WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna"

Transkrypt

1 WYKŁAD 9: Rozkład mikrokanoniczny i entropia Boltzmanna (Zadaniem Fizyki Statystycznej jest zrozumienie własności (równowagowych i nierównowagowych materii w oparciu o oddziaływania międzymolekularne) Mikrostany układu Założenie molekularnego chaosu Rozkład mikrokanoniczny i entropia Boltzmanna Granica termodynamiczna Praktyczne rachunki z wykorzystaniem rozkładu mikrokanonicznego Przykład: model dwustanowy Granica klasyczna 1

2 MIKROSTAN UKŁADU ~ stopni swobody Układ cząstek (klasyczny bądź kwantowy) Układ (rozważany kwantowomechanicznie) wykonuje niesłychanie szybkie, chaotyczne przejścia pomiędzy swoimi stanami kwantowymi; Jeśli patrzymy na układ klasycznie, możemy powiedzieć, że cząstki poruszają się po chaotycznych trajektoriach. 2

3 Pomiar makroskopowy jest czuły jedynie na pewne uśrednione własności tego ogromu stanów kwantowych. Sensownym wydaje się więc opis probabilistyczny układów makroskopowych. Pozwoli to na interpretację mikroskopową pojęć wprowadzonych na gruncie termodynamiki fenomenologicznej. Prawdopodobieństwa będziemy wprowadzać na przestrzeni mikrostanów układu (POMIJAMY NA RAZIE STATYSTYKI KWANTOWE) MIKROSTAN: zastaw wszystkich liczb kwantowych potrzebnych do opisu stanu układu. H` i > =E i i > Zespół liczb kwantowych charakteryzujących 3 Stan (będziemy rozważać reprezentację energetyczną)

4 Przykłady: H` i > =E i i > a zbiór nieoddziaływujących oscylatorów kwantowo: H` = i 2 p` i 2 m m i w i 2 x` i oscylator : H` n > = Ñw n n > i > n > N - identycznych oscylatorów o tych samych częstościach H` n 1,n 2,... n N > = Ñw n 1 +n n N N n 1,n 2,... n N > n, n a = 0, 1,... i > n 1,n 2,... n N > 4

5 b zbiór nieoddziaływujących cząstek punktowych : H` = i 2 p` i 2 m H` n 1,n 2,... n N > = h 2 n 12 + n 23 8 mv n a = n ax,n ay,n az, n ai = 1, 2, n N n 1,n 2,... n N > i > n 1,n 2,... n N > c a + b klasycznie i q 1,..., q 3 N ; p 1,..., p 3 N 5

6 {i} P(i): będziemy chcieli powiązać z danym mikrostanem prawdopodobieństwo jego realizacji. Ponieważ ścisłą mechaniką w świecie atomowym jest mechanika kwantowa, ścisłą mechaniką statystyczną musi być kwantowa mechanika statystyczna; klasyczna teoria statystyczna będzie użyteczna jedynie jako pewne przybliżenie tej pierwszej. W pierwszym podejściu znajdziemy równowagowe rozkłady prawdopodobieństw P(i) nawiązując do zasad wariacyjnych wprowadzonych na poziomie fenomenologicznym. Pokażemy spójność i wzajemne uzupełnianie się obu teorii. Później pokażemy głębszy związek z teoriami dynamicznymi i probabilistycznymi. 6

7 Musimy obecnie zinterpretować mikroskopowo wielkości wprowadzone na poziomie fenomenologicznym Entropia Boltzmanna S = S U, V, x i, N j Termodynamika jest bardzo potężną teorią o niezwykle ogólnym charakterze. Powstała ona w oparciu o kilka hipotez, wśród których centralną rolę odgrywa entropia. Wchodzi ona do teorii jako nowa funkcja stanu (parametr ekstensywny), a jej zmiana dla układu zamkniętego o ustalonej energii wewnętrznej, U, liczbie cząstek N i objętości V są takie, że dla stanów równowagowych osiąga ona maksimum. Ponieważ każda z wielkości U, N, V, ma jasną interpretację mikroskopową (U = < H>) byłoby dziwne gdyby entropia takiej interpretacji nie posiadała. 7

