Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI"

Transkrypt

1 Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

2 I. Zagadnienia do opracowania. 1. Charakterystyka przyrządów spektralnych: pryzmatycznych, siatkowych, interferometrów. 2. Zasada działania przyrządu spektralnego: a) różnica pomiędzy spektrografem a monochromatorem; b) układ optyczny spektrografu; c) element dyspersyjny: siatka, pryzmat; d) wielkości charakteryzujące przyrządy spektralne: obszar widmowy, zdolność rozdzielcza, dyspersja liniowa, świetlność spektrografu, powiększenie; e) aparaturowa szerokość linii widmowej. 3. Kamera CCD: a) budowa kamery CCD; b) zasada działania. 4. Charakterystyka czułości widmowej detektorów promieniowania. 5. Linie widmowe: a) kształt i szerokość linii widmowej; b) jakościowa i ilościowa analiza spektrum. 6. Kryteria rozróżnialności linii spektralnych. 7. Wielkości fotometryczne. II. Zadania doświadczalne. 1. Zapoznać się z układem pomiarowym przedstawionym na Zdjęciu 1. Zdjęcie 1. Widok stanowiska pomiarowego do rejestracji emisyjnych widm liniowych: 1 kamera CCD; 2 szczeliny; 3 spektrograf; 4 zasilacz lampy rtęciowej; 5 zestaw komputerowy; 6 lampa rtęciowa; 7 uchylne lusterka. Instytut Fizyki Doświadczalnej 1.

3 2. Włączyć zasilanie poszczególnych elementów układu. 1. Przed włączeniem zasilania skręcić obie szczeliny 2 na Zdjęciu 1 do minimum!!! 2. Wartość liczby zliczeń powinna być niższa od liczby Zachować następującą kolejność: włączyć listwę zasilającą, do której są podłączone kamera CCD oraz spektrograf upewniając się czy przełącznik umieszczony na obudowie zasilacza kamery jest ustawiony w pozycji II; włączyć komputer (włącznikiem na przedniej płycie obudowy); włączyć zasilanie spektrografu (włącznikiem po prawej stronie obudowy); włączyć lampę rtęciową (włącznikiem na tylnej ściance zasilacza); lampę rtęciową należy włączyć przynajmniej pół godziny przed rozpoczęciem pomiarów. 3. Uruchomić program pod nazwą Andor Solis for Spectroscopy umożliwiający sterowanie spektrografem oraz kamerą CCD poprzez wybór ikony umieszczonej na pulpicie 1, Zdjęcie 2. Zdjęcie 2. Widok ekranu po uruchomieniu systemu: 1 ikona programu Andor Solis for Spectroscopy sterującego spektrografem i kamerą CCD. 4. Przed rozpoczęciem pomiarów sprawdzić, czy temperatura kamery CCD widoczna na wskaźniku 1 na Zdjęciu 3 ustaliła się na 60 ⁰C. Instytut Fizyki Doświadczalnej 2.

4 5. Wybrać jako tryb pracy kamery tryb FVB. W tym celu dokonać kolejno następujących wyborów w menu: Acquisition, Setup Acquisition, Setup CCD, Readout Mode 16,25 μs a szybkość przesuwu Readout Pixel Shift ustalić jako 100 khz AT 16 bit. 6. Na podstawie danych z punktu II.5. obliczyć efektywny czas pracy kamery CCD. 7. Zarejestrować widma lampy w funkcji czasu ekspozycji kamery wykonując kolejne polecenia doświadczalne z punktów II.8. II Określić metodę zbierania danych. Wyboru metody zbierania danych pomiarowych dokonuje się poprzez wybranie kolejno w menu: Acquisition, Setup Data Type lub naciskając kombinację klawiszy Ctrl+D. Przy rejestracji widm emisji ustawić odczyt danych z kamery z korekcją tła ang. Counts (Background corrected). 9. Dla najkrótszego czasu ekspozycji ustawić jak najmniejsze szerokości szczelin 2, Zdjęcie 1, tak aby liczba zliczeń nie przekraczała Używając ikony rotora siatek dyfrakcyjnych 6, Zdjęcie 3, wybrać jedną siatkę dyfrakcyjną, a następnie przy pomocy suwaka 3, Zdjęcie 3 określić obserwowany zakres spektralny. W przypadku lampy rtęciowej należy wybrać siatkę o 1200 rys/mm oraz zakres spektralny z centrum przy 580 nm. Zdjęcie 3. Widok ekranu programu sterującego spektrografem i kamerą CCD: 1 wskaźnik temperatury pracy kamery CCD (kolor czerwony kamera nie osiągnęła zadanej temperatury, kolor niebieski kamera osiągnęła zadaną temperaturę); 2 okno dialogowe, wywołane z menu głównego Hardware, umożliwiające uruchomienie chłodzenia kamery CCD oraz wpisanie temperatury; 3 suwak prezentujący wybrany zakres spektralny, obserwowany na kamerze CC;, 4 zakładki Detector i Grating umożliwiające wpisanie przesunięcia względnego dla detektora i siatki dyfrakcyjnej; 5 menu przycisków; 6 zakładka umożliwiająca wybór siatki dyfrakcyjnej; 7 wybór modu pracy kamery CCD i wyświetlania wyników. 11. Zasłonić szczelinę wejściową spektrografu, zarejestrować tło naciskając Ctrl+B lub w menu wybrać kolejno Acquisition, Take Background. Instytut Fizyki Doświadczalnej 3.

5 12. Zarejestrować i zapisać widma dla 11 różnych czasów ekspozycji kamery: 10 µs, 50 µs, 100 µs, 500 µs, 1 ms, 5 ms, 10 ms, 50 ms, 1 ms, 500 ms, 1 s. Wszystkie zapisane widma należy scałkować w tych samych granicach i utworzyć wykres intensywność w funkcji czasu ekspozycji kamery. 13. Zarejestrowane widma można zapisać na kilka sposobów; w celu poddania ich dalszej obróbce należy zapisać je w postaci kodu ASCII wybierając kolejno następujące opcje w menu: File, Export as ASCII, Signal lub Background, Reference, Lamp Calibration. W trakcie wykonywania ćwiczenia pamiętać, że wraz ze wzrostem czasu ekspozycji i szerokości szczeliny wzrasta tło, a w związku z tym widmo tła należy rejestrować każdorazowo po zmianie jednego z wyżej wymieniowych parametrów przysłaniając źródło światła. 14. Oszacować efektywny czas pracy kamery CCD i porównać z obliczonym. 15. Zarejestrować widma lampy rtęciowej w funkcji szerokości szczeliny wejściowej spektrografu zmienianej w zakresie od 0,05 do 1,5 mm wykonując kolejno czynności II.16. II Ustawić czas ekspozycji kamery większy lub równy efektywnemu. 17. Skręcić do minimum szerokości obu szczelin 2 na Zdjęciu 1, a przy pomocy suwaka 3, Zdjęcie 3 określić obserwowany zakres spektralny. 18. Zarejestrować i zapisać 12 widm w funkcji szerokości szczeliny wejściowej spektrografu, zmieniając jej szerokość od 0,05 do 1,5 mm. 19. Scałkować zmierzone widma a otrzymane wartości nanieść na wykres typu : I = I₀*r + B, gdzie I₀ natężenie początkowe, r szerokość szczelny, B wielkość stała związana z poziomem tła. 20. Sprawdzić kryterium rozdzielczości Rayleigha dla dwóch wybranych linii emisyjnych. W tym celu wykonać kolejno polecenia z punktów II.21. II Ustawić czas ekspozycji kamery CCD większy lub równy efektywnemu. 22. Używając ikony rotora siatek dyfrakcyjnych 6, Zdjęcie 3 wybrać siatkę dyfrakcyjną o liczbie rys 1200 na mm. 23. Przy pomocy suwaka 3, Zdjęcie 3 ustalić obserwowany zakres spektralny z centrum na 580 nm. 24. Ustawić szerokości obu szczelin 2 na Zdjęciu 1 na minimum. 25. Zarejestrować i zapisać 12 widm w funkcji szerokości szczeliny wejściowej spektrografu, zmieniając ją od 0,05 do 1,5 mm. 26. Zarejestrowane widma poddać obróbce poprzez dopasowanie pasm krzywą Lorentza. 27. Określić spełnienie kryterium Rayleigha dla dwóch wybranych linii widmowych. 28. Zarejestrować widma emisyjne dla dwóch siatek dyfrakcyjnych: 100 rys/mm i 1200 rys/mm wykorzystując opcję sklejania widm postępując według opisu z punktów II.29. II Używając ikony rotora siatek dyfrakcyjnych 6, Zdjęcie 3 wybrać siatkę dyfrakcyjną o liczbie rys 100 na mm. 30. Ustalić zakres pomiarowy taki sam dla obu siatek np.: zakres długości fal od 400 do 700 nm. 31. Zarejestrować i zapisać widmo dla siatki 100 rys/mm. Instytut Fizyki Doświadczalnej 4.

6 32. Używając ikony rotora siatek dyfrakcyjnych 6, Zdjęcie 3 wybrać siatkę dyfrakcyjną o liczbie rys 1200 na mm. 33. Użyć opcji zszywania widma wybierając kolejno: Acquisition, Setup Acquisition, Step n Glue 1, Zdjęcie 4. Dobrać zakres pomiarowy oraz stopień przekrywania się widm. Zdjęcie 4. Ekran programu sterującego spektrografem i kamerą CCD pokazujący menu umożliwiające pomiar widma poprzez sklejanie zakresów pomiarowych: 1 wybór zakresu długości fal. 34. Zarejestrować i zapisać widmo dla siatki 1200 rys/mm. 35. Porównać pomiary wykonane dla dwóch siatek dyfrakcyjnych w punktach II.31. i II.34. III. Zestaw przyrządów. 1. Spektrograf firmy Andor Shamrock, model SR 500i. 2. Kamera CCD firmy Andor, model idus Lampa rtęciowa. 4. Zasilacz lampy rtęciowej. 5. Szczeliny regulowane. 6. Lusterka uchylne. 7. Zestaw komputerowy. Instytut Fizyki Doświadczalnej 5.

7 IV. Literatura. 1. W. Demtröder Spektroskopia laserowa, PWN, Warszawa, R.I. Sołouchin Optyka i fizyka atomowa, PWN, Warszawa Sz. Szczeniowski Fizyka doświadczalna, Tom IV, PWN, Warszawa D. Kunisz Fizyczne podstawy emisyjnej analizy widmowej, PWN, Warszawa J.H. Moore, C.C. Davies, M.A. Coplan Building Scientific Apparatus, Westview Press, A.P. Arya Fundamentals of Atomic Physics, Allyn & Bacon, Inc., Boston W. Demtröder Laser Spectroscopy. Basic Concepts and Instrumentation, Springer, S.P. Davies Diffraction Grating Spectrographs, Winston, N.Y P. Bousquet Spectroscopy and its Instrumentation, A. Hilger, London A.P. Thorne Spectrophysics, Chapman and Hall Science Paperbacks, London F. Mayinger, O. Feldmann Optical Measurements, Springer, Instytut Fizyki Doświadczalnej 6.

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Stany energetyczne atomów. 2. Liczby kwantowe stanów stacjonarnych elektronów

Bardziej szczegółowo

Wyznaczanie energii dysocjacji jodu na podstawie widma absorpcji. Ćwiczenie 18

Wyznaczanie energii dysocjacji jodu na podstawie widma absorpcji. Ćwiczenie 18 Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 18 Wyznaczanie energii dysocjacji jodu na podstawie widma absorpcji I. Zagadnienia do opracowania.

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy światła. 2. Pochodzenie pasm energetycznych w

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Budowa krystaliczna ciał stałych: a) sieć krystaliczna; b) komórka elementarna;

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 13 : Dyfrakcja wiązki elektronów na I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Podstawy teorii pasmowej. 2. Klasyfikacja ciał stałych w oparciu o teorię pasmową.

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w

Bardziej szczegółowo

Wyznaczanie energii dysocjacji molekuły jodu (I 2 )

Wyznaczanie energii dysocjacji molekuły jodu (I 2 ) S1 Wyznaczanie energii dysocjacji molekuły jodu (I 2 ) 1 Cel ćwiczenia Bezpośrednim celem ćwiczenia jest wyznaczenie energii dysocjacji molekuły I 2. W trakcie przygotowywania doświadczenia oraz realizacji

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Podstawy teorii pasmowej. 2. Klasyfikacja ciał stałych w oparciu o teorię pasmową.

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieniowania rentgenowskiego. 2. Budowa lampy rentgenowskiej.

Bardziej szczegółowo

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego

II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego 1 II. Badanie charakterystyki spektralnej źródła termicznego promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej termicznego źródła promieniowania (lampa halogenowa)

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fizyczny charakter wiązań w cząsteczkach. 2. Elektryczne momenty dipolowe cząsteczek.

Bardziej szczegółowo

DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH. Ćwiczenie nr 3 Detektor optyczny do pomiarów fluorescencyjnych

DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH. Ćwiczenie nr 3 Detektor optyczny do pomiarów fluorescencyjnych DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH Ćwiczenie nr 3 Detektor optyczny do pomiarów fluorescencyjnych Cel ćwiczenia: Celem ćwiczenia jest zaznajomienie się z zasadą działania i zastosowaniami detektora optycznego

Bardziej szczegółowo

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych

Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Stanowisko do badania zjawiska tłumienia światła w ośrodkach materialnych Na rys. 3.1 przedstawiono widok wykorzystywanego w ćwiczeniu stanowiska pomiarowego do badania zjawiska tłumienia światła w ośrodkach

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Ruchy jąder w cząsteczkach dwu- i wieloatomowych: a) model oscylatora harmonicznego;

Bardziej szczegółowo

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego

1 Źródła i detektory. I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego 1 I. Badanie charakterystyki spektralnej nietermicznych źródeł promieniowania elektromagnetycznego Cel ćwiczenia: Wyznaczenie charakterystyki spektralnej nietermicznego źródła promieniowania (dioda LD

Bardziej szczegółowo

MODULATOR CIEKŁOKRYSTALICZNY

MODULATOR CIEKŁOKRYSTALICZNY ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO

BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO ZADANIE 9 BADANIE PROMIENIOWANIA CIAŁA DOSKONALE CZARNEGO Wstęp KaŜde ciało o temperaturze wyŝszej niŝ K promieniuje energię w postaci fal elektromagnetycznych. Widmowa zdolność emisyjną ciała o temperaturze

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fale elektromagnetyczne i ich własności. 2. Polaryzacja światła: a) światło

Bardziej szczegółowo

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego

γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego γ6 Liniowy Model Pozytonowego Tomografu Emisyjnego Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie zasady działania pozytonowego tomografu emisyjnego. W doświadczeniu użyjemy detektory scyntylacyjne

Bardziej szczegółowo

Ćwiczenie 1. Parametry statyczne diod LED

Ćwiczenie 1. Parametry statyczne diod LED Ćwiczenie. Parametry statyczne diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi właściwościami i charakterystykami diod LED. Poznanie ograniczeń i sposobu zasilania tego typu

Bardziej szczegółowo

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach. Zagadnienia, które należy znać przed wykonaniem ćwiczenia: Dyfrakcja światła to zjawisko fizyczne zmiany kierunku rozchodzenia

Bardziej szczegółowo

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie

Bardziej szczegółowo

ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 4 MIKROCYTOMETR DO BADANIA KOMÓREK BIOLOGICZNYCH

ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM. Ćwiczenie nr 4 MIKROCYTOMETR DO BADANIA KOMÓREK BIOLOGICZNYCH ZASTOSOWANIE MIKROSYSTEMÓW W MEDYCYNIE LABORATORIUM Ćwiczenie nr 4 MIKROCYTOMETR DO BADANIA KOMÓREK BIOLOGICZNYCH Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z budową i warunkami działania mikrocytometru

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia

Bardziej szczegółowo

PROMIENIOWANIE RENTGENOWSKIE

PROMIENIOWANIE RENTGENOWSKIE PROMIENIOWANIE RENTGENOWSKIE 1. Zagadnienia teoretyczne Promieniowanie rentgenowskie, poziomy energetyczne w atomie, stała Planck a i metody wyznaczania jej wartości, struktura krystalograficzna, dyfrakcyjne

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fale elektromagnetyczne i ich własności. 2. Polaryzacja światła: a) światło

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

EMISJA POLOWA. przechwytywania obrazów wideo FAST Capture i kartą video AVMaster Video v.2.5. FAST Multimedia (wewnątrz komputera);

EMISJA POLOWA. przechwytywania obrazów wideo FAST Capture i kartą video AVMaster Video v.2.5. FAST Multimedia (wewnątrz komputera); EMISJA POLOWA 1. Zagadnienia teoretyczne Elektronowa teoria budowy metali, rodzaje emisji elektronów, emisja polowa, praca wyjścia i metody jej wyznaczania, mikroskop polowy budowa i zasada działania,

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis

Bardziej szczegółowo

SPEKTROSKOPIA RENTGENOWSKA. Demonstracja instrukcja wykonawcza. goniometr

SPEKTROSKOPIA RENTGENOWSKA. Demonstracja instrukcja wykonawcza. goniometr ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Demonstracja instrukcja wykonawcza 1 Wykaz przyrządów a. Urządzenie RTG z anodą wolframową. b. Goniometr z kryształem analizującym LiF. c. Detektor promieniowania

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 3 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY

EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY ĆWICZENIE 91 EFEKT FOTOELEKTRYCZNY ZEWNĘTRZNY Instrukcja wykonawcza 1. Wykaz przyrządów 1. Monochromator 5. Zasilacz stabilizowany oświetlacza. Oświetlacz 6. Zasilacz fotokomórki 3. Woltomierz napięcia

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności

Bardziej szczegółowo

Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń. K-5a I PRACOWNIA FIZYCZNA

Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń. K-5a I PRACOWNIA FIZYCZNA Kalibracja czujnika temperatury zestawu COACH Lab II+. Piotr Jacoń K-5a I PRACOWNIA FIZYCZNA 21. 02. 2011 I. Cel ćwiczenia: 1. Zapoznanie się z zestawem pomiarowym Coach Lab II+. 2. Kalibracja czujnika

Bardziej szczegółowo

Pomiar temperatury procesora komputera klasy PC, standardu ATX wykorzystanie zestawu COACH Lab II+. Piotr Jacoń K-4 I PRACOWNIA FIZYCZNA

Pomiar temperatury procesora komputera klasy PC, standardu ATX wykorzystanie zestawu COACH Lab II+. Piotr Jacoń K-4 I PRACOWNIA FIZYCZNA Pomiar temperatury procesora komputera klasy PC, standardu ATX wykorzystanie zestawu COACH Lab II+. Piotr Jacoń K-4 I PRACOWNIA FIZYCZNA 21. 02. 2011 I. Cel ćwiczenia: 1. Zapoznanie się poprzez samodzielny

Bardziej szczegółowo

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe

Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Ćwiczenie Nr 11 Fotometria

Ćwiczenie Nr 11 Fotometria Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 20 : Badanie absorpcji światła molekuł I. Zagadnienia do opracowania. 1. 2. 3. 4. 5. 6. 7. Promieniowanie

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik metodyczny dla nauczycieli Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu.

Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. Ćwiczenie nr 5 Doświadczenie Franka-Hertza. Pomiar energii wzbudzenia atomów neonu. A. Opis zagadnienia I. Doświadczenie Franka-Hertza W 1914 roku James Franck i Gustav Hertz przeprowadzili doświadczenie,

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa

Bardziej szczegółowo

Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru.

Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru. Analiza widmowa spektralnych lamp gazowych przy użyciu spektrogoniometru. Cel ćwiczenia: Część I. 1. Wyznaczenie współczynnika załamania światła. 2. Wyznaczenie stałej siatki dyfrakcyjnej. Część II. 1.

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Prawo Plancka. 2. Model atomu i postulaty kwantowe Bohra. 3. Energia elektronu

Bardziej szczegółowo

OP6 WIDZENIE BARWNE I FIZYCZNE POCHODZENIE BARW W PRZYRODZIE

OP6 WIDZENIE BARWNE I FIZYCZNE POCHODZENIE BARW W PRZYRODZIE OP6 WIDZENIE BARWNE I FIZYCZNE POCHODZENIE BARW W PRZYRODZIE I. Wymagania do kolokwium: 1. Fizyczne pojęcie barwy. Widmo elektromagnetyczne. Związek między widmem światła i wrażeniem barwnym jakie ono

Bardziej szczegółowo

J Wyznaczanie względnej czułości widmowej fotorezystorów

J Wyznaczanie względnej czułości widmowej fotorezystorów J 10.1. Wyznaczanie względnej czułości widmowej fotorezystorów INSTRUKCJA WYKONANIA ZADANIA Obowiązujące zagadnienia teoretyczne: 1. Podstawy teorii pasmowej ciał stałych metale, półprzewodniki, izolatory

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 13

Instrukcja do ćwiczenia laboratoryjnego nr 13 Instrukcja do ćwiczenia laboratoryjnego nr 13 Temat: Charakterystyki i parametry dyskretnych półprzewodnikowych przyrządów optoelektronicznych Cel ćwiczenia. Celem ćwiczenia jest poznanie budowy, zasady

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 15 : Wyznaczanie ładunku właściwego e/m elektronu I. Zagadnienia do opracowania. 1. Ładunek punktowy

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 5

Instrukcja do ćwiczenia laboratoryjnego nr 5 Instrukcja do ćwiczenia laboratoryjnego nr 5 Temat: Charakterystyki statyczne tranzystorów bipolarnych Cel ćwiczenia. Celem ćwiczenia jest poznanie charakterystyk prądowonapięciowych i wybranych parametrów

Bardziej szczegółowo

Miernik promieniowania optycznego HD 2402

Miernik promieniowania optycznego HD 2402 Instrukcja Obsługi Ver. 2012.06 Miernik promieniowania optycznego HD 2402 EKOHIGIENA APARATURA Ryszard Putyra Sp. J. Ul. Strzelecka 19 55-300 Środa Śląska Tel.: 071-31-76-850 Fax: 071-31-76-851 www.ekohigiena.com.pl

Bardziej szczegółowo

Ćwiczenie nr 82: Efekt fotoelektryczny

Ćwiczenie nr 82: Efekt fotoelektryczny Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny

Bardziej szczegółowo

Ć W I C Z E N I E N R J-1

Ć W I C Z E N I E N R J-1 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA DETEKCJI PROMIENIOWANIA JĄDROWEGO Ć W I C Z E N I E N R J-1 BADANIE CHARAKTERYSTYKI LICZNIKA SCYNTYLACYJNEGO

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu

Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu Państwowa Wyższa Szkoła Zawodowa im. Prezydenta Stanisława Wojciechowskiego w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 10 Wyznaczanie współczynnika załamania światła metodą najmniejszego odchylenia

Bardziej szczegółowo

( L ) I. Zagadnienia. II. Zadania

( L ) I. Zagadnienia. II. Zadania ( L ) I. Zagadnienia 1. Promieniowanie X w diagnostyce medycznej powstawanie, właściwości, prawo osłabienia. 2. Metody obrazowania naczyń krwionośnych. 3. Angiografia subtrakcyjna. II. Zadania 1. Wykonanie

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Kaliszu

Państwowa Wyższa Szkoła Zawodowa w Kaliszu Państwowa Wyższa Szkoła Zawodowa w Kaliszu Ć wiczenia laboratoryjne z fizyki Ćwiczenie 4 Dyfrakcja na szczelinie przy użyciu lasera relacja Heisenberga Kalisz, luty 2005 r. Opracował: Ryszard Maciejewski

Bardziej szczegółowo

Źródła i detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH.

Źródła i detektory IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWODNIKACH. IV. ZJAWISKO FOTOELEKTRYCZNE WEWNĘTRZNE W PÓŁPRZEWONIKACH. Cel ćwiczenia: Wyznaczenie podstawowych parametrów spektralnych fotoprzewodzącego detektora podczerwieni. Opis stanowiska: Monochromator-SPM-2

Bardziej szczegółowo

Ciało Doskonale Czarne

Ciało Doskonale Czarne Marcin Bieda Ciało Doskonale Czarne (Instrukcja obsługi) Aplikacja została zrealizowana w ramach projektu e-fizyka, współfinansowanym przez Unię Europejską w ramach Europejskiego Funduszu Społecznego (POKL)

Bardziej szczegółowo

IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR

IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR IR I 11. IDENTYFIKACJA GRUP FUNKCYJNYCH W WIDMACH IR Celem ćwiczenia jest zapoznanie się z techniką wykonywania widm związków w postaci pastylek wykonanych z bromku potasu oraz interpretacja otrzymanych

Bardziej szczegółowo

Spektrometry Ramana JASCO serii NRS-5000/7000

Spektrometry Ramana JASCO serii NRS-5000/7000 Spektrometry Ramana JASCO serii NRS-5000/7000 Najnowsza seria badawczych, siatkowych spektrometrów Ramana japońskiej firmy Jasco zapewnia wysokiej jakości widma. Zastosowanie najnowszych rozwiązań w tej

Bardziej szczegółowo

Opis przycisków sterujących sufitem świetlnym

Opis przycisków sterujących sufitem świetlnym Ćwiczenie. Temat: Praca wzrokowa w zmiennych warunkach oświetlenia z wykorzystaniem aparatu krzyżowego Przygotowanie teoretyczne jak dla ćwiczenia z tomu III podręcznika. Aparatura i pomoce dydaktyczne

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V. Agropian System

STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V. Agropian System STEROWNIK LAMP LED MS-1 Konwerter sygnału 0-10V Agropian System Opis techniczny Instrukcja montażu i eksploatacji UWAGA! Przed przystąpieniem do pracy ze sterownikiem należy zapoznać się z instrukcją.

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza

ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia

Bardziej szczegółowo

INSTRUKCJA DO OPROGRAMOWANIA KOMPUTEROWEGO

INSTRUKCJA DO OPROGRAMOWANIA KOMPUTEROWEGO INSTRUKCJA DO OPROGRAMOWANIA KOMPUTEROWEGO DLA LEKKIEJ PŁYTY DO BADAŃ DYNAMICZNYCH HMP LFG WYMAGANE MINIMALNE PARAMETRY TECHNICZNE: SPRZĘT: - urządzenie pomiarowe HMP LFG 4 lub HMP LFG Pro wraz z kablem

Bardziej szczegółowo

Opis programu Konwersja MPF Spis treści

Opis programu Konwersja MPF Spis treści Opis programu Konwersja MPF Spis treści Ogólne informacje o programie...2 Co to jest KonwersjaMPF...2 Okno programu...2 Podstawowe operacje...3 Wczytywanie danych...3 Przegląd wyników...3 Dodawanie widm

Bardziej szczegółowo

SpinWorks. Manual dla studentów III roku Chemii, licencjat - Spektrochemia

SpinWorks. Manual dla studentów III roku Chemii, licencjat - Spektrochemia SpinWorks Program SpinWorks służy do procesowania widm NMR jedno- i dwuwymiarowych. Umożliwia również symulację widm NMR. SpinWorks jest programem darmowym. Można go pobrać ze strony: www.columbia.edu/cu/chemistry/groups/nmr/spinworks.html.

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Procesy przenoszenia ciepła: a) przewodzenie ciepła: strumień energii, gęstość

Bardziej szczegółowo

Zworka amp. C 1 470uF. C2 100pF. Masa. R pom Rysunek 1. Schemat połączenia diod LED. Rysunek 2. Widok płytki drukowanej z diodami LED.

Zworka amp. C 1 470uF. C2 100pF. Masa. R pom Rysunek 1. Schemat połączenia diod LED. Rysunek 2. Widok płytki drukowanej z diodami LED. Ćwiczenie. Parametry dynamiczne detektorów i diod LED. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi parametrami dynamicznymi diod LED oraz detektorów. Poznanie możliwych do uzyskania

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania

Bardziej szczegółowo

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.

Bardziej szczegółowo

( S ) I. Zagadnienia. II. Zadania

( S ) I. Zagadnienia. II. Zadania ( S ) I. Zagadnienia 1. Warunki prawidłowego wykonywania zdjęć rentgenowskich. 2. Skanowanie zdjęć i ocena wpływu ekspozycji na jakość zdjęcia. 3. Dawka i moc dawki, jednostki; pomiary mocy dawki promieniowania

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Fizyka atomowa i jądrowa

Fizyka atomowa i jądrowa Podręcznik zeszyt ćwiczeń dla uczniów Fizyka atomowa i jądrowa Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Optyka instrumentalna

Optyka instrumentalna Optyka instrumentalna wykład 9 4 maja 2017 Wykład 8 Przyrządy optyczne Oko ludzkie Lupa Okular Luneta, lornetka Teleskopy zwierciadlane Mikroskop Parametry obiektywów, rozdzielczość Oświetlenie (dia, epi,

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO. Instrukcja wykonawcza ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Instrukcja wykonawcza 1 Wykaz przyrządów a. Generator AG 1022F. b. Woltomierz napięcia przemiennego. c. Miliamperomierz prądu przemiennego. d. Zestaw składający

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Badanie absorpcji światła molekuł wieloatomowych na przykładzie chlorofilu A i rodaminy 6G. Ćwiczenie 20

Badanie absorpcji światła molekuł wieloatomowych na przykładzie chlorofilu A i rodaminy 6G. Ćwiczenie 20 Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 20 Badanie absorpcji światła molekuł wieloatomowych na przykładzie chlorofilu A i rodaminy 6G I. Zagadnienia

Bardziej szczegółowo

SPEKTROMETRIA FLUORESCENCYJNA CZĄSTECZKOWA. Spektrofluorymetryczne oznaczanie ryboflawiny.

SPEKTROMETRIA FLUORESCENCYJNA CZĄSTECZKOWA. Spektrofluorymetryczne oznaczanie ryboflawiny. SPEKTROMETRIA FLUORESCENCYJNA CZĄSTECZKOWA Spektrofluorymetryczne oznaczanie ryboflawiny. Dr Dorota Sieńko, Zakład Chemii Analitycznej i Analizy Instrumentalnej, Wydział Chemii UMCS w Lublinie A. Cel ćwiczenia:

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię

Bardziej szczegółowo

WYZNACZANIE OGNISKOWYCH SOCZEWEK

WYZNACZANIE OGNISKOWYCH SOCZEWEK WYZNACZANIE OGNISKOWYCH SOCZEWEK Cel ćwiczenia:. Wyznaczenie ogniskowej cienkiej soczewki skupiającej.. Wyznaczenie ogniskowej cienkiej soczewki rozpraszającej (za pomocą wcześniej wyznaczonej ogniskowej

Bardziej szczegółowo