badaniach epidemiologicznych - ocena zależności - ocena wpływu Kryteria oceny związku przyczynowo-skutkowego wg Hill a epi demos logos

23 OCENA RYZYKA STRATEGIA TABELI CZTEROPOLOWEJ Podział wszystkich ludzi objętych obserwacją ( badanych ): C+N+ lub C+N- lub C-N+ lub C-N- Choroba obecna Choroba nieobecna Narażenie obecne Narażenie nieobecne

24 STATYSTYCZNE MIARY RYZYKA miary zależności narażenie-choroba miary oddziaływań na populację Badanie epidemiologiczne dostarcza danych, statystyka analizuje dane

25 MIARY ZALEŻNOŚCI BEZWZGLĘDNE MIARY Różnica ryzyk Różnica współczynników Różnica częstości WZGLĘDNE MIARY Ryzyko względne Iloraz współczynników Iloraz częstości Iloraz szans

26 MIARY ZALEŻNOŚCI BEZWZGLĘDNE MIARY Różnica ryzyk Różnica współczynników Różnica częstości WZGLĘDNE MIARY Ryzyko względne Iloraz współczynników Iloraz częstości Iloraz szans

27 RÓŻNICA RYZYK Pięcioletnia obserwacja ( ) wykazała: 8 nowych przypadków astmy u 200 dzieci bez atopii (grupa E-); 18 nowych przypadków astmy u 255 atopowych dzieci (grupa E+). Ryzyko w grupie E- = 8/200 = 0.04 = 4% Ryzyko w grupie E+ = 18/225 = 0.08 = 8% Różnica ryzyk = ryzykoe+ ryzykoe- = 8% - 4% = 4% Uwaga: 4% pochodzi także z (82% - 76%), (30%-26%), (i.t.d.)

28 RÓŻNICA WSPÓŁCZYNNIKÓW Pięcioletnia obserwacja ( ) wykazała: 8 nowych przypadków astmy u 200 dzieci nieatopowych (grupa E-); 18 nowych przypadków astmy u 255 dzieci atopowych (grupa E+). Współczynniki wymagają standaryzacji mianownika (i czasu): Wsp. w E- w ciągu roku = {8/200}/5 = 0.04/5 =0.008 = 8 / 1000 Wsp. w E+ w ciągu roku = {18/225}/5 = 0.08/5 =0.016 =16 / 1000 Różnica współczynników = wspe+ wspe- = 8 / 1000 (8 dodatkowych przypadków astmy u 1000 dzieci pojawia się w związku z atopią)

29 RÓŻNICA CZĘSTOŚCI Źródło Danych Epidemiologiczne badanie przekrojowe Częstość przewlekłego kaszlu: - U dzieci miejskich: 18% - U dzieci wiejskich: 15% Różnica częstości = 18% - 15% = 4% 4% odzwierciedla obecność gradientu miasto-wieś

30 MIARY ZALEŻNOŚCI BEZWZGLĘDNE MIARY Różnica ryzyk Różnica współczynników Różnica częstości WZGLĘDNE MIARY Ryzyko względne Iloraz współczynników Iloraz częstości Iloraz szans

31 RYZYKO WZGLĘDNE ( RELATIVE RISK RR ) RW = zapadalność na daną chorobę w grupie E+ podzielona przez zapadalność na tę chorobę w grupie E- ( E- = zawsze mianownik) RW = 1: brak zależności RW > 1: dodatnia zależność RW < 1: ujemna zależność

32 RYZYKO WZGLĘDNE CD. Każda grupa Narażeni: E+ = A+B Nie-narażeni: E- = C+D posiada własne, bezwzględne ryzyko): CHOROBA Tak Nie NARAŻENIE Tak A B Nie C D Ryzyko Względne = A/(A+B) : C(C+D) [ 1 jako punkt odniesienia, E-!]

33 RYZYKO WZGLĘDNE CD. Zapadalność na astmę w dwóch grupach dzieci (każda posiada własne, bezwzględne ryzyko): E+ : narażeni na BPT (n = 100) E- : nie-narażeni na BPT (n = 100) ASTMA Tak Nie BPT Tak 6 94 Nie 4 96 Ryzyko Względne = (6/100) : (4/100) = 1,5 [ 1 jako punkt odniesienia, E-!]

34 OBLICZENIE RYZYKA WZGLĘDNEGO OSZACOWANIE Co by było, gdyby do badania zostały wylosowane inne rodziny? Co by było, gdyby wylosowano inne liczby badanych? CHOROBA Tak Nie NARAŻENIE Tak A B Nie C D

35 KTÓRA WARTOŚĆ RYZYKA WZGLĘDNEGO JEST PRAWDZIWA? 1,3 czy 1,4 czy, 1,5 czy 1,7 Odpowiedź: każda (różnice mają charakter przypadkowy) RR = 1,5; 95%PU: 1,4 1,6 Kariera 95% przedziału ufności (95% confidence interval)

36 UWAGA Ryzyko Względne w czystej postaci odzwierciedla zróżnicowanie zapadalności Dane dla obliczenia RW pochodzą z badania kohortowego W nieortodoksyjnych rozważaniach źródłem danych bywa badanie przekrojowe

37 ILORAZ WSPÓŁCZYNNIKÓW, ILORAZ CZĘSTOŚCI Iloraz Współczynników Współczynnik w E+/Współczynnik w E- Iloraz Częstości Częstość w E+ / Częstość w E-

38 ILORAZ SZANS ( ODDS RATIO OR ) Względna miara zależności zarezerwowana dla epidemiologicznych badań typu kliniczno-kontrolnego

39 ILORAZ SZANS MIARA RYZYKA W B. KLINICZNO- REFERENCYJNCH W badaniach kliniczno-referencyjnych miarą ryzyka jest iloraz szans ILORAZ SZANS = UDZIAŁ NARAŻENIA chorzy / UDZIAŁ NARAŻENIA zdrowi Choroba + - Narażenie + a b a + b - c d c + d a + c b + d a + b + c + d ILORAZ SZANS = (a / c) / (b / d) = ad / bc W przypadku ilorazu szans wniosek odnośnie ryzyka nie wynika z porównań zapadalności (badanie kliniczno-referencyjne nie mierzy zapadalności)

40 MIARY ODDZIAŁYWAŃ NA POPULACJĘ

41 MIARY ODDZIAŁYWAŃ FRAKCJA PRZYPISANA W POPULACJI AF P (jaka frakcja odsetek wszystkich przypadków danej choroby w całej populacji zależy od narażenia na badany czynnik szkodliwy? tu: astma i BPT) FRAKCJA PRZYPISANA U CHORYCH AF E (w jakim stopniu obecność choroby u chorego jest związana z narażeniem tego chorego na badany czynnik szkodliwy? tu: astma i BPT)

42 AF P Populacyjne ryzyko przypisane (population attributable risk percent PAR%) Zapadalność na astmę u wszystkich dzieci = 4,5/100 (R all ) Zapadalność na astmę u dzieci bez narażenia na BPT = 4,0/100 (R E- ) AF P = [R all R E- ] / R all AF p = [(4,5/100) (4/100)] / (4,5/100) = = 0,11 = 11% 11% wszystkich nowych zachorowań na astmę w populacji dzieci można przypisać narażeniu tej populacji na BPT

43 MIARY ODDZIAŁYWAŃ FRAKCJA PRZYPISANA W POPULACJI AF P (jaka frakcja odsetek wszystkich przypadków danej choroby w całej populacji zależy od narażenia na badany czynnik szkodliwy? tu: astma i BPT) FRAKCJA PRZYPISANA U CHORYCH AF E (w jakim stopniu obecność choroby u chorego jest związana z narażeniem tego chorego na badany czynnik szkodliwy? tu: astma i BPT)

44 AF E Ryzyko przypisane u narażonych (attributable risk percent in the exposed AR%exposed) Zapadalność (lub częstość) w grupie narażonych (E+) Zapadalność (lub częstość) w grupie nienarażonych (E-) AF E = [Ryzyko E+ Ryzyko E- ] / Ryzyko E+

45 AF E cd. ASTMA A BPT Zapadalność w grupie E+ : 6 / 100 = 0,06 Zapadalność w grupie E- : 4 / 100 = 0,04 AF E = (0,06-0,04) / 0,06 = 0,33 = 33% W wieloczynnikowej etiologii astmy narażenie na BPT jest w 30% odpowiedzialne za pojawienie się tej choroby

46 TREŚĆ WYKŁADU Koncepcja związku przyczynowo-skutkowego Filary Dobrej Praktyki Epidemiologicznej - reprezentatywność badania - minimalna niezbędna liczebność próby - poprawność badania epidemiologicznego Koncepcja ryzyka i jego pomiar w badaniach epidemiologicznych - ocena zależności - ocena wpływu Kryteria oceny związku przyczynowo-skutkowego wg Hill a epi demos logos

47 KRYTERIA HILL A (Sir Austin Bradford Hill) Kryteria oceny związków przyczynowo-skutkowych, przydatne w interpretacji wyników obserwacyjnych badań analitycznych Siła związku Powtarzalność związku w różnych badaniach Swoistość związku Następstwo czasowe Obecność zależności "narażenie - odpowiedź biologiczna" Biologiczne prawdopodobieństwo związku Zgodność z dotychczasowym stanem wiedzy Obecność dowodów eksperymentalnych Obecność analogii

statystyka badania epidemiologiczne

statystyka badania epidemiologiczne statystyka badania epidemiologiczne Epidemiologia Epi = wśród Demos = lud Logos = nauka Epidemiologia to nauka zajmująca się badaniem rozprzestrzenienia i uwarunkowań chorób u ludzi, wykorzystująca tą

Bardziej szczegółowo

Zapadalność (epidemiologia)

Zapadalność (epidemiologia) Chorobowość Chorobowość (ang. prevalence rate) liczba chorych w danej chwili na konkretną chorobę w określonej grupie mieszkańców (np. na 100 tys. mieszkańców). Współczynnik ten obejmuje zarówno osoby

Bardziej szczegółowo

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE

SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE SUM - WLK 2011 WYKŁAD PIĄTY: BIOSTATYSTYKA C.D. Prof. dr hab. med. Jan E. Zejda! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE TREŚĆ WYKŁADU Dokumentowanie efektu (analiza danych

Bardziej szczegółowo

WYKŁAD DRUGI: TYPY BADAŃ EPIDEMIOLOGICZNYCH

WYKŁAD DRUGI: TYPY BADAŃ EPIDEMIOLOGICZNYCH SUM - WLK 2011 WYKŁAD DRUGI: TYPY BADAŃ EPIDEMIOLOGICZNYCH Prof. dr hab. med. Jan E. Zejda! UWAGA! SLAJDY WYBRANE I ZMODYFIKOWANE POD KĄTEM PREZENTACJI W INTERNECIE TREŚĆ WYKŁADU Badania epidemiologiczne

Bardziej szczegółowo

WYKŁAD PIERWSZY: PODSTAWY EPIDEMIOLOGII (A)

WYKŁAD PIERWSZY: PODSTAWY EPIDEMIOLOGII (A) SUM - WLK 2013 WYKŁAD PIERWSZY: PODSTAWY EPIDEMIOLOGII (A) Prof. dr hab. med. Jan E. Zejda POLSKI STANDARD KSZTAŁCENIA HIGIENA I EPIDEMIOLOGIA Uwarunkowania stanu zdrowia. Znaczenie chorobotwórcze czynników

Bardziej szczegółowo

Ewaluacja w polityce społecznej

Ewaluacja w polityce społecznej Ewaluacja w polityce społecznej Dane i badania w kontekście ewaluacji metody ilościowe Dr hab. Ryszard Szarfenberg Instytut Polityki Społecznej UW rszarf.ips.uw.edu.pl/ewalps/dzienne/ Rok akademicki 2017/2018

Bardziej szczegółowo

Badania epidemiologiczne - blaski i cienie Epidemiological research - the bad with the good

Badania epidemiologiczne - blaski i cienie Epidemiological research - the bad with the good Badania epidemiologiczne - blaski i cienie Epidemiological research - the bad with the good Dr Andrzej Szpakow Kierownik katedry Medycyny Sportowej i Rehabilitacji Uniwersytet Państwowy im. Janki Kupały

Bardziej szczegółowo

DOBÓR PRÓBY. Czyli kogo badać?

DOBÓR PRÓBY. Czyli kogo badać? DOBÓR PRÓBY Czyli kogo badać? DZISIAJ METODĄ PRACY Z TEKSTEM I INNYMI Po co dobieramy próbę? Czym różni się próba od populacji? Na czym polega reprezentatywność statystyczna? Podstawowe zasady doboru próby

Bardziej szczegółowo

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

rozpowszechnienie (występowanie i rozmieszczenie chorób, inwalidztwa, zgonów oraz innych stanów związanych ze zdrowiem, w populacjach ludzkich),

rozpowszechnienie (występowanie i rozmieszczenie chorób, inwalidztwa, zgonów oraz innych stanów związanych ze zdrowiem, w populacjach ludzkich), EPIDEMIOLOGIA Określenie Epidemiologia pochodzi z języka greckiego: epi na demos lud logos słowo, nauka czyli, nauka badająca: rozpowszechnienie (występowanie i rozmieszczenie chorób, inwalidztwa, zgonów

Bardziej szczegółowo

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. [1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej

Bardziej szczegółowo

Model EWD dla II etapu edukacyjnego.

Model EWD dla II etapu edukacyjnego. Model EWD dla II etapu edukacyjnego. Na podstawie materiałów Pracowni EWD Instytut Badań Edukacyjnych Warszawa, 28-29.11.2014 r. Plan zajęć /moduł 9. i 10./ 1. Idea EWD 2. Model EWD dla II etapu 3. Prezentacja

Bardziej szczegółowo

Rodzaje badań klinicznych. Zespół EBM Klinika Pediatrii Warszawski Uniwersytet Medyczny

Rodzaje badań klinicznych. Zespół EBM Klinika Pediatrii Warszawski Uniwersytet Medyczny Rodzaje badań klinicznych Zespół EBM Klinika Pediatrii Warszawski Uniwersytet Medyczny Dwie fundamentalne zasady EBM Zasada 1 Dane z badań naukowych nie wystarczają do podejmowania decyzji klinicznych

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

DOBÓR PRÓBY. Czyli kogo badać?

DOBÓR PRÓBY. Czyli kogo badać? DOBÓR PRÓBY Czyli kogo badać? DZISIAJ METODĄ PRACY Z TEKSTEM I INNYMI Po co dobieramy próbę? Czym róŝni się próba od populacji? Na czym polega reprezentatywność statystyczna? Podstawowe zasady doboru próby

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

WYKŁAD 3 Agnieszka Zembroń-Łacny, Anna Kasperska

WYKŁAD 3 Agnieszka Zembroń-Łacny, Anna Kasperska WYKŁAD 3 Agnieszka Zembroń-Łacny, Anna Kasperska Narodowego Programu Zdrowia na lata 2007-2015: zjednoczenie wysiłków społeczeństwa i administracji publicznej prowadzące do zmniejszenia nierówności i poprawy

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Zadanie 3. Temat 1. Zbieranie danych, obliczanie współczynników wielorakich dla raka płuca; określenie rejonów endemii

Zadanie 3. Temat 1. Zbieranie danych, obliczanie współczynników wielorakich dla raka płuca; określenie rejonów endemii Zadanie 3. Temat 1. Zbieranie danych, obliczanie współczynników wielorakich dla raka płuca; określenie rejonów endemii Prof. dr hab. n. med. B. Zemła Centrum Onkologii Instytut im. M. Skłodowskiej-Curie

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Schematy losowania. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badania sondażowe Schematy losowania Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa 1 Próba jako miniatura populacji CELOWA subiektywny dobór jednostek

Bardziej szczegółowo

Definicja testu psychologicznego

Definicja testu psychologicznego Definicja testu psychologicznego Badanie testowe to taka sytuacja, w której osoba badana uczestniczy dobrowolnie, świadoma celu jakim jest jej ocena. Jest to sytuacja tworzona specjalnie dla celów diagnostycznych,

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Szkice rozwiązań z R:

Szkice rozwiązań z R: Szkice rozwiązań z R: Zadanie 1. Założono doświadczenie farmakologiczne. Obserwowano przyrost wagi ciała (przyrost [gram]) przy zadanych dawkach trzech preparatów (dawka.a, dawka.b, dawka.c). Obiektami

Bardziej szczegółowo

10/15/2016. Reguła. Czułość PV(+) Bayesa. Swoistość PV(-)

10/15/2016. Reguła. Czułość PV(+) Bayesa. Swoistość PV(-) A=symptom B= choroba Czułość Swoistość A ~ A ~ Reguła Bayesa ~ B ~ A) PV(+) PV(-) 1 / 2016_10_13 PV ( ) A PV ( ) A A ~ ~ sensitivity * PV ( ) sensitivity * (1 specificity)(1- ) specificity *(1- ) specificity

Bardziej szczegółowo

Projektowanie badań i interpretacja wyników okiem biostatystyka. Warszawa, 15 marca 2016, Anna Marcisz

Projektowanie badań i interpretacja wyników okiem biostatystyka. Warszawa, 15 marca 2016, Anna Marcisz Projektowanie badań i interpretacja wyników okiem biostatystyka Warszawa, 15 marca 2016, Anna Marcisz Agenda Część I Cel badań - hipotezy badawcze/statystyczne Wielkość próby potrzebna do badania Jak odczytywać

Bardziej szczegółowo

Analizy wieloczynnikowe i metaanalizy realna wiedza czy szum informacyjny?

Analizy wieloczynnikowe i metaanalizy realna wiedza czy szum informacyjny? Analizy wieloczynnikowe i metaanalizy realna wiedza czy szum informacyjny? Wojciech Saucha Śląskie Centrum Chorób Serca w Zabrzu Oświadczenie autora prezentacji Nie jestem statystykiem! Jestem lekarzem.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

ANALIZA PROFILU METABOLICZNEGO PACJENTÓW Z PRZEWLEKŁĄ NIEWYDOLNOŚCIĄ SERCA I WSPÓŁISTNIEJĄCYM MIGOTANIEM PRZEDSIONKÓW

ANALIZA PROFILU METABOLICZNEGO PACJENTÓW Z PRZEWLEKŁĄ NIEWYDOLNOŚCIĄ SERCA I WSPÓŁISTNIEJĄCYM MIGOTANIEM PRZEDSIONKÓW ANALIZA PROFILU METABOLICZNEGO PACJENTÓW Z PRZEWLEKŁĄ NIEWYDOLNOŚCIĄ SERCA I WSPÓŁISTNIEJĄCYM MIGOTANIEM PRZEDSIONKÓW Rozprawa doktorska Autor: lek. Marcin Wełnicki Promotor: prof. dr hab. n. med Artur

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA

Wykład 4: Wnioskowanie statystyczne. Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Wykład 4: Wnioskowanie statystyczne Podstawowe informacje oraz implementacja przykładowego testu w programie STATISTICA Idea wnioskowania statystycznego Celem analizy statystycznej nie jest zwykle tylko

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Uogólniony model liniowy

Uogólniony model liniowy Uogólniony model liniowy Ogólny model liniowy y = Xb + e Każda obserwacja ma rozkład normalny Każda obserwacja ma tą samą wariancję Dane nienormalne Rozkład binomialny np. liczba chorych krów w stadzie

Bardziej szczegółowo

Trafność czyli określanie obszaru zastosowania testu

Trafność czyli określanie obszaru zastosowania testu Trafność czyli określanie obszaru zastosowania testu Trafność jest to dokładność z jaką test mierzy to, co ma mierzyć Trafność jest to stopień, w jakim test jest w stanie osiągnąć stawiane mu cele Trafność

Bardziej szczegółowo

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 SPIS TREŚCI WSTĘP..13 CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 1. TREŚĆ, PRZEZNACZENIE I PROCES BADAŃ MARKETINGOWYCH....19 1.1. Dlaczego badania marketingowe

Bardziej szczegółowo

Psychometria. norma (wg Słownika Języka Polskiego) NORMY. Co testy mówią nam o właściwościach osób badanych?

Psychometria. norma (wg Słownika Języka Polskiego) NORMY. Co testy mówią nam o właściwościach osób badanych? NORMY Psychometria Co testy mówią nam o właściwościach osób badanych? A. Normalizacja wyników testu. ZE WZGLĘDU NA SPOSÓB DEFINIOWANIA GRUP ODNIESIENIA normy ogólnokrajowe normy lokalne ZE WZGLĘDU NA SPOSÓB

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

EPIDEMIOLOGIA ANALITYCZNA. Dr Bogumiła Braczkowska Katedra i Zakład Epidemiologii ŚUM Katowice 2011

EPIDEMIOLOGIA ANALITYCZNA. Dr Bogumiła Braczkowska Katedra i Zakład Epidemiologii ŚUM Katowice 2011 EPIDEMIOLOGIA ANALITYCZNA Dr Bogumiła Braczkowska Katedra i Zakład Epidemiologii ŚUM Katowice 2011 Plan ćwiczeń 1. Badanie naukowe etapy 2. Epidemiologia analityczna zakres badań 3. Typy badań epidemiologicznych

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Szkolenie Statystyka w medycynie

Szkolenie Statystyka w medycynie Szkolenie Statystyka w medycynie program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Statystyka w medycynie Co obejmuje? Szkolenie obejmuje metody statystyczne

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Bank pytań na egzamin magisterski 2013/2014- kierunek Zdrowie Publiczne. Zdrowie środowiskowe

Bank pytań na egzamin magisterski 2013/2014- kierunek Zdrowie Publiczne. Zdrowie środowiskowe Bank pytań na egzamin magisterski 2013/2014- kierunek Zdrowie Publiczne Zdrowie środowiskowe 1. Podaj definicję ekologiczną zdrowia i definicję zdrowia środowiskowego. 2. Wymień znane Ci czynniki fizyczne

Bardziej szczegółowo

Metody statystyczne.

Metody statystyczne. #1 gkrol@wz.uw.edu.pl 1 Podsumowanie Sprawy formalne Statystyka i statystyka Badania korelacyjne Badania eksperymentalne Por. badań eksperymentalnych i korelacyjnych Przykłady badań Zarzuty pod adresem

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

MIARY OCENY RYZYKA. zatem

MIARY OCENY RYZYKA. zatem MIARY OCENY RYZYKA Samą wartość statystyki 2 i powiązaną z nią wartość p nie możemy przyjąć, jako miarę siły powiązania i wielkości efektu, zależy ona bowiem od liczebności próby N. Im większe N tym większa

Bardziej szczegółowo

Analiza danych ilościowych i jakościowych

Analiza danych ilościowych i jakościowych Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 8 kwietnia 2010 Plan prezentacji 1 Zbiory danych do analiz 2 3 4 5 6 Implementacja w R Badanie depresji Depression trial data Porównanie

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

Źródła i zasady zbierania danych o stanie zdrowia populacji

Źródła i zasady zbierania danych o stanie zdrowia populacji Źródła i zasady zbierania danych o stanie zdrowia populacji Źródła informacji, którymi dysponuje epidemiologia dzielimy na: pierwotne (bezpośrednie) wtórne (pośrednie) Za pierwotne źródła informacji uznaje

Bardziej szczegółowo

Analiza statystyczna w naukach przyrodniczych

Analiza statystyczna w naukach przyrodniczych Analiza statystyczna w naukach przyrodniczych Po co statystyka? Człowiek otoczony jest różnymi zjawiskami i próbuje je poznać, dowiedzieć się w jaki sposób funkcjonują, jakie relacje między nimi zachodzą.

Bardziej szczegółowo

Czego się nie dowiemy z NHST? Efekt size, stupid!1. Null Hypothesis Significance Testing

Czego się nie dowiemy z NHST? Efekt size, stupid!1. Null Hypothesis Significance Testing Czego się nie dowiemy z NHST? Null Hypothesis Significance Testing Statistical significance testing retards the growth of scientific knowledge; it never makes a positive contribution Schmidt and Hunter

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Zależność cech (wersja 1.01)

Zależność cech (wersja 1.01) KRZYSZTOF SZYMANEK Zależność cech (wersja 1.01) 1. Wprowadzenie Często na podstawie wiedzy, że jakiś przedmiot posiada określoną cechę A możemy wnioskować, że z całą pewnością posiada on też pewną inną

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

1 Analizy zmiennych jakościowych

1 Analizy zmiennych jakościowych 1 Analizy zmiennych jakościowych Przedmiotem analizy są zmienne jakościowe. Dokładniej wyniki pomiarów jakościowych. Pomiary tego typu spotykamy w praktyce badawczej znacznie częściej niż pomiary typu

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Rodzaje badań statystycznych

Rodzaje badań statystycznych Rodzaje badań statystycznych Zbieranie danych, które zostaną poddane analizie statystycznej nazywamy obserwacją statystyczną. Dane uzyskuje się na podstawie badania jednostek statystycznych. Badania statystyczne

Bardziej szczegółowo

LABORATORIUM 6 ESTYMACJA cz. 2

LABORATORIUM 6 ESTYMACJA cz. 2 LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

Metodologia badań psychologicznych. Wykład 12. Korelacje

Metodologia badań psychologicznych. Wykład 12. Korelacje Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Wykład 12. Korelacje Korelacja Korelacja występuje wtedy gdy dwie różne miary dotyczące tych samych osób, zdarzeń lub obiektów

Bardziej szczegółowo

ODWZOROWANIE RZECZYWISTOŚCI

ODWZOROWANIE RZECZYWISTOŚCI ODWZOROWANIE RZECZYWISTOŚCI RZECZYWISTOŚĆ RZECZYWISTOŚĆ OBIEKTYWNA Ocena subiektywna OPIS RZECZYWISTOŚCI Odwzorowanie rzeczywistości zależy w dużej mierze od możliwości i nastawienia człowieka do otoczenia

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Warsztaty Ocena wiarygodności badania z randomizacją

Warsztaty Ocena wiarygodności badania z randomizacją Warsztaty Ocena wiarygodności badania z randomizacją Ocena wiarygodności badania z randomizacją Każda grupa Wspólnie omawia odpowiedź na zadane pytanie Wybiera przedstawiciela, który w imieniu grupy przedstawia

Bardziej szczegółowo

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015 Praktyczne aspekty doboru próby Dariusz Przybysz Warszawa, 2 czerwca 2015 Określenie populacji Przed przystąpieniem do badania, wybraniem sposobu doboru próby konieczne jest precyzyjne określenie populacji,

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

Akademia Audytora III AUDYTY SPECJALISTYCZNE agenda szkolenia

Akademia Audytora III AUDYTY SPECJALISTYCZNE agenda szkolenia Akademia Audytora III AUDYTY SPECJALISTYCZNE agenda szkolenia 02-03 marca 2017 r. Warszawa cz. 1 09-10 marca 2017 r. Warszawa cz. 2 Prowadzący: Agnieszka Bukowska, Mirosław Stasik, Konrad Knedler, 02.03.2017

Bardziej szczegółowo

S T R E S Z C Z E N I E

S T R E S Z C Z E N I E STRESZCZENIE Cel pracy: Celem pracy jest ocena wyników leczenia napromienianiem chorych z rozpoznaniem raka szyjki macicy w Świętokrzyskim Centrum Onkologii, porównanie wyników leczenia chorych napromienianych

Bardziej szczegółowo

Badania marketingowe. Omówione zagadnienia. Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania

Badania marketingowe. Omówione zagadnienia. Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania Społeczna Wyższa Szkoła Przedsiębiorczości i Zarządzania kierunek: Zarządzanie Badania marketingowe Wykład 5 Opracowanie: dr Joanna Krygier 1 Omówione zagadnienia Ograniczenia wtórnych źródeł informacji

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Akademia Audytora III AUDYTY SPECJALISTYCZNE agenda szkolenia

Akademia Audytora III AUDYTY SPECJALISTYCZNE agenda szkolenia Akademia Audytora III AUDYTY SPECJALISTYCZNE agenda szkolenia 02-03 marca 2017 r. Warszawa cz. 1 09-10 marca 2017 r. Warszawa cz. 2 Prowadzący: Agnieszka Bukowska, Mirosław Stasik, Konrad Knedler, 02.03.2017

Bardziej szczegółowo