1 Elementy teorii przeżywalności

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Elementy teorii przeżywalności"

Transkrypt

1 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek dożyje wieku P-two, że noworodek umrze między 20 a 50 rokiem życia 5. P-two, że noworodek umrze między 50 a 90 rokiem życia 6. P-two, że noworodek umrze między 20 a 50 rokiem życia pod warunkiem, że umrze między 10 a 50 rokiem życia 7. P-two, że noworodek umrze między 15 a 45 rokiem życia, o ile umrze przed 80-tką 8. P-two, że noworodek umrze między 10 a 20 rokiem życia pod warunkiem, że umrze między 15 a 25 rokiem życia Zadanie 2 Przeczytaj F (50) F (13) F (60) F (10) F (80) F (20) s(15) s(16) s(26) 1 s(20) Zadanie 3 Zapisz symbolicznie 1. Prawdopodobieństwo, że 50-latek umrze w ciągu 5 lat 2. P-two, że 50-latek przeżyje co najmniej 10 lat 3. P-two, że 20-latek dożyje 80tki 4. P-two, że 30-latek nie dożyje 50tki 5. P-two, że 62-latek umrze w ciągu 40 lat 6. P-two, że 40-latek dożyje 90tki 7. P-two, że 20-latek umrze powyżej 50 roku życia 8. P-two, że 21-latek umrze przed 50tką 9. P-two, że noworodek dożyje wieku P-two, że 53-latek dożyje co najmniej do 75 roku życia 11. P-two, że 53-latek umrze przed 75 rokiem życia 12. P-two, że 40-latek umrze przed 41 urodzinami 13. P-two, że 30-latek przeżyje rok 14. P-two, że noworodek umrze przed 40-tką

2 15. P-two, że 50-latek umrze w ciągu roku 16. P-two, że 4-latek dożyje 5-go roku życia 17. P-two, że 20-latek przeżyje 5 lat, ale umrze w ciągu następnych dwóch lat 18. P-two, że 50-latek przeżyje 10 lat, a następnie umrze w przeciągu 3 lat 19. P-two, że 30-latek przeżyje następnych 30 lat, ale nie przekroczy 80-tki 20. P-two, że 13-latek przeżyje 10 lat, ale umrze w ciągu roku Zadanie 4 Zapisz na trzy sposoby (przy użyciu p, s, F ) 1. P-two, że 60-latek przeżyje następnych 30 lat a następnie umrze w ciągu 3 lat 2. P-two, że 20-latek przeżyje 8 lat a następnie umrze w przeciągu 10 lat 3. P-two, że 16-latek przeżyje 60 lat a następnie umrze w ciągu roku 4. P-two, że 16-latek dożyje 60-tki a następnie umrze w ciągu roku Zadanie 5 Funkcja przeżycia dana jest wzorem s(x) = x dla x [0, 100]. Oblicz 1. P-two, że noworodek umrze między 46 a 75 rokiem życia 2. P-two, że 20-latek nie dożyje 50-tki 3. P-two, że 46-latek nie przeżyje kolejnych pięciu lat 4. P-two, że 19-latek umrze przed 64 rokiem życia 5. P-two, że 46-latek dożyje wieku 75 lat 6. P-two, że 21-latek dożyje wieku 40 lat i umrze przed ukończeniem 57 roku życia. Hipoteza jednostajnej umieralności w ciągu roku (UDD) (w książce Błaszczyszyna Rolskiego (HU)). Zakładamy, że rozkład zgonów między całkowitymi liczbami lat jest równomierny. Zakładamy: gdzie t [0, 1) i x = 0, 1, 2... s(x + t) = (1 t) s(x) + t s(x + 1) Zadanie 6 Przy założeniu (UDD) wyznaczyć wzór na t q x oraz t p x. Zadanie 7 Zakładając (UDD) obliczyć prawdopodobieństwo, że siedemdziesięciolatek umrze między 70,5 a 71,5 rokiem życia, jeżeli q 70 = 0, 04, q 71 = 0, 05. Zadanie 8 Niech q x = 0, 0559 oraz q x+1 = 0, Zakładając (UDD) obliczyć prawdopodobieństwo warunkowe, że (x)-latek przeżyje 1,2 roku pod warunkiem, że dożyje x + 0, 5 roku. Zadanie 9 Przyjmując założenie (UDD) wyznacz 0,5 0,3 q x+0,4, gdy p x = 0, 989, p x+1 = 0, 986. Zadanie 10 Niech p x = 0, 989 oraz p x+1 = 0, 987. Przyjmując założenie (UDD) oblicz 1. 0,5 0,8 q x 2. 0,7 0,6 q x 3. 0,6 p x+0,7

3 Zadanie 11 Niech q x = 0, 088 oraz p x+1 = 0, 903. Przyjmując założenie (UDD) oblicz 1,5 q x+0,2. Zadanie 12 Przyjmując hipotezę jednostajnej umieralności obliczyć prawdopodobieństwo, że osoba w wieku 85 lat umrze między 85,5 a 86,5 rokiem życia wiedząc, że q 85 = 0, oraz q 86 = 0, Funkcja intensywności wymierania µ, wskaźnik przyszłej długości życia e x trwanie życia) oraz przeciętne całkowite dalsze trwanie życia e x (przeciętne dalsze µ x = f(x) s(x) = F (x) s(x) = (1 s(x)) s(x) tp x = e x x+t µ ydy e x = E(T x ) = tp x dt = e x = E(K x ) = k+1p x = k=0 0 = s(x) s(x) ω x 0 ω x 1 k=0 tp x dt = ( ln s(x)) k+1p x Zadanie 13 Przyszły czas życia noworodka ma rozkład wykładniczy z parametrem 0,01. Obliczyć: 1. Prawdopodobieństwo śmierci nie później niż w 45 roku życia 2. P-two dożycia 80 lat a kolejno śmierci w ciągu roku 3. P-two śmierci między 45 a 80 rokiem życia Zadanie 14 Znaleźć l t, jeśli l 0 = 1000 i µ = at. Zadanie 15 Funkcja przeżycia dana jest wzorem s(x) = x dla x [0, 100]. Oblicz p q f(36) 4. µ E(X) Zadanie 16 Funkcja intensywności wymierania dana jest wzorem µ x+t = 1 85 t t. Oblicz 1. P (T x > 20) p x Zadanie 17 Wiedząc, że dla danej populacji z wiekiem granicznym 100 funkcja intensywności wymierania dana jest wzorem µ x = 2 1 dla x (0, 100). Oblicz prawdopodobieństwo, że x 240 x letnia osoba umrze między 55 a 74 rokiem życia. Zadanie 18 W populacji z wiekiem granicznym 110 funkcja natężenia wymierania populacji dana jest wzorem µ x = 2 dla x > 0. Wyznaczyć przeciętne trwanie życia 50-letniej osoby z tej populacji. 110 x Zadanie 19 W populacji A intensywność zgonów jest dana wzorem µ A z = 1 dla x < 100, a w 100 x populacji B wzorem µ B x = n dla x < 100, gdzie n jest parametrem. Wiadomo ponadto, że ludzie 100 x z populacji A mają przed sobą przeciętnie o 10% więcej życia, niż ludzie z B w tym samym wieku. Oblicz n.

4 Zadanie 20 Funkcja µ x = 0, 01x opisuje natężenie zgonów. Oblicz prawdopodobieństwo, że osoba obecnie w wieku 45 lat umrze między 55 a 75 rokiem życia. Zadanie 21 Wiadomo, że przeciętna liczba dożywających wieku x l x = 121 x dla x [0, 121]. Obliczyć prawdopodobieństwo, że 21-latek dożyje wieku 40 lat i umrze przed ukończeniem 57 roku życia. Zadanie 22 Wyznaczyć prawdopodobieństwo przeżycia przez osobę 55-letnią co najmniej 10 lat, jeśli analogiczne prawdopodobieństwo dla osoby 25-letniej wynosi 0,8 oraz intensywność zgonów opisuje funkcja µ x = kx dla x > 0. Zadanie 23 Intensywność zgonów opisuje funkcja µ x+t = be x+t, gdzie b > 0. Dla jakiej wartości parametru b prawdopodobieństwo tego, że 30 -latek przeżyje następnych 10 lat, po czym umrze w ciągu kolejnych 5 lat, wynosi r, oraz prawdopodobieństwo 10 p 30 = 5r. Zadanie 24 Intensywność zgonów opisuje funkcja µ x = x. Obliczyć prawdopodobieństwo tego, że 100 osoba w wieku 15 lat umrze między trzydziestym piątym a czterdziestym piątym rokiem życia. Zadanie 25 Wyznacz prawdopodobieństwo przeżycia przez osobę (55) co najmniej 10 lat, jeżeli analogiczne prawdopodobieństwo (25) jest równe 0,8 oraz funkcja intensywności wymierania jest postaci µ x = kx dla x > 0. Zadanie 26 Oczekiwane dalsze całkowite trwanie życia (x) wynosi 28,5. Znajdź prawdopodobieństwo p x jeśli wiadomo, że e x+1 = 27, 7. Zadanie 27 (*) Funkcja natężenia wymierania pewnej populacji z wiekiem granicznym 120 dana jest wzorem 2, dla x (0, 30] 90 x µ x = 1, dla x (30, 120]. 120 x Obliczyć 10 p 20, 10 p 30, 20 p 20. Wyznaczyć przeciętne dalsze trwanie życia 50-letniej osoby z tej populacji populacji oraz przeciętne dalsze trwanie życia 20 letniej osoby z tej populacji. Prawa wymierania Prawo de Moivre a (istnieje wiek ω oraz rozkład dalszego trwania życia jest jednostajny). Dla x [0, ω) µ x = 1 ω x, ω x wtedy s(x) = w Prawo Gompertza (natężenie zgonów jest wykładnicze) gdzie B > 0, x > 0, c > 1 µ x = Bc x wtedy s(x) = e B ln c (cx 1) Zadanie 28 Przy założeniach de Moivre a wyznacz wzory na t p x, t q x, e x, e 0, e x, e 0. Zadanie 29 Oblicz 10 p x jeśli wiadomo, że (x) pochodzi z populacji de Moivre a o wieku granicznym ω oraz e x = 37. Zadanie 30 W danej populacji śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω. O wieku x wiadomo, że osoby w tym wieku umierają w ciągu doby dwa razy rzadziej niż osoby dwukrotnie starsze. Oblicz prawdopodobieństwo, że osoba w wieku x dożyje wieku 2x. Zadanie 31 Obliczyć p 10, p 20, p 30, p 40 przyjmując, że rozkład trwania życia noworodka podlega prawu Gompertza z parametrami B = 0, , c = 1, Zadanie 32 Niech µ 20 = 0, oraz µ 30 = 0, i rozkład trwania życia noworodka podlega prawu Gompertza. Obliczyć 10 p 25.

5 Hipotezy interpolacyjne Jednostajna umieralność w ciągu roku (UDD) - patrz zadania 6-12 s(x + t) = (1 t) s(x) + t s(x + 1) Stała intensywność wymieralności (CFM) Dla każdego t (0, 1) wtedy µ x+t = µ x = µ. s(x + t) = s(x) 1 t s(x + 1) t Hipoteza Balducciego (B) - Prawdopodobieństwo tego, że (x) umrze przed końcem n-tego roku, pod warunkiem, że przeżyje część t tego roku, jest proporcjonalne do pozostałej części roku tj. 1 t. Dla t (0, 1) 1 s(x + t) = (1 t) 1 s(x) + t 1 s(x + 1) wtedy 1 t q x+t = (1 t)q x. Zadanie 33 Wyznacz wzory na t p x, t q x zakładając 1. (CFM) 2. (B) Zadanie 34 Rozwiąż zadania 7-12 zakładając zamiast (UDD) odpowiednio (CFM), następnie (B). Zadanie 35 Przyjmując założenie, że natężenie wymierania jest przedziałami stałe, wyznaczyć 0,5 0,3 q x+0,4 jeśli dane są p x = 0, 989 oraz p x+1 = 0, 986. Zadanie 36 Dane jest q x = 0, 088 oraz p x+1 = 0, 903. Oblicz 1,5 q x+0,2 przy założeniu o jednostajnym rozkładzie zgonów w ciągu roku. Zadanie 37 Przyjmując założenie o stałej intensywności wymierania wyznaczyć 0,7 0,6 q x jeśli dane są p x oraz p x+1. Zadanie 38 Przyjmując założenie o stałej intensywności wymierania wyznaczyć 0,4 0,8 q x jeśli dane są q x oraz 2 p x. Zadanie 39 Mając dane p x = 0, 909 oraz p x+1 = 0, 904 obliczyć prawdopodobieństwo 0,6 p x+0,7 stosując hipotezę Balducciego oraz założenie o stałej intensywności wymierania w ciągu roku. Zadanie 40 Znajdź µ 65,25 jeśli rozkład obciętego czasu życia jest dany przez TTŻ-PL97k przy założeniach 1. (UDD) 2. (CFM) 3. (B) Zadanie 41 Wiedząc, że p x = 0, 989, p x+1 = 0, 987 obliczyć 0,5 0,8 q x przy założeniu (UDD) i Balducciego i porównać wyniki. Wskazać większy. Zadanie 42 Zakładając, że natężenie śmiertelności jest stałe dla x 60 oraz e 60 = 25 obliczyć p 73. Zadanie 43 Zakładając, że intensywność śmiertelności jest stała dla x 50 oraz e 50 = 40, obliczyć p 60.

6 Zadanie 44 Zakładając, że natężenie śmiertelności jest stałe dla x 42 i e 42 = 40 obliczyć 35 p 52 Zadanie 45 Obliczyć q x jeśli wiadomo, że 0,3 q x obliczone przy założeniu (UDD) stanowi 0,9 wartości tego prawdopodobieństwa obliczonego przy założeniu hipotezy Balducciego. Zadanie 46 Zakładając (UDD) oblicz P (T (30) > 10, 25) wiedząc, że 10 p 30 = 0.99 oraz q 40 = 0, Zadanie osób urodzonych 1 września 1939 roku spotkało się 1 stycznia 1997 roku. Ile z nich stawi się najprawdopodobniej na umówione spotkanie 1 września 2007 roku, jeśli jedyną przyczyną nieobecności może być śmierć? Zakładamy, że ich życia są niezależne oraz p 57 = 0.9, 9 p 58 = 0.4, p 67 = Zakładamy (UDD). Zadanie 48 Przyjąć (UDD) i obliczyć 10 1,5 q 30 wiedząc, że l 30 = 523, l 40 = 436, l 41 = 427, l 42 = 417. Zadanie 49 Wiedząc, że zachodzi (CFM) na podstawie TTŻ-PL97k znaleźć 0,5 q 56 oraz µ 58,75 Zadanie 50 Obliczyć 0,5 q 56, 2 p 56,5 i 2 q 56,5 zakładając, że prawo życia jest opisane przez TTŻ-PL97k oraz 1. (UDD) 2. (CFM) Zaobserwować niewielkie różnice wyników obliczonych przy różnych hipotezach. Zadanie 51 Wiedząc µ x+t = k dla t [0, 1] oraz, że 1 4 q x = 0, q x obliczyć 3 q 4 x+ 1 8 Zadanie 52 W populacji osób urodzonych 1 stycznia dla pewnego wieku x prawdopodobieństwo q x = 0, 6. Podaj, dla którego dnia roku (1 rok=365 dni) nastąpi zrównanie prawdopodobieństwa śmierci tq x, t [0, 1) wyznaczonego przy hipotezie Balducciego z prawdopodobieństwem przeżycia t p x wyznaczonym przy jednostajnym rozkładnie zgonów w x-tym roku. Zadanie 53 Wiedząc, że oczekiwane dalsze trwanie życia jest równe e x = 28, 5, e x+1 = 27, 7 wyznaczyć p x przy założeniu (UDD). Znając p x oraz e x+1 obliczyć e x przy założeniach (UDD). Znając p x oraz e x obliczyć e x+1 przy założeniach (UDD). Zadanie 54 Jaka jest oczekiwana liczba osób z populacji miliona trzydziestopięciolatków, które umrą po ukończeniu 36 lat i 4 miesięcy życia przed ukończeniem 37 lat i 8 miesięcy? Przyjmujemy założenie Balducciego oraz, że jeden miesiąc to 1 roku. Dane są również 12 Podać najbliższą wartość. q 35 = , q 36 = , q 37 =

Elementy teorii przeżywalności

Elementy teorii przeżywalności Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek

Bardziej szczegółowo

3 Ubezpieczenia na życie

3 Ubezpieczenia na życie 3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. 1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r.

XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVII Egzamin dla Aktuariuszy z 6 października 2008 r. Część II Matematyka ubezpieczeń Ŝyciowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r. 1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: = . Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność

Bardziej szczegółowo

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci 1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli

Bardziej szczegółowo

Metody aktuarialne - opis przedmiotu

Metody aktuarialne - opis przedmiotu Metody aktuarialne - opis przedmiotu Informacje ogólne Nazwa przedmiotu Metody aktuarialne Kod przedmiotu 11.5-WK-MATP-MA-W-S14_pNadGenEJ6TV Wydział Kierunek Wydział Matematyki, Informatyki i Ekonometrii

Bardziej szczegółowo

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio

Bardziej szczegółowo

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka ubezpieczeń na życie. Piotr Kowalski

Matematyka ubezpieczeń na życie. Piotr Kowalski Matematyka ubezpieczeń na życie Piotr Kowalski 27 stycznia 212 Spis treści 1 Elementy matematyki finansowej 1 1.1 Oznaczenia.............................. 1 1.2 Związki................................

Bardziej szczegółowo

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28

Bardziej szczegółowo

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego r = U t Z t L t gdzie: U t - urodzenia w roku t Z t - zgony

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31

Bardziej szczegółowo

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3. Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony w roku t L t

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (16.05.2014) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Współczynnik przyrostu naturalnego gdzie: U t - urodzenia w roku t Z t - zgony

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1 1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza

Bardziej szczegółowo

Ćwiczenia 2. Tablice trwania życia. (life tables)

Ćwiczenia 2. Tablice trwania życia. (life tables) Ćwiczenia 2 Tablice trwania życia (life tables) 1. Historia 2. Zasady budowy przekrojowych tablic trwania życia 3. Parametr e(0): zróżnicowanie według płci, zmiany w czasie e(0) w Polsce 4. Przykłady alternatywnych

Bardziej szczegółowo

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Matematyka w ubezpieczeniach na życie

Matematyka w ubezpieczeniach na życie Matematyka stosowana Matematyka w ubezpieczeniach na życie Mariusz Skalba skalba@mimuw.edu.pl Uniwersytet Warszawski, 211 Streszczenie. Ze skryptu tego możesz się nauczyć jak obliczać składki i rezerwy

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Ćwiczenia 2. Tablice trwania życia. (life tables)

Ćwiczenia 2. Tablice trwania życia. (life tables) Ćwiczenia 2 Tablice trwania życia (life tables) 1. Historia 2. Zasady budowy przekrojowych tablic trwania życia 3. Parametr e(0): zróżnicowanie według płci, zmiany w czasie e(0) w Polsce 4. Przykłady alternatywnych

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut Warszawa, 6

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r.

LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Koisja Egzainacyjna dla Aktuariuszy LV Egzain dla Aktuariuszy z 13 grudnia 2010 r. Część II Mateatyka ubezpieczeń życiowych Iię i nazwisko osoby egzainowanej:... Czas egzainu: 100 inut Warszawa, 13 grudnia

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka

EGZAMIN MAGISTERSKI, czerwiec 2015 Biomatematyka Biomatematyka Rozpatrzmy chorobę, która rozprzestrzenia się za pośrednictwem nosicieli, u których nie występują jej symptomy. Niech C(t) oznacza liczbę nosicieli w chwili t. Zakładamy, że nosiciele są

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Analiza przeżycia. Czym zajmuje się analiza przeżycia?

Analiza przeżycia. Czym zajmuje się analiza przeżycia? ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ Analiza przeżycia Jest to inaczej analiza czasu trwania

Bardziej szczegółowo

Na podstawie dokonanych obserwacji:

Na podstawie dokonanych obserwacji: PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x.

Wstęp do równań różniczkowych, studia I stopnia. 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. Wstęp do równań różniczkowych, studia I stopnia 1. Znaleźć (i narysować przykładowe) rozwiązania ogólne równania y = 2x. 2. Znaleźć wszystkie (i narysować przykładowe) rozwiązania równania y + 3 3 y 2

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Podstawy Informatyki Elementy teorii masowej obsługi

Podstawy Informatyki Elementy teorii masowej obsługi Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Źródło, kolejka, stanowisko obsługi Notacja Kendalla 2 Analiza systemu M/M/1 Wyznaczenie P n (t) Wybrane

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Joanna Konieczna Repetytorium ze statystyki opisowej (materiał roboczy)

Joanna Konieczna Repetytorium ze statystyki opisowej (materiał roboczy) 1. Dana jest niekompletna macierz danych surowych zawierająca informację o zmiennych X i Y oraz rozkłady zmiennych X i Y. Uzupełnij macierz tak, aby zmienne X i Y miały w tej populacji taki rozkład, jak

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Syntetyczne miary reprodukcji ludności

Syntetyczne miary reprodukcji ludności Trzeci Lubelski Konkurs Statystyczno-Demograficzny z okazji Dnia Statystyki Polskiej Syntetyczne miary reprodukcji ludności Statystyka i Demografia Projekt dofinansowany ze środków Narodowego Banku Polskiego

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Większość zadań pochodzi z podręcznika: J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Elementy nieodnawialne. Wskaźniki,

Bardziej szczegółowo

SIGMA KWADRAT. Syntetyczne miary reprodukcji ludności. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Syntetyczne miary reprodukcji ludności. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Syntetyczne miary reprodukcji ludności Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

Ruch naturalny - zgony

Ruch naturalny - zgony Ruch naturalny - zgony Dwa etapy śmierci: Śmierć kliniczna ustanie funkcji życiowych stopniowe, całkowite zahamowanie procesów biologicznych, ustanie pracy serca, i funkcji oddychania, z możliwością przywrócenia

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo