Ćwiczenie 4: Ciepło właściwe monokryształu fcc argonu

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ćwiczenie 4: Ciepło właściwe monokryształu fcc argonu"

Transkrypt

1 Ćwiczenie 4: Ciepło właściwe monokryształu fcc argonu Tym razem zajmiemy się już problemem bardziej złożonym. Celem ćwiczenia jest wyznaczenie dla monokryształu fcc argonu ciepła właściwego c, tj. ciepła molowego przy stałej objętości. Pojemność cieplna przy stałej objętości zdefiniowana jest jako: C = ( ) Q. (1) W powyższym wyrażeniu Q oznacza ciepło, zaś T temperaturę. Pojawiająca się w indeksie dolnym nawiasu objętość informuje, że pochodną ciepła po temperaturze należy obliczyć przy ustalonej objętości. Sens powyższego wyrażenia jest oczywisty: pojemność cieplna wyraża ilość energii, którą należy dostarczyć do układu aby zmienić jego temperaturę o jednostkę. Proces ten przeprowadza się w warunkach stałej objętości (w termodynamice rozpatruje się również pojemność cieplną przy stałym ciśnieniu, tj. C p ). Zadaniem jest wyznaczenie ciepła właściwego c. Jest ono związane z pojemnością cieplną w następujący sposób: c = C n. (2) Powyżej n oznacza liczbę moli substancji. Ciepło właściwe wyraża więc ilość energii potrzebną na ogrzanie jednego mola substancji o 1 K. Korzystając z pierwszej zasady termodynamiki, tj. z zależności: można wzór (1) przekształcić do postaci: de = dq pd, (3) C = ( ) E. (4) W powyższej zależności przez E oznaczono energię wewnętrzą układu (czytaj: energię całkowitą układu, uwaga: w termodynamice energię wewnętrzną przyjęto oznaczać symbolem U). Wobec tego wyrażenie określające (molowe) ciepło właściwe dane jest jako: c = 1 n ( ) E. (5) Wyrażenie to narzuca od razu sposób pomiaru. Chcąc wyznaczyć c należy dla badanego układu określić zależność E = E(T ), badając wartość energii wewnętrznej E dla szeregu temperatur T. Ciepło właściwe c można następnie określić wyznaczając pochodą energii wewnętrznej E po temperaturze T. W ogólności ciepło właściwe c może zależeć od temperatury, tj. c = c (T ). W przypadku wielu substancji, ciepło c nie zależy jednak od temperatury. 1

2 Zadania: 1. Wiedząc, że gęstość stałego argonu (posiadającego strukturę fcc) wynosi ρ = 1.70 g cm 3, wyznaczyć stałą sieciową a 0 (wyrazić w Å). 2. Narysować fragment kryształu o strukturze fcc. Znaleźć wyrażnia określające położenie kolejnych powłok koordynacyjnych (pierwszych pięciu najbliższych). Odległości te wyrazić jako wielokrotności stałej sieciowej a 0. Przyjmując znalezioną w zadaniu 1 wartość stałej sieciowej, określić konkretne wartości liczbowe dla położeń kolejnych powłok koordynacyjnych (wyrażając je w Å). 3. Wyznaczyć promień odcięcia r c dla oddziaływań, dobierając jego położenie w połowie odległości pomiędzy czwartą i piątą powłoką koordynacyjną. 4. Przeprowadzając za pomocą programu LAMMPS odpowiednie symulacje, wyznaczyć dla monokryształu fcc Ar ciepło właściwe c. Obliczenia przeprowadzić dla obszaru niskich temperatur T = 5, 10,..., 30 K. Uzyskany wynik wyrazić w J mol 1 K 1 oraz jako wielokrotność stałej gazowej R. 5. Wyznaczyć ciepło właściwe c gazowego argonu w warunkach normalnych (zadanie dodatkowe). Pomocne powinno tutaj być równanie stanu gazu doskonałego. Jaki wynik (dla c ) przewiduje kinetyczna teoria gazów? 2

3 Wskazówki 1. Jak znaleźć stałą sieciową znając gęstość? Gęstość układu (monokryształu) musi być równa gęstości jednej komórki elementarnej. Jak wyraża się objętość komórki elementarnej (jak zależy ona od stałej sieciowej a 0 )? Ile atomów przypada na jedną komórkę elementarną w przypadku struktury fcc? Jaka jest masa jednego atomu argonu? W obliczeniach należy uważać przy zamianie jednostek. 2. Położenie kolejnych powłok koordynacyjnych: w kryształach atomy ulokowane są (względem siebie) w pewnych, wyróżnionych odległościach. W przypadku układu o strukturze fcc, pierwsza koordynacja znajduje się w odległości 2/2 a 0. W odległości tej znaleźć można 12 atomów (liczba koordynacyjna wynosi 12). W jakich odległościach znajdują się kolejne powłoki koordynacyjne? Innymi słowy: jeżeli w krysztale fcc usiądę na wybranym atomie, to w jakich (charakterystycznych) odległościach będę widział inne atomy? 3. Promień odcięcia należy ustalić jako równy r c = r 4+r 5 2. Symbol r 4 (lub r 5 ) oznacza tutaj położenie (odległość do) czwartej (lub piątej) powłoki koordynacyjnej. Obliczając r c należy wziać stosowną (czytaj: wyznaczoną z gęstości) wartość stałej sieciowej a 0. Symulacje i rachunki Cały proces badawczy można podzielić na 3 odrębne etapy: 1. przygotowanie symulacji (etap A), 2. przeprowadzenie symulacji (etap B), 3. analiza i opracowanie rezultatów symulacji (etap C). Etap A, jako że stanowi przygotowanie symulacji, obejmuje przygotowanie stosownego pliku wejściowego programu LAMMPS. Przykładowy plik wejściowy (stanowiący wzór, podstawę do realizacji obliczeń) został zamieszczony pod adresem: W pliku tym pojawia się kilka nowości, oto one. 1. Chęć symulowania idealnego (nieskończonego, nie posiadającego powierzchni) monokryształu wymaga zastosowania periodycznych warunków brzegowych. Włączenie stosowania periodycznych warunków brzegowych odbywa się poprzez odpowiednie użycie komendy boundary. Dla każdego z kierunków styl granicy został ustawiony na p (od ang. periodic). 2. Współrzędne atomów (stan początkowy układu) nie są czytane z pliku.data (w pliku nie ma komendy read_data). Prosi się jednak program LAMMPS, by utworzył kryształ (program sam odpowiednio umieści atomy w przestrzeni). Odpowiada za to poniższy fragment pliku wejściowego: lattice fcc region my_region block units lattice 3

4 create_box create_atoms 1 my_region 1 region my_region Konieczne tutaj jest: (a) określenie rodzaju sieci oraz stałej sieciowej a 0 (komenda lattice), (b) określenie rozmiaru kryształu (komenda create_box). Musimy poinformować program jak duży ma być symulowany układ. Rozmiar ten wyraża się w wielokrotnościach stałej sieciowej a 0. Stosownym wyborem (czytaj: minimalnym układem) jest układ stanowiony przez czteroatomowych komórek elementarnych (na każdym z kierunków rozmiar układu będzie równy 5 a 0 ). 3. Atomom nadawane są prędkości początkowe (by układ wykazywał zadaną temperaturę). Odpowiada za to komenda velocity. Określić należy (m.in.) temperaturę docelową oraz tzw. ziarno losowości. 4. Promień odcięcia zadaje się poprzez drugi z parametrów komendy pair_style. 5. Symulacja podzielona została na dwa etapy (komenda run występuje dwukrotnie). W etapie pierwszym ma miejsce tzw. równoważenie układu (staramy się doprowadzić układ do stanu równowagi termodynamicznej). Etap drugi to tzw. próbkowanie układu (dysponując już układem w stanie równowagi termodynamicznej, przyglądamy się mu i wnioskujemy). 6. W istocie oba etapy nie różnią się znacznie. Równoważenie realizuje się na zasadzie odstawienia układu na jakiś czas (patrz: naturalna dążność układów do osiągnięcia stanu równowagi). W trakcie równoważenia dodatkowo wykonuje się tzw. skalowanie prędkości do temperatury. Okresowo ingerując w prędkości atomów (zwiększając je lub zmniejszając), stara się sprawić, że układ będzie wykazywał pożądaną temperaturę. W zależności od różnicy pomiędzy chwilową temperaturą układu a temperaturą docelową, do (z) układu dodaje się (odbiera się) ciepło. Komenda odpowiadająca za skalowanie prędkosci do temperatury przedstawiona została poniżej. fix my_temp_rescale all temp/rescale Konieczne jest tutaj określenie pięciu parametrów, zdefiniować należy: częstotliwość skalowania (co ile kroków ma być realizowane skalowanie), temperaturę (dwukrotnie: początkową i końcową), szerokość okna temperatury, siłę skalowania. 7. Skalowanie prędkości do temperatury realizowane jest tylko w etapie równoważenia. Przed przystąpieniem do etapu próbkowania mechanizm ten zostaje wyłączony (patrz komenda unfix). W etapie B należy przeprowadzić szereg symulacji, odpowiadających różnym temperaturom (T = 5, 10,..., 30 K). Pożądaną temperaturę uzyskuje się poprzez: 1. odpowiednią generację prędkości początkowych, 2. odpowiednie przeprowadzenie etapu równoważenia (zastosowanie mechanizmu skalowania prędkości do temperatury). 4

5 Przeprowadzone symulacje powinny spełniać poniższe warunki: 1. do opisu oddziaływań atomów Ar zostanie użyty potencjał Lennarda-Jonesa o parametrach ε = e oraz σ = 3.4 Å oraz promieniu odcięcia odpowiadającym połowie odległości pomiędzy czwartą i piątą powłoką koordynacyjną, 2. symulacja zostanie przeprowadzona w zespole N E, 3. atomom Ar zostaną nadane prędkości początkowe, zgodnie z rozkładem gaussowskim dla zadanej temperatury, 4. zastosowany zostanie krok czasowy h = 1 fs, 5. parametry termodynamiczne układu będą zapisywane co 1 krok, 6. stan układu (współrzędne atomów) będzie zapisywany co 100 kroków, 7. na początku symulacji przeprowadzone zostanie równoważenie, trwające kroków, co 25 kroków stosowane będzie skalowanie prędkości do temperatury, 8. układ będzie próbkowany przez kroków, 9. cała symulacja będzie trwała kroków. Stałą sieciową a 0 dobrać tak, by gęstość badanego układu równa była ρ = 1.70 g/cm 3. Rozmiary układu dobrać tak, by był on stanowiony przez powieleń 4-atomowej komórki elementarnej (500 atomów w układzie). Na wszystkich kierunkach zastosować periodyczne warunki brzegowe (by symulowany układ odpowiadał kryształowi nieskończonemu). W etapie C należy dokonać analizy uzyskanych rezultatów. Dla każdej temperatury T wyznaczyć należy A oraz σ(a), dla A = T i E (czytaj: dla temperatury i energii całkowitej wyznaczyć należy wartość średnią oraz odchylenie standardowe). Obliczając te miary pod uwagę należy wziąć jedynie informacje odpowiadające okresowi próbkowania. Miary statystyczne można łatwo wyznaczyć korzystając z polecenia stat programu gnuplot (patrz: gnuplot - wprowadzenie, strona 11). Sporządzić należy wykres E = E(T ), nanosząc na nim również niepewności (dla T oraz E, za miarę niepewności można obrać odchylenia standardowe). Do uzyskanej zależności należy dopasować funkcję o postaci E(T ) = at + b. Znając wartość współczynnika a można wyznaczyć ciepło właściwe c. Uważać należy na jednostki. 5

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Ćwiczenie 2: Wpływ temperatury na właściwości mechaniczne grafenu

Ćwiczenie 2: Wpływ temperatury na właściwości mechaniczne grafenu Ćwiczenie 2: Wpływ temperatury na właściwości mechaniczne grafenu 1 Cel ćwiczenia Celem ćwiczenia jest określenie na podstawie symulacji metodą dynamiki molekularnej (MD, ang. molecular dynamics) wpływu

Bardziej szczegółowo

Analiza strukturalna materiałów Ćwiczenie 1

Analiza strukturalna materiałów Ćwiczenie 1 Akademia Górniczo Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych Instrukcja do ćwiczeń laboratoryjnych Kierunek studiów: Technologia chemiczna

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Kacper Kulczycki. Dynamika molekularna atomów oddziałujących siłami van der Waalsa

Kacper Kulczycki. Dynamika molekularna atomów oddziałujących siłami van der Waalsa Kacper Kulczycki Dynamika molekularna atomów oddziałujących siłami van der Waalsa Warszawa 2007 Spis treści: Spis treści 1 Wstęp 2 Teoria 2 Algorytm 3 Symulacje 4 Wyniki 24 Wnioski 47 1 Wstęp Ćwiczenie

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Charakterystyka struktury kryształu na podstawie pliku CIF (Crystallographic Information File)

Charakterystyka struktury kryształu na podstawie pliku CIF (Crystallographic Information File) INSTRUKCJA DO ĆWICZEŃ Charakterystyka struktury kryształu na podstawie pliku CIF (Crystallographic Information File) I. Cel ćwiczenia Głównym celem ćwiczenia jest przeprowadzenie pełnej charakterystyki

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. (od początku do prądu elektrycznego)

25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY. (od początku do prądu elektrycznego) Włodzimierz Wolczyński 25 POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM ROZSZERZONY (od początku do prądu elektrycznego) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Ćwiczenie 5. Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W

Ćwiczenie 5. Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W Ćwiczenie 5 Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W Co powinieneś umieć przed zajęciami Jak obliczyć energię oscylatora harmonicznego, klasycznego i kwantowego?

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

POLITECHNIKA BIAŁOSTOCKA

POLITECHNIKA BIAŁOSTOCKA POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Towaroznawstwo Kod przedmiotu: LS03282; LN03282 Ćwiczenie 4 POMIARY REFRAKTOMETRYCZNE Autorzy: dr

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. 1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w

Bardziej szczegółowo

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych.

1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. Tematy opisowe 1. Kryształy jonowe omówić oddziaływania w kryształach jonowych oraz typy struktur jonowych. 2. Dlaczego do kadłubów statków, doków, falochronów i filarów mostów przymocowuje się płyty z

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

Mol, masa molowa, objętość molowa gazu

Mol, masa molowa, objętość molowa gazu Mol, masa molowa, objętość molowa gazu Materiały pomocnicze do zajęć wspomagających z chemii opracował: Błażej Gierczyk Wydział Chemii UAM Mol Mol jest miarą liczności materii. 1 mol dowolnych indywiduów

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Dokąd on zmierza? Przemieszczenie i prędkość jako wektory

Dokąd on zmierza? Przemieszczenie i prędkość jako wektory A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Dokąd on zmierza? Przemieszczenie i prędkość jako wektory Łódź żegluje po morzu... Płynie z szybkością 10 węzłów (węzeł to 1 mila morska na godzinę czyli

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

Symulacja grafenu na powierzchni miedzi. w pakiecie oprogramowania LAMMPS

Symulacja grafenu na powierzchni miedzi. w pakiecie oprogramowania LAMMPS Symulacja grafenu na powierzchni miedzi w pakiecie oprogramowania LAMMPS Szymon Romanowski Student 3-go roku Inżynierii Materiałowej Politechniki Warszawskiej szymon1874@gmail.com Praca wykonana we wrześniu

Bardziej szczegółowo

Laboratorium odnawialnych źródeł energii

Laboratorium odnawialnych źródeł energii Laboratorium odnawialnych źródeł energii Ćwiczenie nr 3 Temat: Wyznaczanie współczynników efektywności i sprawności pompy ciepła. Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr Jednostki Ukadu SI Wielkość Nazwa Symbol Długość metr m Masa kilogram kg Czas sekunda s Natężenie prądu elektrycznego amper A Temperatura termodynamiczna kelwin K Ilość materii mol mol Światłość kandela

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO

WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO ĆWICZENIE 21 WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO Cel ćwiczenia: Wyznaczenie ciepła topnienia lodu, zapoznanie się z pojęciami ciepła topnienia i ciepła właściwego. Zagadnienia: Zjawisko

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej.

a. Dobierz współczynniki w powyższym schemacie tak, aby stał się równaniem reakcji chemicznej. Zadanie 1. Nitrogliceryna (C 3 H 5 N 3 O 9 ) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: C 3 H 5 N 3 O 9 (c) N 2 (g) + CO 2 (g) + H 2 O (g) + O 2 (g) H rozkładu = - 385 kj/mol

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3

Wyznaczanie współczynnika sztywności sprężyny. Ćwiczenie nr 3 Wyznaczanie. Ćwiczenie nr 3 Metoda teoretyczna Znając średnicę D, średnicę drutu d, moduł sprężystości poprzecznej materiału G oraz liczbę czynnych zwojów N, współczynnik można obliczyć ze wzoru: Wzór

Bardziej szczegółowo

Pomiar średniego ciepła właściwego i wyznaczanie temperatury Debye a

Pomiar średniego ciepła właściwego i wyznaczanie temperatury Debye a Pomiar średniego ciepła właściwego i wyznaczanie temperatury Debye a Cel ćwiczenia Wyznaczanie temperatury Debye a na podstawie pomiaru masy ciekłego azotu, potrzebnej do ochłodzenia badanej substancji

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane

Bardziej szczegółowo

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia

LIV OLIMPIADA FIZYCZNA 2004/2005 Zawody II stopnia LIV OLIMPIADA FIZYCZNA 004/005 Zawody II stopnia Zadanie doświadczalne Masz do dyspozycji: cienki drut z niemagnetycznego metalu, silny magnes stały, ciężarek o masie m=(100,0±0,5) g, statyw, pręty stalowe,

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK

KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ 6. WYMIENNIK CIEPŁA

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I Podstawowe prawa i pojęcia chemiczne. Fizyczne prawa gazowe. Zad. 1. Ile cząsteczek wody znajduje się w 0,12 mola uwodnionego azotanu(v) ceru Ce(NO 3 ) 2 6H 2 O? Zad. 2. W wyniku reakcji 40,12 g rtęci

Bardziej szczegółowo

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się

ogromna liczba małych cząsteczek, doskonale elastycznych, poruszających się we wszystkich kierunkach, tory prostoliniowe, kierunek ruchu zmienia się CHEMIA NIEORGANICZNA Dr hab. Andrzej Kotarba Zakład Chemii Nieorganicznej Wydział Chemii I pietro p. 138 WYKŁAD - STAN GAZOWY i CHEMIA GAZÓW kinetyczna teoria gazów ogromna liczba małych cząsteczek, doskonale

Bardziej szczegółowo

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto Zadanie 1. (3 pkt) Nadtlenek litu (Li 2 O 2 ) jest ciałem stałym, występującym w temperaturze pokojowej w postaci białych kryształów. Stosowany jest w oczyszczaczach powietrza, gdzie ważna jest waga użytego

Bardziej szczegółowo

c. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu.

c. Oblicz wydajność reakcji rozkładu 200 g nitrogliceryny, jeśli otrzymano w niej 6,55 g tlenu. Zadanie 1. Nitrogliceryna (C 3H 5N 3O 9) jest środkiem wybuchowym. Jej rozkład można opisać następującym schematem: 4 C 3 H 5 N 3 O 9 (c) 6 N 2 (g) + 12 CO 2 (g) + 10 H 2 O (g) + 1 O 2 (g) H rozkładu =

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny

Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny Laboratorium Podstaw Robotyki I Ćwiczenie Khepera dwukołowy robot mobilny 16 listopada 2006 1 Wstęp Robot Khepera to dwukołowy robot mobilny zaprojektowany do celów badawczych i edukacyjnych. Szczegółowe

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Rachunek Błędów Zadanie Doświadczalne 1 Fizyka UW 2006/2007

Rachunek Błędów Zadanie Doświadczalne 1 Fizyka UW 2006/2007 Rachunek Błędów Zadanie Doświadczalne 1 Fizyka UW 2006/2007 Marcin Polkowski, gr. 7 indeks: 251328 12 stycznia 2007 Spis treści 1 Opis doświadczenia 2 2 Przebieg doświadczenia 3 3 Fizyczne i matematyczne

Bardziej szczegółowo

ZALEŻNOŚĆ CIŚNIENIA PARY NASYCONEJ WODY OD TEM- PERATURY. WYZNACZANIE MOLOWEGO CIEPŁA PARO- WANIA

ZALEŻNOŚĆ CIŚNIENIA PARY NASYCONEJ WODY OD TEM- PERATURY. WYZNACZANIE MOLOWEGO CIEPŁA PARO- WANIA ZALEŻNOŚĆ CIŚNIENIA PARY NASYCONEJ WODY OD TEM- PERATURY. WYZNACZANIE MOLOWEGO CIEPŁA PARO- WANIA I. Cel ćwiczenia: zbadanie zależności ciśnienia pary nasyconej wody od temperatury oraz wyznaczenie molowego

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Rodzaj/forma zadania Uczeń odczytuje przebytą odległość z wykresów zależności drogi od czasu

Rodzaj/forma zadania Uczeń odczytuje przebytą odległość z wykresów zależności drogi od czasu KARTOTEKA TESTU I SCHEMAT OCENIANIA - gimnazjum Nr zadania Cele ogólne 1 I. Wykorzystanie wielkości fizycznych 2 I. Wykorzystanie wielkości fizycznych 3 I. Wykorzystanie wielkości fizycznych 4 I. Wykorzystanie

Bardziej szczegółowo

Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników.

Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników. Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników. Stężenie procentowe wyrażone w jednostkach wagowych określa liczbę gramów substancji rozpuszczonej znajdującej się w 0 gramach

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

ZBIÓR ZADAŃ STRUKTURALNYCH

ZBIÓR ZADAŃ STRUKTURALNYCH ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo