INSTRUKCJA DO ĆWICZENIA NR 4

Wielkość: px
Rozpocząć pokaz od strony:

Download "INSTRUKCJA DO ĆWICZENIA NR 4"

Transkrypt

1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji topologicznej w projektowaniu konstrukcji. CEL ĆWICZENIA Celem ćwiczenia jest określenie topologii konstrukcji za pomocą ewolucyjnych narzędzi optymalizacji. PODSTAWY TEORETYCZNE W zagadnieniach mechaniki i budowy maszyn procesowi optymalizacji mogą być poddawane proste układy zawierające pojedyncze część (np. pręt, rama, oś, wał, belka, płyta, itp.) lub złożone układy (zbiór części, podzespół urządzenia lub kompletna maszyna). Konstrukcję opisuje się za pomocą parametrów, które charakteryzują jej topologię (liczbę i rodzaj elementów), geometrię (wymiary elementów, przełożenia par kinematycznych, itp.), wykorzystywane materiały (właściwości fizyczne, chemiczne, wytrzymałościowe, itp.), zapotrzebowanie energetyczne (moc, sprawność, zużycie paliwa, itp.) oraz wiele innych cech. Część tych parametrów jest przyjmowana przed procesem projektowania. Pozostałe, zwane zmiennymi decyzyjnymi określane są w procesie optymalizacji. Proces optymalizacji topologicznej w mechanice konstrukcji polega na określeniu rozkładu materiału (rozkładu komórek, elementów) w projektowanym obszarze, który umożliwi uzyskanie minimalnej lub maksymalnej wartości przyjętej funkcji celu. Na rysunkach 1 oraz 2 przedstawiono przykładowe projektowane obszary oraz rozwiązania optymalne. Przykład numer 1 przedstawia proces optymalizacji topologicznej kratownicy płaskiej. W projektowanym obszarze zdefiniowane są stałe położenia węzłów oraz gęsta kratownica zwana konstrukcją bazową (Rys.1a). Optymalizacja topologiczna ma za zadanie określić optymalną konfigurację kratownicy (tj. ilość i położenie prętów), która umożliwi minimalizację objętości układu przy uwzględnieniu ograniczeń naprężeniowych (Rys.2b). Przykład numer 2 przedstawia optymalizację topologiczną kształtowania struktury ciągłej. W projektowanym obszarze znajduje się przyjęta początkowa objętość (w zagadnieniach 2D powierzchnia), która została zdyskretyzowana (Rys.2a). Przyjęcie siatki umożliwia przeprowadzenie analizy z wykorzystaniem metody elementów skończonych (MES). 1

2 Wykonując optymalizację topologiczną, której celem jest minimalizacja energii odkształceń sprężystych konstrukcji otrzymano optymalny rozkład materiału (Rys.2b). Najważniejsze programy służące do przeprowadzania analiz z zakresu wytrzymałości materiałów posiadają moduły wykonujące optymalizację topologiczną struktur. Na przykład oprogramowanie Abaqus zawiera Abaqus Topology Optimization Module (ATOM), który pozwala inżynierowi na określenie optymalnej topologii pojedynczej części lub złożeń konstrukcji. a) b) Rysunek 1. Przykładowa konstrukcja bazowa płaskiej kratownicy a) oraz rozwiązanie optymalne przy minimalizacji jej objętości b). a) b) Rysunek 2. Przykładowy projektowany obszar z naniesioną siatką elementów skończonych a) oraz optymalny rozkład materiału otrzymany z procesu optymalizacji topologicznej b). W ostatniej dekadzie wzrosło zainteresowanie konstruktorów ewolucyjnymi metodami kształtowania struktur. Wynika to z fakty, że algorytmy te są uniwersalne oraz łatwe do zaimplementowania w różnych językach programowania. Algorytmy ewolucyjne są inspirowane anologiami biologicznymi, wzorowane na ewolucji naturalnej a głównym ich zastosowaniem jest optymalizacja i modelowanie różnych struktur. Jedną z takich metod, opracowaną w latach 90 ubiegłego wieku, jest Evolutionary Structural Optimization, w 2

3 skrócie ESO. Objętość optymalizowanej sprężystej struktury jest dyskretyzowana, podzielona na N elementów, inaczej komórek. Do struktury przykłada się siły oraz ustala punkty, w których narzucone są więzy (np. zamocowanie w podporach przegubowych). W kolejnych krokach procedury obliczeniowej (iteracjach) przeprowadza się analizy z wykorzystaniem metody elementów skończonych oraz usuwa zbędny materiał według przyjętych kryteriów. W cyklu obliczeniowym wielkości charakteryzujące poszczególne komórki są na bieżąco uaktualniane na podstawie informacji pochodzących z poprzedniej i obecnej iteracji zarówno dla danej komórki jak i jej sąsiadów. Czynności te są powtarzane, aż uzyska się satysfakcjonujące wyniki. Badania nad Evolutionary Structural Optimization spowodowały powstanie kolejnych metod: AESO, BESO, XESO. W wykonywanym ćwiczeniu wykorzystywana będzie metoda BESO (Bi-directional Evolutionary Structural Optimization). Podstawową cechą, która odróżnia ten algorytm od metody ESO jest możliwość zarówno usuwania jak i dodawania (możliwość ponownego uwzględnienia komórki po jej wcześniejszym odrzuceniu) materiału w kolejnych iteracjach w zależności od przyjętego kryterium optymalizacji. Celem przeprowadzanej podczas zajęć laboratoryjnych optymalizacji topologicznej jest określenie najlepszego rozkładu jednorodnego izotropowego materiału w projektowanym obszarze. Podczas realizacja procesu za pomocą algorytmu BESO wykorzystywano kryterium minimalizacji całkowitej energii odkształceń sprężystych E S. Przyjęta funkcja celu Q ma postać Q( X ) = ES (1) Wektor zmiennych decyzyjnych zdefiniowano jako X=[x 1, x 2,, x N ], gdzie N- liczba wszystkich elementów struktury. Energia odkształcenia sprężystego E S jest to energia potencjalna nagromadzona w ciele sprężystym przy odkształcaniu wywołanym obciążeniem. Całkowitą energia odkształceń równa jest pracy wykonanej przez siły zewnętrzne, określana jest z równania macierzowego 1 T 1 T E s = F U = U KU (2) 2 2 gdzie: K globalna macierz sztywności, U wektor przemieszczeń, F wektor wymuszenia, obciążenia struktury. W procesie optymalizacji uwzględniono następujące ograniczenia: objętościowe N i i 0 (3) i= 1 V ( X ) = V x V gdzie: V(X) zadana, pożądana objętość struktury optymalnej (końcowej topologii), V 0 objętość początkowa, projektowanego obszaru V i objętość pojedynczego elementu. 3

4 równania równowagi statycznej KU = F (4) Na podstawie równania (4) określane są przemieszczenia struktury za pomocą metody elementów skończonych. wartości zmiennych decyzyjnych X=[x 1, x 2,, x N ], gdzie x i - to zmienna przyjmująca wartości: 0 brak elementu w strukturze, 1 obecność elementu w strukturze. Należy podkreślić, że w praktyce zmienna x i przyjmowana przez algorytm BESO dla komórki usuwanej ze struktury zamiast zero ma bardzo małą wartość, na przykład: W trakcie symulacji numerycznych materiał usuwany jest z miejsc słabo wytężonych, wypełnione pozostają tylko obszary, gdzie jest on niezbędny do zapewnienia możliwości przenoszenia obciążeń. W końcowym etapie procesu otrzymywana jest nowa topologia składająca się z komórek wypełnionych materiałem oraz pustych. Najczęściej interpretacja graficzna otrzymanego rozkładu przedstawiana jest w postaci na przykład niebieskich i czarnych pól wypełniających projektowany obszar części (Rys.2b). Optymalny rozkład materiału opisany będzie przez odpowiednio zidentyfikowany zapis wektora zmiennych decyzyjnych X, którego wyrazy mogą przyjmować wartości: 0 lub 1. Podsumowując, algorytm BESO pozwala na otrzymanie optymalnej topologii o zadanej objętości. Podczas procesu optymalizacji zmniejszana jest masa konstrukcji (objętość), jednocześnie komórki struktury muszą przenosić coraz to większe obciążenia. Ważne jest, aby prędkość degradacji konstrukcji nie była zbyt duża. Zbyt szybka degradacja struktury może prowadzić do rozbieżności algorytmu. W rezultacie algorytm może generować błędy, których skutkiem będzie nieprawidłowe działanie programu. PRZEBIEG ĆWICZENIA W trakcie wykonywania ćwiczenia laboratoryjnego przeprowadzona zostanie optymalizacja topologiczna części w przestrzeni 2D. Prowadzący zajęcia przekaże każdemu zespołowi laboratoryjnemu główne wytyczne odnośnie projektowanych konstrukcji. Członkowie zespołów muszą wykonać następujące czynności: 1. Opisać projektowany obiekt: przyjąć rodzaj materiału (E, ν, ρ), zdefiniować początkowy rozmiar powierzchni części (a, b), przeprowadzić dyskretyzację części, określając rozmiar komórki Δx i ilość elementów N. Zalecane jest, aby stosunki a do Δx i b do Δx były liczbami całkowitymi oraz liczba elementów N była większa niż określić rodzaj podpór oraz punkty, w których element zostanie zamocowany, określić rodzaj obciążenia i punkt jego przyłożenia. 4

5 Sporządzić cztery wstępne konfiguracje projektowanego obiektu. Wykonać rysunki przedstawiające schematy projektowanego obiektu, na przykład tak jak przedstawiono to na rysunku 3. Rysunek 3. Wstępne konfiguracje projektowanego obiektu. 2. W udostępnionym oprogramowaniu wykonać model projektowanego obszaru. Uruchomienie aplikacji wymaga: Wykorzystując skrót na pulpicie uruchomić program MATLAB, Ustawić ścieżkę katalogu roboczego w postaci: C:\Users\kms\Desktop\Optymalizacja\Cwiczenie4 W Command Window wpisać poniższe polecenie uruchamiające aplikację i zatwierdzić (kliknąć Enter) Optymalizacja W nowym oknie (rysunek 4) : - zdefiniować początkową geometrię konstrukcji (wprowadzone dane zatwierdzamy przyciskiem Wczytaj nową geometrię ), - wprowadzić wymagany udział objętościowy struktury pierwotnej, jaki powinna posiadać struktura optymalna oraz uruchomić proces optymalizacji przyciskiem Wykonaj optymalizację, - proces optymalizacji wykonywany jest automatycznie. Na bieżąco można obserwować topologię oraz wartości udziału objętościowego i funkcji celu dla poszczególnych iteracji. W dolnej części okna będzie pojawiała się informacja o statusie procesu: Start optymalizacji, Koniec optymalizacji. 3. Przeprowadzić optymalizację topologiczną struktury. Narysować szkice rozwiązania optymalnego (Okno aplikacji może zostać zapisane do pliku graficznego poprzez zakładkę File i opcję Save as). Czynności powtórzyć dla wszystkich przyjętych konfiguracji wstępnych. 4. Przeprowadzić analizę wpływu rozmieszczenia podpór oraz obciążenia na kształt otrzymanego rozwiązania. 5

6 Rysunek 4. Widok okna wykorzystywanej aplikacji. 6

7 OPRACOWANIE WYNIKÓW Po przeprowadzeniu obliczeń numerycznych należy zapisać w tabeli wszystkie informacje niezbędne do wykonania sprawozdania z zajęć laboratoryjnych. Tab. 1 Tabele danych i wyników pomiarów Charakterystyka projektowanego obszaru Rodzaj materiału Moduł Younga Liczba Poissona Gęstość Szerokość obszaru Wysokość obszaru Numer wariantu Warianty optymalizacji topologicznej Podpora 1 Podpora2 Obciążenie Schemat rozwiązania optymalnego 1 x-.. N-. x- y-. Składowe siły: F x -.. F y - 2 x-.. N-. x- y-. Składowe siły: F x -.. F y - 3 x-.. N-. x- y-. Składowe siły: F x -.. F y - 4 x-.. N-... x- y-. Składowe siły: F x -.. F y - 7

8 SPRAWOZDANIE Sprawozdanie z ćwiczenia powinno zawierać: 1. Tabelkę identyfikacyjną. 2. Cel ćwiczenia. 3. Schematy badanych układów. 4. Tabelę pomiarów i wyników. 5. Szkice rozwiązań optymalnych. 6. Wnioski. 8

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 2

INSTRUKCJA DO ĆWICZENIA NR 2 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA UKŁADÓW MECHANCZNYCH Modelowanie fizyczne układu o jednym stopniu

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 1 Opracował: dr inż. Hubert Dębski I. Temat

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

Joanna Dulińska Radosław Szczerba Wpływ parametrów fizykomechanicznych betonu i elastomeru na charakterystyki dynamiczne wieloprzęsłowego mostu żelbetowego z łożyskami elastomerowymi Impact of mechanical

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

Metoda Elementów Skończonych - Laboratorium

Metoda Elementów Skończonych - Laboratorium Metoda Elementów Skończonych - Laboratorium Laboratorium 5 Podstawy ABAQUS/CAE Analiza koncentracji naprężenia na przykładzie rozciąganej płaskiej płyty z otworem. Główne cele ćwiczenia: 1. wykorzystanie

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku

Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku Nowe zadanie Oś Z jest domyślną osią działania grawitacji. W ustawieniach programu można przypisać dowolny kierunek działania grawitacji.

Bardziej szczegółowo

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA Z CAD 2. Kod przedmiotu: Ko 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn

Bardziej szczegółowo

Podczas wykonywania analizy w programie COMSOL, wykorzystywane jest poniższe równanie: 1.2. Dane wejściowe.

Podczas wykonywania analizy w programie COMSOL, wykorzystywane jest poniższe równanie: 1.2. Dane wejściowe. Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M3 Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Marcin Rybiński Grzegorz

Bardziej szczegółowo

Projektowanie Wirtualne bloki tematyczne PW I

Projektowanie Wirtualne bloki tematyczne PW I Podstawowe zagadnienia egzaminacyjne Projektowanie Wirtualne - część teoretyczna Projektowanie Wirtualne bloki tematyczne PW I 1. Projektowanie wirtualne specyfika procesu projektowania wirtualnego, podstawowe

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 1

INSTRUKCJA DO ĆWICZENIA NR 1 L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Szybkobieżne Pojazdy Gąsienicowe (16) nr 2, 2002 Alicja ZIELIŃSKA ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Streszczenie: W artykule przedstawiono wyniki obliczeń sprawdzających poprawność zastosowanych

Bardziej szczegółowo

Opis preprocesora graficznego dla programu KINWIR -I

Opis preprocesora graficznego dla programu KINWIR -I Preprocesor graficzny PREPROC (w zastosowaniu do programu KINWIR-I) Interaktywny program PREPROC.EXE oparty jest na środowisku Winteractera sytemu LAHEY. Umożliwia on tworzenie i weryfikację dyskretyzacji

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonej kratownicy

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Optymalizacja konstrukcji to bardzo ważny temat, który ma istotne znaczenie praktyczne. Standardowy proces projektowy wykorzystuje możliwości optymalizacji w niewielkim stopniu.

Bardziej szczegółowo

Determination of stresses and strains using the FEM in the chassis car during the impact.

Determination of stresses and strains using the FEM in the chassis car during the impact. Wyznaczanie naprężeń i odkształceń za pomocą MES w podłużnicy samochodowej podczas zderzenia. Determination of stresses and strains using the FEM in the chassis car during the impact. dr Grzegorz Służałek

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

Metoda Elementów Brzegowych LABORATORIUM

Metoda Elementów Brzegowych LABORATORIUM Akademia Techniczno-Humanistyczna W Bielsku-Białej Metoda Elementów Brzegowych LABORATORIUM INSTRUKCJE DO ĆWICZEŃ Ćwiczenie 1. Zapoznanie z obsługą systemu BEASY Celem ćwiczenia jest zapoznanie się z obsługą

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Technologie transmisji bezprzewodowych Numer ćwiczenia: 1 Temat: Badanie dipola półfalowego Cel ćwiczenia Celem ćwiczenia jest zapoznanie się

Bardziej szczegółowo

Badanie właściwości łuku prądu stałego

Badanie właściwości łuku prądu stałego Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

LABORATORIUM 5 / 6 1. ZAŁOŻENIE KONTA

LABORATORIUM 5 / 6 1. ZAŁOŻENIE KONTA LABORATORIUM 5 / 6 Systemy informatyczne w zarządzaniu produkcją Qcadoo MES Qcadoo MES - internetowa aplikacja do zarządzania produkcją dla Małych i Średnich Firm. Pozwala na zarządzanie i monitorowanie

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

ĆWICZENIE Nr 2 i 3. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

ĆWICZENIE Nr 2 i 3. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 2 i 3 Opracował: dr inż. Hubert Dębski I.

Bardziej szczegółowo

Rozdział 4: PIERWSZE KROKI

Rozdział 4: PIERWSZE KROKI Rozdział 4: PIERWSZE KROKI 4. Pierwsze kroki 4.1. Uruchomienie programu Program najłatwiej uruchomić za pośrednictwem skrótu na pulpicie, choć równie dobrze możemy tego dokonać poprzez Menu Start systemu

Bardziej szczegółowo

Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym

Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Analiza dynamiczna fundamentu blokowego obciążonego wymuszeniem harmonicznym Tomasz Żebro Wersja 1.0, 2012-05-19 1. Definicja zadania Celem zadania jest rozwiązanie zadania dla bloku fundamentowego na

Bardziej szczegółowo

Projektowanie inżynierskie Engineering Design

Projektowanie inżynierskie Engineering Design Załącznik nr 7 do Zarządzenia Rektora nr 10/1 z dnia 1 lutego 01r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu ETI 6/1 Nazwa modułu Projektowanie inżynierskie Engineering Design Nazwa modułu w języku angielskim

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH PROJEKT METODA ELEMENTÓW SKOŃCZONYCH z wykorzystaniem programu COMSOL Multiphysics 3.4 Prowadzący: Dr hab. prof. Tomasz Stręk Wykonali: Nieścioruk Maciej Piszczygłowa Mateusz MiBM IME rok IV sem.7 Spis

Bardziej szczegółowo

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny

Politechnika Śląska. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki. Praca dyplomowa inżynierska. Wydział Mechaniczny Technologiczny Politechnika Śląska Wydział Mechaniczny Technologiczny Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Praca dyplomowa inżynierska Temat pracy Symulacja komputerowa działania hamulca tarczowego

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna

Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna PTWII - projektowanie Ćwiczenie 4 Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 2011 2 Ćwiczenie

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

OPROGRAMOWANIE DEFSIM2

OPROGRAMOWANIE DEFSIM2 Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych OPROGRAMOWANIE DEFSIM2 Instrukcja użytkownika mgr inż. Piotr Trochimiuk, mgr inż. Krzysztof Siwiec, prof. nzw. dr hab. inż. Witold Pleskacz

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

1. Dostosowanie paska narzędzi.

1. Dostosowanie paska narzędzi. 1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D-3 POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D-3 Temat: Obliczenie częstotliwości własnej drgań swobodnych wrzecion obrabiarek Konsultacje: prof. dr hab. inż. F. Oryński

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

SYSTEMY MES W MECHANICE

SYSTEMY MES W MECHANICE SPECJALNOŚĆ SYSTEMY MES W MECHANICE Drugi stopień na kierunku MECHANIKA I BUDOWA MASZYN Instytut Mechaniki Stosowanej PP http://www.am.put.poznan.pl Przedmioty specjalistyczne będą prowadzone przez pracowników:

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym. Marek Klimczak

Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym. Marek Klimczak Przykład analizy nawierzchni jezdni asfaltowej w zakresie sprężystym Marek Klimczak Maj, 2015 I. Analiza podatnej konstrukcji nawierzchni jezdni Celem ćwiczenia jest wykonanie numerycznej analizy typowej

Bardziej szczegółowo

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA Laboratorium MES projekt Wykonali: Tomasz Donarski Prowadzący: dr hab. Tomasz Stręk Maciej Dutka Kierunek: Mechanika i budowa maszyn Specjalność:

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych-Projekt Prowadzący: Dr hab. Tomasz Stręk prof. nadzw. Wykonali : Grzegorz Paprzycki Grzegorz Krawiec Wydział: BMiZ Kierunek: MiBM Specjalność: KMiU Spis

Bardziej szczegółowo

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop. 2015 Spis treści Przedmowa do wydania pierwszego 7 Przedmowa do wydania drugiego 9

Bardziej szczegółowo

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU IX Konferencja naukowo-techniczna Programy MES w komputerowym wspomaganiu analizy, projektowania i wytwarzania MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Rozdział ten zawiera informacje o sposobie konfiguracji i działania Modułu OPC.

Rozdział ten zawiera informacje o sposobie konfiguracji i działania Modułu OPC. 1 Moduł OPC Moduł OPC pozwala na komunikację z serwerami OPC pracującymi w oparciu o model DA (Data Access). Dzięki niemu można odczytać stan obiektów OPC (zmiennych zdefiniowanych w programie PLC), a

Bardziej szczegółowo

Poszukiwanie formy. 1) Dopuszczalne przemieszczenie pionowe dla kombinacji SGU Ciężar własny + L1 wynosi 40mm (1/500 rozpiętości)

Poszukiwanie formy. 1) Dopuszczalne przemieszczenie pionowe dla kombinacji SGU Ciężar własny + L1 wynosi 40mm (1/500 rozpiętości) Poszukiwanie formy Jednym z elementów procesu optymalizacji konstrukcji może być znalezienie optymalnej formy bryły, takiej, by zostały spełnione wymagane założenia projektowe. Oczywiście są sytuacje,

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej. Metoda Elementów Skończonych Lab. Wykonali: Marta Majcher. Mateusz Manikowski.

Politechnika Poznańska. Zakład Mechaniki Technicznej. Metoda Elementów Skończonych Lab. Wykonali: Marta Majcher. Mateusz Manikowski. Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Wykonali: Marta Majcher Mateusz Manikowski MiBM KMU 2012 / 2013 Ocena.. str. 0 Spis treści Projekt 1. Analiza porównawcza

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Obrabiarki CNC. Nr 10

Obrabiarki CNC. Nr 10 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Obrabiarki CNC Nr 10 Obróbka na tokarce CNC CT210 ze sterowaniem Sinumerik 840D Opracował: Dr inż. Wojciech Ptaszyński Poznań, 17 maja,

Bardziej szczegółowo

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Doświadczalne

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Treści programowe przedmiotu

Treści programowe przedmiotu WM Karta (sylabus) przedmiotu Zarządzanie i Inżynieria Produkcji Studia stacjonarne pierwszego stopnia o profilu: ogólnoakademickim A P Przedmiot: Mechanika techniczna z wytrzymałością materiałów I Status

Bardziej szczegółowo

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range, PLAN SZKOLEŃ FEMAP Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

1. Umieść kursor w miejscu, w którym ma być wprowadzony ozdobny napis. 2. Na karcie Wstawianie w grupie Tekst kliknij przycisk WordArt.

1. Umieść kursor w miejscu, w którym ma być wprowadzony ozdobny napis. 2. Na karcie Wstawianie w grupie Tekst kliknij przycisk WordArt. Grafika w dokumencie Wprowadzanie ozdobnych napisów WordArt Do tworzenia efektownych, ozdobnych napisów służy obiekt WordArt. Aby wstawić do dokumentu obiekt WordArt: 1. Umieść kursor w miejscu, w którym

Bardziej szczegółowo

Zastosowania liniowe wzmacniaczy operacyjnych

Zastosowania liniowe wzmacniaczy operacyjnych UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Zastosowania liniowe wzmacniaczy operacyjnych Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert)

Rys.1. Technika zestawiania części za pomocą polecenia WSTAWIAJĄCE (insert) Procesy i techniki produkcyjne Wydział Mechaniczny Ćwiczenie 3 (2) CAD/CAM Zasady budowy bibliotek parametrycznych Cel ćwiczenia: Celem tego zestawu ćwiczeń 3.1, 3.2 jest opanowanie techniki budowy i wykorzystania

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Podstawy Informatyki Basic Informatics Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: ogólny Poziom studiów: studia I stopnia forma studiów: studia stacjonarne Rodzaj

Bardziej szczegółowo

Tworzenie nowego rysunku Bezpośrednio po uruchomieniu programu zostanie otwarte okno kreatora Nowego Rysunku.

Tworzenie nowego rysunku Bezpośrednio po uruchomieniu programu zostanie otwarte okno kreatora Nowego Rysunku. 1 Spis treści Ćwiczenie 1...3 Tworzenie nowego rysunku...3 Ustawienia Siatki i Skoku...4 Tworzenie rysunku płaskiego...5 Tworzenie modeli 3D...6 Zmiana Układu Współrzędnych...7 Tworzenie rysunku płaskiego...8

Bardziej szczegółowo

Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX

Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX Projektowanie i wytwarzanie form wtryskowych, przeznaczonych do produkcji wyprasek polimerowych,

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M2 Semestr V Metoda Elementów Skończonych prowadzący: dr hab. T. Stręk, prof. nadzw. wykonawcy: Grzegorz Geisler

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA MECHANIKA I BUDOWA MASZYN Projekt METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonał: Maciej Moskalik IMe MiBM

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH PROJEKT

METODA ELEMENTÓW SKOŃCZONYCH PROJEKT POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Wydział Budowy Maszyn, Kierunek Mechanika i Budowa Maszyn, Grupa KMU, Rok III,

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃOCZNYCH Projekt

METODA ELEMENTÓW SKOŃOCZNYCH Projekt METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.

Bardziej szczegółowo

BRIDGE CAD ABT - INSTRUKCJA OBSŁUGI

BRIDGE CAD ABT - INSTRUKCJA OBSŁUGI BRIDGE CAD ABT - INSTRUKCJA OBSŁUGI 1. Wiadomości ogólne. Program ABT służy do automatycznego generowania plików *.dat, wykorzystywanych w obliczeniach statycznych i wytrzymałościowych przyczółków mostowych

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4 Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4 Prowadzący: prof. nadzw. Tomasz Stręk Spis treści: 1.Analiza przepływu

Bardziej szczegółowo

Akademia Górniczo-Hutnicza

Akademia Górniczo-Hutnicza Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Kalibracja systemu wizyjnego z użyciem pakietu Matlab Kraków, 2011 1. Cel kalibracji Cel kalibracji stanowi wyznaczenie parametrów określających

Bardziej szczegółowo

Cel i zakres ćwiczenia

Cel i zakres ćwiczenia MIKROMECHANIZMY I MIKRONAPĘDY 2 - laboratorium Ćwiczenie nr 5 Druk 3D oraz charakteryzacja mikrosystemu Cel i zakres ćwiczenia Celem ćwiczenia jest charakteryzacja geometryczna wykonanego w ćwiczeniu 1

Bardziej szczegółowo

5.2. Pierwsze kroki z bazami danych

5.2. Pierwsze kroki z bazami danych 5.2. Pierwsze kroki z bazami danych Uruchamianie programu Podobnie jak inne programy, OO Base uruchamiamy z Menu Start, poprzez zakładkę Wszystkie programy, gdzie znajduje się folder OpenOffice.org 2.2,

Bardziej szczegółowo

Aparaty słuchowe Hi-Fi z Multiphysics Modeling

Aparaty słuchowe Hi-Fi z Multiphysics Modeling Aparaty słuchowe Hi-Fi z Multiphysics Modeling POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

Katedra Zarządzania i Inżynierii Produkcji 2013r. Materiały pomocnicze do zajęć laboratoryjnych

Katedra Zarządzania i Inżynierii Produkcji 2013r. Materiały pomocnicze do zajęć laboratoryjnych Materiały pomocnicze do zajęć laboratoryjnych 1 Używane w trakcie ćwiczeń moduły programu Autodesk Inventor 2008 Tworzenie złożenia Tworzenie dokumentacji płaskiej Tworzenie części Obserwacja modelu/manipulacja

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN

Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN WM Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia o profilu: ogólnoakademicki A P Przedmiot: Wytrzymałość Kod przedmiotu Status przedmiotu: obowiązkowy MBM S 0 6 6-_0 Język

Bardziej szczegółowo