8 Zadaniem fizyki statystycznej jest dostarczenie mikroskopowej interpretacji dla entropii, a zarazem heurystycznego uzasadnienia dla zasady maksimum. Ograniczymy się na początek do układów izolowanych adiabatycznie: zamkniętych w danej objętości, ustalonej liczbie cząstek i danej energii (U=const, V=const, N=const Mechanika kwantowa mówi nam, że jeśli system jest makroskopowy, wtedy istnieje wiele dyskretnych stanów kwantowych, konsystentnych z wybranymi wartościami U, V, N. Aby to zilustrować weźmy np. jakiś kryształ, zbudowany powiedzmy z atomów. 8

9 Gdyby atom był tylko jeden wtedy ustalenie U oznaczałoby w praktyce ustalenie poziomu energetycznego w jakim układ się znajduje: U Taki układ jedynie okazjonalnie wzbudzałby się - bo nie ma idealnej izolacji. 9

10 Jednak w przypadku atomów, każdy z poziomów rozszczepia się na ok poziomów w krysztale (pasma) takich, że średnia różnica energii między kolejnymi stanami zmniejsza się o czynnik ~10-23 (!) U ~10 23 poziomów okupowanych przez atomy Wtedy najmniejsze nawet zaburzenie ( np. fluktuacje pola elektromagnetycznego, grawitacja, fluktuacje próżni ) wystarczy aby następowały w sposób czysto losowy przejścia między poziomami. Zatem realistyczny obrazek układu makroskopowego jest taki w którym układ wykonuje ogromnie szybkie (losowe) przejścia pomiędzy swoimi stanami kwantowymi, a my jedynie próbkujemy uśrednione własności tej gigantycznej liczby stanów kwantowych. 10

11 Rozkład mikrokanoniczny: Ponieważ przejścia między poziomami indukowane są czysto losowymi procesami założenie molekularnego chaosu wydaje się rozsądnym założyć, że układ ' próbkuje' każdy dozwolony stan na powierzchni stałej energii z równym prawdopodobieństwem. Jest to FUNDAMENTALNY POSTULAT FIZYKI STATYSTYCZNEJ prowadzący do rozkłądu mikrokanonicznego: P(i, {E,V,N}) =,, (rozkład równowagowy),, : liczba mikrostanów przy pełnej izolacji układu

12 Liczba mikrostanów i jej związek z entropią (również poza równowagą): Niechstanukładu i > n 1,n 2,... n N >, a każdy z atomów może zajmować poziomy energetyczne e na. Wtedy W U, V, N : liczba mikrostanów o energi U E dana jest przez liczbę rozwiązań równania U = e na : W = d U - a b n a e nb Zobaczymy teraz, że entropia musi się wiązać z W U, V, N 12

13 Rozważmy rozprężanie adiabatyczne gazu doskonałego E nie zależy od V stan początkowy stan końcowy W E, V < W E, V 2 13

14 Np. jeśli przez stan będziemy rozumieć to czy cząstka jest w lewej czy w prawej połowie naczynia, wtedy W E, V, k W E, V 2 = 1 W E, V = W E, V, k 2 N 0 przy zadanej partycji k: N k N 2 14 k

15 Zatem liczba mikrostanów rośnie w procesach zachodzących w układach izolowanych ( w naszym przypadku osiąga maksimum dozwolone przez wprowadzone odgraniczenia). Powyższa obserwacja jest zgodna z tym co ustaliliśmy dla fenomenologicznej entropii (studiując analogiczny przykład). Stąd wnioskujemy, że S = S W Ale, na poziomie makroskopowym, entropia jest addytywna (ekstensywna), podczas gdy liczba mikrostanów jest wielkością multiplikatywną. 15

16 1 2 W 12 ~W 1 W 2 W 1 W 2 Brak oddziaływania między podukładami (liczba mikrostanów dwóch kostek do gry = 6. 6 podczas gdy dla każdej z osobna mamy 6 16

17 Zatem, aby zinterpretować entropię, potrzebujemy addytywnej wielkości, która mierzy liczbę mikrostanów dostępnych dla układu. BAZA FIZYKI STATYSTYCZNEJ Jedynym! rozwiązaniem jest identyfikacja entropii z logarytmem liczby dostępnych mikrostanów: (Boltzman 1872) S = df k B ln W E, V, N (do zagadnienia addytywności jeszcze wrócimy) 17

18 S = df k B ln W E, V, N Einstein nazywał tą formułę ZASADĄ BOLTZMANNA Entropia przy wprowadzonych odgraniczeniach : logarytmiczna miara ilości dostępnych stopni swobody dla układu. Współczynnik proporcjonalności k B wybiera się tak, aby T = U = 1 S U V,N S V,N zgadzała się ze skalą temperatury absolutnej, którą poprzednio wprowadziliśmy: k B = R N A = â J K 18

19 ROZKŁAD MIKROKANONICZNY U(V,N) E(V,N)= const= całka ruchu Prawdopodobieństwo mikrostanu `i` + założenie molekularnego chaosu S = df k B ln W E, V, N Powyższy wzór na entropię jest jednym z najważniejszych wzorów w fizyce. Został poraz pierwszy zapostulowany przez Boltzmanna. 19

20 20

21 S = df k B ln W E, V, N Uwaga 1 Aby istniała addytywność entropii, potencjał oddziaływania między atomami cząstkami etc. musi być krótkozasięgowy, tzn. zanikać szybciej niż r -d d - wymiar przestrzeni w której jest nasz układ - zwykle d 3 21

22 Uwaga 2a Przy tych założeniach dowodzi się, że S 1+2 = S 1 + S 2 + ds 12 gdzie ds 12 znika w granicy termodynamicznej lim V Æ N Æ N V Ær=const ds 12 N ds 12 V É É É N V æææææô =const 0 k B ln W E, V, N k B ln W E, V, N > > Ns E, V,... N N Vs E, N,... V V 22

23 Uwaga 2b W E, V, N W E, V, N > Ns E N, V N,... > Vs E V, N V,... /k B /k B W E, V, N ~ E N (gaz doskonały: patrz zadania na ćwiczeniach) Uwaga 3: Wzór S = k B ln W został potwierdzony w pobliżu T = 0. Np. kryształ NO może mieć 2możliwe ustawienia cząsteczki : NO lub ON obardzomałej różnicy energii Stąd S = k B ln 2 N = Nk B ln 2 N - liczba cząstek w krysztale NO. 23

24 Uwaga 4: Ostry warunek E = E 0 = const przy liczeniu W, trzeba z fizycznych powodów zastąpić warunkiem słabszym : E = E 0 ± de i po wykonaniu granicy termodynamicznej przejść z de do zera. E = E 0 = const E = E 0 ± de 24

25 Uwaga 4b: tzn. liczymy W E, de,... = df E E l N,V,X E+dE 1 Można również liczyć przy przeskalowaniu stanu podstawowego do energii E 0 = 0 pełną sumę stanów W 0 E,... = df 0 E l N,V,X E 1 wszystkie stany wewnątrz sfery Wtedy definiuje się tzw. gęstość stanów : D E = i W E, de,... = D E de E W 0 E, N,... 25

26 Związek pomiędzy ln W i lnw 0 w granicy makroskopowych ukł. Pokażemy, że przy liczeniu entropii możemy używać każdej z formuł; W granicy termodynamicznej wyniki są identyczne E W E E W 0 E D E de < W 0 E < D E E stąd ln D E de < ln W 0 E < lnd E E; policzmy różnicę pomiędzy lewą i prawą stroną 1 Na cząstkę: 26 N ln D E de - ln D E E = 1 N ln de E ~ 1 N ln Na NÆ Æ 0

27 Z naszej poprzedniej dyskusji wynika także dla oddziaływań krótkozasięgowych : k B ln D E de > k B ln D E de > k B ln W 0 E k B ln W 0 E > > Ns E, V,... N N Vs E, N,... V V Uwaga: Entropia nie jest logarytmem liczby stanów stanów kwantowych na powierzchni arbitrarnie wybranej i ścisłej matematycznie energii E (bo wtedy liczba tych stanów byłaby prawie zawsze równa zeru), ale jest logarytmem liczby stanów kwantowych, które leżą w bliskim sąsiedztwie E. 27

28 Uwaga 5: Mając S = k B ln W 0 E > k B ln W E Możemy wyliczyć wszystkie pozostałe funkcje termodynamiczne (przypominam): S = 1 T U + p T V - m T N U = E ds = 1 T du + p T dv - m T dn p T = S V U,N ; 1 T = S U V,N ; m T = - S N U,V 28

29 Wprowadzona entropia jest także konsystentna z III Zasadą Termodynamiki (Nernst) Entropia ( na czastkę) układu w zerze bezwzględnym jest uniwersalną stałą (niezależną od żadnych parametrów) dla wszystkich ciał. Można więc przyjąć S=0 (dla T=0): jest to podsumowanie danych eksperymentalnych w pobliżu T~0 29

30 konsekwencje ćwiczenia C x ô TÆ0 0; V T p,n TÆ0 ô 0 p T V,N TÆ0 ô 0 Interpretacja statystyczna W temperaturze zera bezwzględnego układ znajduje się wstanie podstawowym, tj. w stanie o najniższej energii. Jeśli stan podsta - wowy nie jest zdegenerowany, wtedy W E min,v,n = 1 i S = 0. Jeśli stan podstawowy jest zdegenerowany a stopień degene - racji g d N, wtedy entropia S = k B ln g d k B ln N zatem znika w przeliczeniu na cząstkę - zgodnie z III z. t. 30

31 Dygresja matematyczna : Wzór Stirlinga : G m = 0 -x x m-1 x f.cja gamma Eulera G y + 1 = y! ~y y y 2 p dowieść ln y! ~ y + 1 ln y - y + ln 2 p 2 = ylny - y + O ln y 31

32 Przykład: Model dwustanowy + E 0 N + - cząstek - E 0 N - - cząstek 32

33 + E 0 N + - cząstek - E 0 N - - cząstek wtedy W E, N = W ME 0,N = N N - = N! N -! N +! 33

34 N - = 1 2 N - M = 1 2 N 1 - E NE 0 N + = 1 2 N + M = 1 2 N 1 + E NE 0 ln y! = ylny - y + O ln y Zatem mamy: 34

35 N - = 1 N - M = 1 N 1 - E 2 2 NE 0 N + = 1 N + M = 1 N 1 + E 2 2 NE 0 S E, N = -k B N - ln N - N + N + ln N + N 1 T = S E N E=ME 0 1 = E 0 S M = 1 E 0 S N - N - M + S N + N + M = 1 2 k B E 0 ln N - M N + M = 1 2 k B E 0 ln 1 - E NE E NE 0 E 0 k B T = 1 2 ln 1 - E NE E NE 0 35

36 S E, N = ln 2-1 Nk B E NE ln 1-0 E NE E NE ln E NE 0 E 0 k B T = 1 2 ln 1 - E NE E NE 0 ln 2 ª k B T -1 E

37 E 0 k B T = 1 2 ln 1 - E NE E NE 0 (E=U) du = TdS + mdn ; E NE 0 = -tanh E 0 k B T C = T S N T N = U T N î C Nk B = E 0 k B T 2 cosh 2 E 0 k B T Zadanie: Znaleźć i naszkicować explicite wszystkie wielkości termodynamiczne dla pow. modelu powiązane za pomocą transformat Legendre a. 37

38 du = TdS + mdn ; E NE 0 = -tanh E 0 k B T C = T S T N = U T N î C Nk B = E 0 k B T 2 cosh 2 E 0 k B T -0.2 E -0.4 NE Ciepło właściwe Shottky ego: k B T E 0 38 C Nk B

39 Czym zastąpić kwantową sumę po stanach w granicy klasycznej : E i ô E H p, q Chcielibyśmy aby wzory kwantowe przechodziły w klasyczne gdy h 0 (lub T bardzo duże). Klasycznie stan układu definiujemy w 6N - wymiarowej przestrzeni fazowej (p,q). Zatem i... ô 3 N p 3 N q Ale czy to wystarczy? 39

40 NIE! Weźmy np. kwantową cząstkę swobodną w pudle (zakładamy periodyczne warunki brzegowe na ściankach). Wtedy H` = p` 2 2m ; E n 1,n 2,n 3 = h 2 n 2 ml n n 2 3 p a = n a h L, n a = 0, ± 1, ± 2,... stąd np. W 0 kw E = df 1 = E n E n 1,n 2,n 3 n n n ml2 h 2 E 1 ~ 4 3 p 2 ml 2 h 2 E 3 2 = 4 3 p V 3 2 me 2 h3 40

41 Dla porównania ta sama wielkość policzona klasycznie: W 0 kl E = df p 2 2 me 3 p 3 q = V 4 3 p 2 me 3 2 W 0 kl W 0 kw ~ 1 h 3 ô i... ô 3 p 3 q h 3 dla1cząstki i... ô 3 N p 3 N q h 3 N dla N cząstek To też jeszcze nie wystarcza 41

42 W mechanice kwantowej cząstki identyczne są nierozróżnialne -co prowadzi do pojęcia statystyk Bosego i Fermiego; W granicy h 0 wiedzie to do czynnika 1/N!. Zatem poprawna klasyczna suma stanów ma postać: i... ô 1 N! 3 N p 3 N q h 3 N dla N identycznych cząstek Dowód nie jest łatwy - trochę o nim powiemy przy okazji omawiania macierzy gęstości 42

43 Uwaga Czynnik 1/N! był trudny do zrozumienia przed wprowadzeniem zasady nierozróżnialności cząstek na poziomie kwantowym. Niemniej jednak od dawna wiedziano o konieczności jego wprowadzenia, bowiem bez niego entropia nie była wielkością ekstensywną w granicy klasycznej. dla niepunktowych cząstek: identyfikujemy położenia i pędy uogólnione jak uczy mechanika klasyczna... ô 1 N! f p f q i h f dla cząstek nieidentycznych :... ô i 1 N A! N B!... 3 N p 3 N q h 3 N ; N A + N B +... = N 43

44 Zadania: Znaleźć wzór na objętość n-wymiarowej kuli; Posługując się wyprowadzonym wzorem znaleźć entropię, temperaturę i równanie stanu dla klasycznego gazu doskonałego w oparciu o rozkład mikrokanoniczny. Poprzednie zadanie dla N nieoddziaływujących oscylatorów klasycznych 44

Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny

Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny Rozkłady: Kanoniczny, Wielki Kanoniczny, Izobaryczno-Izotermiczny 1 Rozkład Mikrokanoniczny (przypomnienie) S= k B ln( (E,V,{x i },{N j }) ) Z fenomenologii: Niestety, rachunki przy użyciu rozkładu mikrokanonicznego

Bardziej szczegółowo

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony

Bardziej szczegółowo

II Zasada Termodynamiki c.d.

II Zasada Termodynamiki c.d. Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny

Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny Warunki równowagi. Rozkłady: kanoniczny, wielki kanoniczny, izobaryczno-izotermiczny 1 Niestety, rachunki przy użyciu rozkładu mikrokanonicznego nie są łatwe. Wprowadzimy teraz inne rozkłady, przy pomocy

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne WYKŁAD 23 1 Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne (Birkhoff, Ter Haar) Hipoteza semi-ergodyczna

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Warunki równowagi i rozkład kanoniczny. H0 E 1 EL 8E 1 < W i HE i L ~ E i W 2 E - E 1 W 1 E 1. iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = E

Warunki równowagi i rozkład kanoniczny. H0 E 1 EL 8E 1 < W i HE i L ~ E i W 2 E - E 1 W 1 E 1. iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = E Warunki równowagi i rozkład kanoniczny. W HEL = W 1 HE 1 L W 2 HE - E 1 L 8E 1 < H0 E 1 EL W i HE i L ~ E i N W 2 E - E 1 W 1 E 1 iloczyn W 2 HE - E 1 L W 1 HE 1 L E 1 = 0 E 1 = E W 2 HE - E 1 L W 1 HE

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Teoria kinetyczno cząsteczkowa

Teoria kinetyczno cząsteczkowa Teoria kinetyczno cząsteczkowa Założenie Gaz składa się z wielkiej liczby cząstek znajdujących się w ciągłym, chaotycznym ruchu i doznających zderzeń (dwucząstkowych) Cel: Wyprowadzić obserwowane (makroskopowe)

Bardziej szczegółowo

Wykład 3. Zerowa i pierwsza zasada termodynamiki:

Wykład 3. Zerowa i pierwsza zasada termodynamiki: Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe

Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

1 Rachunek prawdopodobieństwa

1 Rachunek prawdopodobieństwa 1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const

Bardziej szczegółowo

Statystyki kwantowe. P. F. Góra

Statystyki kwantowe. P. F. Góra Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie

Bardziej szczegółowo

Termodynamiczny opis układu

Termodynamiczny opis układu ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). Termodynamiczny opis układu Opis termodynamiczny

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

Klasyczna mechanika statystyczna Gibbsa I

Klasyczna mechanika statystyczna Gibbsa I Wykład III Mechanika statystyczna Klasyczna mechanika statystyczna Gibbsa I Wstępne uwagi Materia nas otaczająca, w szczególności gazy będące centralnym obiektem naszego zainteresowania, zbudowane są z

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017 Wykład 1 Termodynamika (1) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka Biofizyka 1 Zaliczenie Aby zaliczyć przedmiot należy: uzyskać pozytywną ocenę z laboratorium

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra

Fizyka statystyczna Zwyrodniały gaz Fermiego. P. F. Góra Fizyka statystyczna Zwyrodniały gaz Fermiego P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Fermiony w niskich temperaturach Wychodzimy ze znanego już wtrażenia na wielka sumę statystyczna: Ξ = i=0

Bardziej szczegółowo

Wykład 4. II Zasada Termodynamiki

Wykład 4. II Zasada Termodynamiki Wykład 4 II Zasada Termodynamiki Ogólne sformułowanie: istnienie strzałki czasu Pojęcie entropii i temperatury absolutnej Ćwiczenia: Formy różniczkowe Pfaffa 1 I sza Zasada Termodynamiki: I-sza zasada

Bardziej szczegółowo

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

TERMODYNAMIKA I FIZYKA STATYSTYCZNA

TERMODYNAMIKA I FIZYKA STATYSTYCZNA TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 14-15.50 można się umówić wysyłając e-maila

Bardziej szczegółowo

n p 2 i = R 2 (8.1) i=1

n p 2 i = R 2 (8.1) i=1 8.9 Rozkład Maxwella Jest to rozkład prędkości cząstek w gazie doskonałym. Wielkość f (p) jest gęstością prawdopodobieństwa znalezienia cząstki o pędzie p. Różnica pomiędzy rozkładem Maxwella i rozkładem

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny.

Występują fluktuacje w stanie równowagi Proces przejścia do stanu równowagi jest nieodwracalny proces powrotny jest bardzo mało prawdopodobny. Wykład 14: Fizyka statystyczna Zajmuje sie układami makroskopowymi (typowy układ makroskopowy składa się z ok. 10 25 atomów), czyli ok 10 25 równań Newtona? Musimy dopasować inne pojęcia do opisu takich

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

ELEMENTY FIZYKI STATYSTYCZNEJ

ELEMENTY FIZYKI STATYSTYCZNEJ ELEMENTY FIZYKI STATYSTYCZNEJ Przedmiot badań fizyki statystycznej układy składające się z olbrzymiej ilości cząstek (ujawniają się specyficzne prawa statystyczne). 15.1. Termodynamiczny opis układu Opis

Bardziej szczegółowo

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29 Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...

Bardziej szczegółowo

Agata Fronczak Elementy fizyki statystycznej

Agata Fronczak Elementy fizyki statystycznej Agata Fronczak Elementy fizyki statystycznej Skrypt do wykładu i ćwiczeń rachunkowych dla kierunku Fotonika (rok III, semestr 5) na Wydziale Fizyki PW Warszawa 2016 Spis treści 1. Termodynamika klasyczna,

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Fizyka statystyczna. This Book Is Generated By Wb2PDF. using

Fizyka statystyczna.  This Book Is Generated By Wb2PDF. using http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?

Bardziej szczegółowo

TERMODYNAMIKA I FIZYKA STATYSTYCZNA

TERMODYNAMIKA I FIZYKA STATYSTYCZNA TERMODYNAMIKA I FIZYKA STATYSTYCZNA Lech Longa pok. D.2.49, II piętro, sektor D Zakład Fizyki Statystycznej e-mail: lech.longa@uj.edu.pl Dyżury: poniedziałki 13-14 można się umówić wysyłając e-maila 1

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina

Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Statystyka nieoddziaływujących gazów Bosego: kondensacja Bosego- Einsteina Silnie zwyrodniały gaz bozonów o niezerowej masie spoczynkowej Gdy liczba cząstek nie jest zachowywana, termodynamika nieoddziaływujących

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny , granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem: WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Bardziej szczegółowo

Co ma piekarz do matematyki?

Co ma piekarz do matematyki? Instytut Matematyki i Informatyki Politechnika Wrocławska Dolnośląski Festiwal Nauki Wrzesień 2009 x x (x 1, x 2 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) x (x 1, x 2 ) (x 1, x 2, x 3 ) (x 1, x 2, x 3, x 4 ). x

Bardziej szczegółowo

Komputerowe modelowanie zjawisk fizycznych

Komputerowe modelowanie zjawisk fizycznych Komputerowe modelowanie zjawisk fizycznych Ryszard Kutner Zakład Dydaktyki Fizyki Instytut Fizyki Doświadczalnej, Wydział Fizyki Uniwersytet Warszawski IX FESTIWAL NAUKI WARSZAWA 2005 BRAK INWESTYCJI W

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

Ogólny schemat postępowania

Ogólny schemat postępowania Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

Co to jest model Isinga?

Co to jest model Isinga? Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.

Bardziej szczegółowo

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek

Termodynamika cz. 2. Gaz doskonały. Gaz doskonały... Gaz doskonały... Notes. Notes. Notes. Notes. dr inż. Ireneusz Owczarek Termodynamika cz. 2 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz. 2 Gaz doskonały Definicja makroskopowa (termodynamiczna)

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

Termodynamika statystyczna A. Wieloch Zakład Fizyki Gorącej Materii IFUJ

Termodynamika statystyczna A. Wieloch Zakład Fizyki Gorącej Materii IFUJ Termodynamika statystyczna A. Wieloch Zakład Fizyki Gorącej Materii IFUJ Kraków 15.02.2006 Literatura: A.K. Wróblewski, J.A. Zakrzewski: Wstęp do fizyki : tom 2, część 2 oraz tom 1, PWN 1991. F. Reif:

Bardziej szczegółowo

Model oscylatorów tłumionych

Model oscylatorów tłumionych Inna nazwa: model klasyczny, Lorentza Założenia: - ośrodek jest zbiorem naładowanych oscylatorów oddziałujących z falą elektromagnetyczną - wszystkie występujące siły są izotropowe - wartość siły tłumienia

Bardziej szczegółowo

Fizyka statystyczna Zerowa Zasada Termodynamiki. P. F. Góra

Fizyka statystyczna Zerowa Zasada Termodynamiki. P. F. Góra Fizyka statystyczna Zerowa Zasada Termodynamiki P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Stan układu Fizyka statystyczna (i termodynamika) zajmuje się przede wszystkim układami dużymi, liczacymi

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo