AKUSTYKA NAWIEWNIKÓW OKIENNYCH I ŚCIENNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "AKUSTYKA NAWIEWNIKÓW OKIENNYCH I ŚCIENNYCH"

Transkrypt

1 AKUSTYKA NAWIEWNIKÓW OKIENNYCH I ŚCIENNYCH Coraz częściej użytkownicy budynków borykają się z problemem nadmiernego hałasu przenikającego do pomieszczeń z zewnątrz. Wraz z rosnącym rozwojem gospodarczym kraju problem ten dotyka nie tylko mieszkańców dużych centrów aglomeracji miejskich ale pojawia się tam gdzie do niedawna o hałasie nikt nie słyszał. Większość budynków w Polsce przeznaczonych do przebywania ludzi wyposażona jest w instalację wentylacji grawitacyjnej bądź mechanicznej wywiewnej. Żeby instalacja w takich budynkach działała konieczne jest zapewnienie doprowadzenia powietrza do pomieszczenia. Niestety, wraz z dopływającym powietrzem do pomieszczeń przedostaje się hałas, zjawisko wysoce niepożądane. Warto by więc przyjrzeć się bliżej zjawisku hałasu oraz przeanalizować w jaki sposób można zabezpieczyć pomieszczenia a tym samym użytkowników. Na początek trochę pojęć podstawowych związanych z akustyką. Nazewnictwo zastosowane poniżej jest zgodne z normą PN-B-02153:2002 budowlana. Terminologia, symbole literowe i jednostki. Akustyka 1. Pojęcia podstawowe i coś o dźwięku Hałas wszelkie niepożądane, nieprzyjemne, dokuczliwe, uciążliwe lub szkodliwe dźwięki oddziałujące na człowieka. Dźwięk(fala akustyczna) rozprzestrzeniające się falowo drganie akustyczne. Drganie akustyczne ruch cząstek ośrodka sprężystego względem ich położenia. Okres drgań (s) najmniejszy przedział czasu, po którym powtarzają się te same stany okresowych drgań akustycznych. Częstotliwość f (Hz) odwrotność okresu drgań liczbowo równa liczbie okresów drgań w ciągu 1 s. Pasmo częstotliwości zbiór częstotliwości zawartych między dwiema częstotliwościami granicznymi. Dźwięk słyszalny dźwięk wywołujący wrażenie słuchowe. Infradźwięk dźwięk, którego widmo jest zawarte w paśmie częstotliwości od 1 Hz do 20 Hz. Ultradźwięk dźwięk, którego widmo zawarte jest w paśmie częstotliwości powyżej 16 khz. Dźwięk powietrzny dźwięk powstający i rozprzestrzeniający się w powietrzu. Szum dźwięk, którego zmienność w czasie w danym punkcie przestrzeni jest opisana funkcją losową. 1/11

2 Ciśnienie statyczne ps (Pa) ciśnienie, które istnieje w danym punkcie ośrodka, gdy nie ma w nim drgań akustycznych; jest to ciśnienie atmosferyczne. Ciśnienie akustyczne p (Pa) różnica między ciśnieniem istniejącym w danym punkcie ośrodka w chwili przejścia fali akustycznej a ciśnieniem statycznym. Moc akustyczna P (W) ilość energii wypromieniowanej przez źródło dźwięku w jednostce czasu. Izolacyjność akustyczna odporność przegrody na przenoszenie dźwięków powietrznych lub dźwięków uderzeniowych Coś o dźwięku W ujęciu fizycznym fale dźwiękowe są podłużnymi falami mechanicznymi a sam dźwięk jest szczególnym zjawiskiem towarzyszącym rozchodzeniu się fal. Szczególność tego zjawiska polega min. na konieczności istnienia ośrodka materialnego: gazu, cieczy lub ciała stałego. (Stąd wszystkie dźwięki w przestrzeni kosmicznej towarzyszące filmom s.f. są jedynie miłym dla ucha dodatkiem a w rzeczywistości czymś niespotykanym. Jak to ktoś napisał W przestrzeni kosmicznej nikt nie usłyszy Twojego krzyku...) Materialne cząstki ośrodka, w którym rozchodzi się fala, drgają wzdłuż prostej pokrywającej się z kierunkiem poruszającej się fali. Im gęściej ułożone cząstki tym prędkość dźwięku jest większa. Np. prędkość dźwięku w powietrzu wynosi ok. 330 m/s ale w żelazie wartość ta jest dużo większa i wynosi 5100 m/s. (Tu powinien nam się przypomnieć obrazek z wielu filmów człowiek przykładający ucho do szyny kolejowej, sprawdzający czy nadjeżdża pociąg...) Zakres częstotliwości fal mechaniczny jest bardzo duży, ale fale dźwiękowe, które w działaniu na ludzkie ucho i mózg wywołują wrażenie słyszenia zawierają się w przedziale od 20 do Hz. Fale słyszalne powstają w wyniku drgania strun (np. głosowych), drgań słupów powietrza (organy) oraz drgań różnych płyt i membran (praca głośnika). Sam proces rozchodzenia dźwięku w powietrzu bardzo ciekawie opisał w swoich wykładach wybitny fizyk ichard Feynman : Otóż podstawą wszystkiego jest tu to, że ruch jakiegoś obiektu w powietrzu zapoczątkowuje rozprzestrzenianie się zaburzeń powietrza. Jeżeli chodzi o rodzaj tych zaburzeń, to spodziewamy się, że ruch obiektu wywoła zmianę ciśnienia. Gdy obiekt porusza się powoli, powietrze oczywiście opływa go, ale nam chodzi o ruch bardzo szybki, w którym nie ma czasu na tego rodzaju opływanie. Powietrze jest zatem podczas ruchu sprężane i powstaje zmiana ciśnienia, która wywiera nacisk na dalsze jego warstwy. Te warstwy są z kolei sprężane, 2/11

3 co wywołuje wzrost ich ciśnienia i w ten sposób w przestrzeni rozchodzi się fala zagęszczeń i rozrzedzeń powietrza. Ta fala zagęszczeń i rozrzedzeń to właśnie fala dźwiękowa... Zmiany ciśnienia wywołane przez dźwięk w porównaniu z jego wartością w stanie równowagi są bardzo małe. Wygodną jednostką, w której mierzymy ciśnienie, jest bar; równa się on 10 5 N/m 2. W przypadku dźwięku używamy logarytmicznej skali natężeń, ponieważ czułość ucha z grubsza biorąc wzrasta logarytmicznie. Skalę tę nazywa się skalą decybeli. Określamy w niej poziom ciśnienia akustycznego L p dla danej amplitudy ciśnienia akustycznego p w następujący sposób: p ciśnienie akustyczne, Pa L p = 20 log( p p p 0 ciśnienie akustyczne odniesienie równe bar 0 ),( db) Np. Amplituda ciśnienia akustycznego p = 10 3 p 0 = barów odpowiada dźwiękowi u umiarkowanym natężeniu 60 db. Widać z tego, że zmiana ciśnienia wywołana przez dźwięk jest bardzo mała w porównaniu z ciśnieniem w stanie równowagi czy też ze średnim ciśnieniem atmosferycznym. W przypadku dźwięku najczęściej mamy do czynienia z natężeniami nie przekraczającymi 100 db. Dźwięk o natężeniu 120 db wywołuje już uczucie bólu w uchu. 2. Akustyka pomieszczeń w budynkach Z uwagi na postanowienia normy PN-87/B-02151/02 Akustyka budowlana. Ochrona przed hałasem pomieszczeń w budynkach. Dopuszczalne wartości poziomu dźwięku w pomieszczeniach, pomieszczeniom w budynkach stawia się wymagania, co do dopuszczalnego poziomu dźwięku A hałasu przenikającego łącznie od wszystkich źródeł hałasu usytuowanych poza pomieszczeniem. Z uwagi na temat artykułu skupiam się wyłącznie na izolacyjności przegród zewnętrznych: ścian i okien z pominięciem przenikania dźwięku od źródeł wewnętrznych. 3/11

4 3. Izolacyjność akustyczna przegród zewnętrznych - wymagania Wymagania dotyczące przegród przywołuję zgodnie z PN-B Akustyka budowlana. Ochrona przed hałasem w budynkach Izolacyjność akustyczna przegród w budynkach oraz izolacyjność akustyczna elementów budowlanych. Wymagania. Przegrody zewnętrzne narażone są na dźwięki powietrzne stąd ich izolacyjność akustyczną charakteryzują poniższe wskaźniki : Ściana zewnętrzna bez okien lub z oknami oraz okno w przegrodzie zewnętrznej - całą przegrodę charakteryzuje A2 lub A1 wskaźnik oceny izolacyjności akustycznej właściwej przybliżonej - elementy budowlane przeznaczone do zastosowania w budynkach jako przegroda budowlana scharakteryzowane są przez A2 lub A1 (wskaźnik oceny izolacyjności akustycznej) lub w(c, C tr) wskaźnik ważony izolacyjności akustyczne właściwej i widmowy wskaźnik adaptacyjny C i C tr óżnica pomiędzy A1(2) a A1(2) sprowadza się do tego, że wskaźnik A1(2) uwzględnia wpływ bocznego przenoszenia dźwięku (jest to przenoszenie dźwięku między pomieszczeniami przez materiał z którego zbudowana jest przegroda) przez przegrodę w zależności od jej masy. W wymiarze liczbowym wartości A1(2) są większe. Żeby nie zagęszczać opisów nadmierną ilością wzorów nie podaję tu zależności pomiędzy dwoma -ami. W wymaganiach (tabela 1 i 2) podaje się wartość A1(2) bo ta wartość uwzględnia przegrodę jako całość. Tabela 1 - Wymagana wypadkowa izolacyjność akustyczna właściwa przybliżona ścian zewnętrznych z oknami w budynkach mieszkalnych Przegroda zewnętrzna w pomieszczeniu Poziom dźwięku A w dzień (db) Poziom dźwięku A w Minimalny wskaźnik oceny wypadkowej izolacyjności akustycznej właściwej przybliżonej A2 lub A1 w decybelach, w zależności od miarodajnego poziomu dźwięku A w decybelach w ciągu dnia/nocy na zewnątrz budynku Do 45 Do 35 Od 46 do 50 Od 36 do 40 Od 51 do 55 Od 41 do 45 Od 56 do 60 Od 46 do 50 Od 61 do 65 Od 51 do 55 Od 66 do 70 Od 56 do 60 Od 71 do 75 Od 61 do 65 nocy (db) Wymagania dla pokoi Wymagania dla kuchni /11

5 Tabela 2 - Dla przypadku gdzie okna stanowią nie więcej niż 50% powierzchni przegrody zewnętrznej, wymaganą izolacyjność akustyczną części pełnych i okien przyjmuje się wg poniższej tabeli. Wymagany wskaźnik oceny izolacyjności akustycznej Wymagany wskaźnik oceny wypadkowej izolacyjności poszczególnych części przegrody zewnętrznej A2 lub akustycznej przybliżonej A1 A2 lub A1 przegrody Minimalne wymagania dla Minimalne wymagania zewnętrznej w decybelach części pełnej (db) dla okna (db) Wyznaczanie izolacyjność akustycznej elementów przegrody zewnętrznej Wskaźniki oceny izolacyjności akustycznej A2 i A1 oblicza się w następujący sposób : A1 = = A2 w tr w wskaźnik ważony izolacyjności akustycznej właściwej elementu przegrody zewnętrznej, db. w + C + C C widmowy wskaźnik adaptacyjny obliczany w odniesieniu do widma różowego szumu skorygowanego charakterystyką częstotliwościową A, db. C tr widmowy wskaźnik adaptacyjny obliczany w odniesieniu do widma hałasu drogowego skorygowanego charakterystyką częstotliwościową A, db. w określone jest pośrednio poprzez określenie izolacyjności akustycznej właściwej, w normowym przedziale częstotliwości. Wyniki jednoliczbowej ( w). sprowadza się później do wartości W badań laboratoryjnych wyznacza się ze wzoru : = L1 L lg L 1 poziom średniego ciśnienia akustycznego w komorze nadawczej, (db) L 2 poziom średniego ciśnienia akustycznego w komorze odbiorczej, (db) S powierzchnia próbki, równa powierzchni otworu, (m 2 ) A równoważne pole powierzchni dźwiękochłonnej pomieszczenia odbiorczego, (m 2 ) S A Określenie wartości L 1, L 2 i A znajduje się w punkcie 5 niniejszego artykułu. 5/11

6 Widmowe wskaźniki adaptacyjne C i C tr wprowadzono do obliczeń wskaźnika w, aby uwzględnić w ocenie izolacyjności, charakterystykę widma hałasu. odzaj źródła hałasu dla poszczególnego wskaźnika przedstawia tabela 3. Tabela 3. odzaj źródła hałasu dla poszczególnego wskaźnika. Odpowiedni wskaźnik adaptacyjny C (widmo nr 1) C tr (widmo nr 2) Odpowiedni widmowy wskaźnik adaptacyjny Źródła hałasu bytowego (rozmowa, muzyka, radio, tv) Zabawa dzieci uch kolejowy ze średnią i dużą prędkością uch na drodze szybkiego ruchu > 80 km/h Samoloty odrzutowe, w małej odległości Zakłady przemysłowe emitujące głównie hałas średnio i wysokoczęstotliwościowy uch uliczny miejski uch kolejowy z małymi prędkościami Śmigłowce Samoloty odrzutowe, w dużej odległości Muzyka dyskotekowa Zakłady przemysłowe emitujące głównie hałas nisko i wysokoczęstotliwościowy Pełna charakterystyka elementu budowlanego (np. okna) powinna być zapisana : Np. w (C; C tr) = 41 (0; -5 ) db 5. Izolacyjność akustyczna nawiewników okiennych i ściennych Nawiewniki powietrza zewnętrznego są elementami montowanymi w przegrodzie zewnętrznej (w oknie lub w ścianie). Chociaż przepisy nie precyzują oddzielnych wymagań co do izolacyjności akustycznej samych nawiewników to ich wpływ na izolacyjność całej przegrody jest zauważalny i dlatego uwzględnia się je przy obliczeniach. Przegrodzie jako całości stawia się wymagania zgodnie z wymaganiami zawartymi w punkcie 3 artykułu. Elementy o powierzchni mniejszej od 1 m 2 (a takie są właśnie nawiewniki) opisane są parametrem D ne (db) czyli elementarną znormalizowaną różnicą poziomów. Wielkość ta opisana jest wzorem : D różnica poziomów (db) D ne = D 10 lg A równoważne pole powierzchni dźwiękochłonnej pomieszczenia odbiorczego, (m 2 ) A 0 równoważne pole powierzchni dźwiękochłonnej odniesienia, (m 2 ) (W mieszkaniach A 0 = 10 m 2 ) 6/11 A A 0

7 óżnicę poziomów D określa się ze wzoru : D = L 1 L 2 L 1 poziom ciśnienia akustycznego w pomieszczeniu nadawczym (db) L 2 poziom ciśnienia akustycznego w pomieszczeniu odbiorczym (db) Wartość L 1 i L 2 określa się ze wzoru : 2 2 p1 + p2 + L1(2) = 10 lg 2 np0 p 1, p 2...p n ciśnienia akustyczne podlegające uśrednieniu (Pa) p 0 ciśnienie akustyczne odniesienia równe 20 μpa n liczba punktów pomiarowych... + p 2 n Wartość A, we wzorze na znormalizowaną różnicę poziomów, jest określona jako hipotetyczne pole powierzchni całkowitej pochłaniającej, bez efektów dyfrakcyjnych, przy którym czas pogłosu byłby taki sam jak w rozważanym pomieszczeniu, jeżeli powierzchnia ta byłaby jedynym elementem pochłaniającym w tym pomieszczeniu. Wartością izolacyjności, którą stosuje się w obliczeniach jest, podobnie jak dla okien i ścian, wskaźnik ważony elementarnej znormalizowanej różnicy poziomów D n,e,w. Podobnie jak dla okien i ścian wartość wskaźnika jest określona przez D ne dla normowego zakresu częstotliwości. ównież podobnie jak dla okien określa się izolacyjność z uwzględnieniem wskaźników adaptacyjnych C i C tr D n,e(c) i D ne(c tr). Pełna charakterystyka akustyczna nawiewnika powinna być zapisana: Np. D n,e,w (C; C tr) = 42 (0; -2) db Warto zwrócić uwagę na wzory opisujące z punktu 4 i D ne z punktu 5. Przy badaniu nawiewników nie bierze się pod uwagę powierzchni jaką zajmuje ten element. Między innymi dlatego wprowadzono różne wskaźniki opisujące izolacyjność okna i nawiewnika. 7/11

8 6. Obliczanie wypadkowej izolacyjności okna lub ściany zewnętrznej z nawiewnikiem Z powyższych punktów wynika, że problemy związane z akustyką nie są łatwe a mocno ograniczona znajomość tematu przez zainteresowane środowisko (architektów, producentów okien itd.) powoduje zamieszanie i może prowadzić do frustracji i nieporozumień. Najczęściej dzieje się tak, że producent okien zwraca się do producenta nawiewników o podanie izolacyjności akustycznej nawiewnika po czym automatycznie przyjmuje uzyskaną wartość jako równą co do wymiaru fizycznego w okna. Jak dotąd autor nie spotkał się by producenci rozróżniali wartości w i D n,e,w. Całkiem spore zdziwienie budzi fakt, ze np. okno o współczynniku w 33 db po zamontowaniu nawiewnika o współczynniku D n,e,w 33 db nie uzyskuje wypadkowej izolacyjności 33 db. Jednym słowem po zamontowaniu nawiewnika jest głośniej. Jeszcze większe zdziwienie graniczące niemal z niewiarą budzi fakt, że po zamontowaniu nawiewnika o izolacyjności 42 db, wypadkowa izolacyjność dla okna z nawiewnikiem będzie mniejsza od 33 db. Zaskoczenie wydaje się trochę dziwne bo jeżeli się zastanowić (i nie trzeba do tego znać szeroko zagadnień związanych z akustyką) każdy otwór w oknie przez który dopływa powietrza musi się wiązać ze wzrostem hałasu w porównaniu do sytuacji kiedy tego otworu nie ma. A jak to wygląda na liczbach. Wypadkowy wskaźnik ważony izolacyjności akustycznej właściwej okna wraz z zamontowanym nawiewnikiem określa się ze wzoru : gdzie : w 0,1w 10, wyp = 10 log 10 + n 10 S 0,1Dn, e, w w,wyp wypadkowy wskaźnik izolacyjności akustycznej właściwej okna z nawiewnikiem, db w wskaźnik izolacyjności akustycznej właściwej okna bez nawiewnika (podawany przez producenta okien), db S powierzchnia okna, m 2 n liczba nawiewników na oknie Dn,e,w wskaźnik elementarnej znormalizowanej różnicy poziomów ciśnienia akustycznego nawiewnika, db 8/11

9 UWAGA: Powyższy wzór można zastosować do obliczania wypadkowej izolacyjności przy uwzględnieniu wskaźników adaptacyjnych C i C tr. Zamiast w i D n,e,w należy podstawić odpowiednio inne wartości ( A1, A2, D ne(c), D ne(ctr)). Powyższy wzór można stosować również przy obliczaniu wypadkowej izolacyjności ściany zewnętrznej wraz z nawiewnikiem. 7. Przykład dla okna standardowego o izolacyjności akustycznej w = 35 db i zamontowanego jednego nawiewnika. UWAGA: Izolacyjność akustyczna nawiewników w pozycji pełnego otwarcia Poniżej zamieszczono wykres na którym porównano wpływ różnych rodzajów nawiewników higrosterowanych akustycznych oferowanych przez AEECO Wentylacja Sp. z o.o. Przy porównaniach izolacyjności warto pamiętać, że okno rozszczelnione (nie należy tego nie mylić z mikrouchyłem) to takie, którego współczynnik infiltracji a zawiera się w przedziale 0,5-1,0 m 3 /m*h*dapa 2/3. Na podstawie aprobaty technicznej udzielonej przez Instytut Techniki Budowlanej w Warszawie przyjęto, że izolacyjność akustyczna w okna rozszczelnionego powinna wynosić 30 db. Na wykresie pokazano dla porównania linię odniesienia dla okna nierozszczelnionego bez nawiewnika (w = 35 db). 9/11

10 Wykres 1 Zmiana w okna po montażu nawiewnika akustycznego higrosterowanego 36 Zmiana w okna po montaŝu nawiewnika akustycznego higrosterowanego dla róŝnych powierzchni w wypadkowe [db] ,99 30,88 32,45 31,45 30,86 32,79 31,87 31,33 33,04 32,20 31,70 33,24 32,47 32,00 30,89 33,41 32,69 32,25 31,19 33,54 32,87 32,46 31,46 30, ,24 30, , , ,5 3 3,5 4 4,5 5 Powierzchnia okna [m2] okno bez nawiewnika okno rozszczelnione a = 0,5-1,0 okno z nawiewnikiem EHA 37 db okno z nawiewnikiem EHA 39 db okno z nawiewnikiem EHA 40 db okno z nawiewnikiem EHA 42 db 10/11

11 Z powyższego opracowania wynika wprost, że nie uda się nam nigdy wyeliminować hałasu przenikającego do pomieszczenia bezpośrednio z zewnątrz. Jednakże projektant, konstruktor czy użytkownik posiada możliwość wyboru takich technologii które w jak największym stopniu ograniczą niekorzystne przenikanie dźwięku i zapewnią największy możliwy komfort akustyczny. LITEATUA 1.. esnick, D. Halliday Fizyka 2.. Feynaman Feynmana wykłady z fizyki 3. PN-B-02153:2002 Akustyka budowlana. Terminologia, symbole literowe i jednostki. 4. PN-B :1999 Akustyka budowlana. Ochrona przed hałasem w budynkach Izolacyjność akustyczna przegród w budynkach oraz izolacyjność akustyczna elementów budowlanych. Wymagania. 5. PN-EN ISO 717-1:1996 Akustyka. Ocena izolacyjności akustycznej w budynkach i izolacyjności akustycznej elementów budowlanych. Izolacyjność od dźwięków powietrznych 6. AT / Okna i drzwi balkonowe systemu BÜGMANN seria 700 z kształtowników z nieplastyfikowanego PVC. 11/11

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Akustyka budowlana c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli

Akustyka budowlana c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli Akustyka budowlana Dźwięk jest zjawiskiem falowym wywołanym drganiami cząstek ośrodka. Sposoby wytwarzania fal akustycznych: przez drgania mechaniczne przez turbulencję Fala akustyczna rozprzestrzeniające

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db - Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są

Bardziej szczegółowo

Mapa akustyczna Torunia

Mapa akustyczna Torunia Mapa akustyczna Torunia Informacje podstawowe Mapa akustyczna Słownik terminów Kontakt Przejdź do mapy» Słownik terminów specjalistycznych Hałas Hałasem nazywamy wszystkie niepożądane, nieprzyjemne, dokuczliwe

Bardziej szczegółowo

Wymagania akustyczne projektowania budynków

Wymagania akustyczne projektowania budynków Politechnika Poznańska Instytut Konstrukcji Budowlanych Fizyka Budowli Wymagania akustyczne projektowania budynków wg ROZPORZĄDZENIA MINISTRA INFRASTRUKTURY z dnia 12 kwietnia 2002 r. w sprawie warunków

Bardziej szczegółowo

AKUSTYKA W LEKKIEJ OBUDOWIE HAL. Marek Niemas

AKUSTYKA W LEKKIEJ OBUDOWIE HAL. Marek Niemas AKUSTYKA W LEKKIEJ OBUDOWIE HAL Marek Niemas Zakres prezentacji Pojęcia podstawowe z akustyki. Akustyka budowlana, parametry. Wymagania akustyczne w Polsce i w Europie. Wytyczne DAFA ID 4.06 i ich znaczenie.

Bardziej szczegółowo

Drgania i fale sprężyste. 1/24

Drgania i fale sprężyste. 1/24 Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz

Bardziej szczegółowo

Wybrane aspekty jakości drzwi o zwiększonej izolacyjności akustycznej. Anna Iżewska, Instytut Techniki Budowlanej

Wybrane aspekty jakości drzwi o zwiększonej izolacyjności akustycznej. Anna Iżewska, Instytut Techniki Budowlanej Wybrane aspekty jakości drzwi o zwiększonej izolacyjności akustycznej Anna Iżewska, Instytut Techniki Budowlanej Parametry akustyczne drzwi Izolacyjność akustyczna właściwa (zależna od częstotliwości)

Bardziej szczegółowo

Określenie właściwości paneli akustycznych ekranów drogowych produkcji S. i A. Pietrucha Sp z o. o.

Określenie właściwości paneli akustycznych ekranów drogowych produkcji S. i A. Pietrucha Sp z o. o. I N S T Y T U T E N E R G E T Y K I Instytut Badawczy ODDZIAŁ TECHNIKI CIEPLNEJ ITC w Łodzi 93-208 Łódź, ul. Dąbrowskiego 113 www.itc.edu.pl, e-mail: itc@itc.edu.pl Temat w ITC: 04103900 Nr ewidencyjny:

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

REDUKCJA HAŁASU W BUDYNKU POCHODZĄCEGO OD POMIESZCZENIA SPRĘŻARKOWNI

REDUKCJA HAŁASU W BUDYNKU POCHODZĄCEGO OD POMIESZCZENIA SPRĘŻARKOWNI REDUKCJA HAŁASU W BUDYNKU POCHODZĄCEGO OD POMIESZCZENIA SPRĘŻARKOWNI Wiesław FIEBIG Politechnika Wrocławska, Instytut Konstrukcji i Eksploatacji Maszyn I-16 1. WSTĘP W pomieszczeniach technicznych znajdujących

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

P 13 HAŁAS NA STANOWISKU PRACY

P 13 HAŁAS NA STANOWISKU PRACY PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA w Nowym Sączu P 13 HAŁAS NA STANOWISKU PRACY Spis treści 1. Pojęcia i parametry dźwięku 2. Wartości dopuszczalne hałasu 3. Pomiary hałasu 4. Wnioski Zespół ćwiczeniowy:

Bardziej szczegółowo

Izolacyjność akustyczna ściany zewnętrznej

Izolacyjność akustyczna ściany zewnętrznej Izolacyjność akustyczna ściany zewnętrznej Wpływ rodzaju docieplenia, parametrów akustycznych okien i nawiewników na możliwości spełnienia wymagań normowych Autor: dr inż. Leszek Dulak 12 maja ul. Senatorska

Bardziej szczegółowo

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych LABORATORIUM Pomiar poziomu mocy akustycznej w komorze pogłosowej Instrukcja do zajęć laboratoryjnych Kraków 2010 Spis treści 1. Wstęp...3 2. Wprowadzenie teoretyczne...4 2.1. Definicje terminów...4 2.2.

Bardziej szczegółowo

Temat: Zagrożenie hałasem

Temat: Zagrożenie hałasem MODUŁ IV LEKCJA 2 Temat: Zagrożenie hałasem Formy realizacji: ścieżka edukacyjna, lekcja fizyki, techniki (45 minutowa jednostka lekcyjna). Cele szczegółowe lekcji: uświadomienie zagrożeń związanych z

Bardziej szczegółowo

PROBLEMY AKUSTYCZNE ZWIĄZANE Z INSTALACJAMI WENTYLACJI MECHANICZNEJ

PROBLEMY AKUSTYCZNE ZWIĄZANE Z INSTALACJAMI WENTYLACJI MECHANICZNEJ PROBLEMY AKUSTYCZNE ZWIĄZANE Z INSTALACJAMI WENTYLACJI MECHANICZNEJ AKUSTYKA - INFORMACJE OGÓLNE Wymagania akustyczne stawiane instalacjom wentylacyjnym określane są zwykle wartością dopuszczalnego poziomu

Bardziej szczegółowo

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość dr inż. Romuald Kędzierski Czym jest dźwięk? Jest to wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

Metoda pomiarowo-obliczeniowa skuteczności ochrony akustycznej obudów dźwiękoizolacyjnych źródeł w zakresie częstotliwości khz

Metoda pomiarowo-obliczeniowa skuteczności ochrony akustycznej obudów dźwiękoizolacyjnych źródeł w zakresie częstotliwości khz Metoda pomiarowo-obliczeniowa skuteczności ochrony akustycznej obudów dźwiękoizolacyjnych źródeł w zakresie częstotliwości 20 40 khz dr inż. Witold Mikulski 2018 r. Streszczenie Opisano metodę pomiarowo-obliczeniową

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

APROBATA TECHNICZNA ITB AT /2006

APROBATA TECHNICZNA ITB AT /2006 Czł onek Europejskiej Unii Akceptacji Technicznej w Budownictwie UEAtc Czł onek Europejskiej Organizacji ds. Aprobat Technicznych EOTA Seria: APROBATY TECHNICZNE APROBATA TECHNICZNA ITB AT-15-7147/2006

Bardziej szczegółowo

W prezentacji przedstawione są informacje, które znajdowały się w posiadaniu autora na kwiecień czerwiec Do tego dnia żadna z serii norm nie

W prezentacji przedstawione są informacje, które znajdowały się w posiadaniu autora na kwiecień czerwiec Do tego dnia żadna z serii norm nie W prezentacji przedstawione są informacje, które znajdowały się w posiadaniu autora na kwiecień czerwiec 2015. Do tego dnia żadna z serii norm nie była ustanowiona i informacje prezentowane na następnych

Bardziej szczegółowo

PCA Zakres akredytacji Nr AB 023

PCA Zakres akredytacji Nr AB 023 Pomieszczenia w budynku, z systemem nagłaśniania i/lub z dźwiękowym systemem ostrzegawczym Pomieszczenia w budynku (wszystkie) Urządzenia systemów wibroakustycznych głośniki Elastyczny zakres akredytacji

Bardziej szczegółowo

1. Określenie hałasu wentylatora

1. Określenie hałasu wentylatora 1. Określenie hałasu wentylatora -na podstawie danych producenta -na podstawie literatury 2.Określenie dopuszczalnego poziomu dźwięku w pomieszczeniu PN-87/B-02151/02 Akustyka budowlana. Ochrona przed

Bardziej szczegółowo

EKSPERTYZA AKUSTYCZNA

EKSPERTYZA AKUSTYCZNA AkustiX sp. z o.o. UL. RUBIEŻ 46 C5/115, 61-612 POZNAŃ TEL. 61-625-68-00, FAX. 61-624-37-52 www.akustix.pl poczta@akustix.pl EKSPERTYZA AKUSTYCZNA DUŻEJ SCENY I SCENY MALARNIA TEATRU WYBRZEŻE W GDAŃSKU

Bardziej szczegółowo

NOWE WSKAŹNIKI OCENY WŁAŚCIWOŚCI AKUSTYCZNYCH MATERIAŁÓW, WYROBÓW I ELEMENTÓW BUDOWLANYCH

NOWE WSKAŹNIKI OCENY WŁAŚCIWOŚCI AKUSTYCZNYCH MATERIAŁÓW, WYROBÓW I ELEMENTÓW BUDOWLANYCH PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK nr 3 (119) 2001 BUILDING RESEARCH INSTITUTE - QUARTERLY No 3 (119) 2001 Marianna Mirowska* Iwonna Żuchowicz-Wodnikowska** NOWE WSKAŹNIKI OCENY WŁAŚCIWOŚCI

Bardziej szczegółowo

Hałasem, zgodnie z ogólnie

Hałasem, zgodnie z ogólnie dr inż. Marek Niemas* Ochrona akustyczna budynków przed hałasem lotniczym * Instytut Techniki Budowlanej Hałasem, zgodnie z ogólnie przyjęta definicją ujętą w PN-B-02153: 2002 Akustyka budowlana. Terminy,

Bardziej szczegółowo

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne. Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

Hałas w środowisku. Wstęp. Hałas często kojarzony jest z dźwiękiem, jednakże pojęcia te nie są równoznaczne.

Hałas w środowisku. Wstęp. Hałas często kojarzony jest z dźwiękiem, jednakże pojęcia te nie są równoznaczne. Hałas w środowisku Wykład dla kierunku OCHRONA ŚRODOWISKA UWM w Olsztynie Wstęp Hałas często kojarzony jest z dźwiękiem, jednakże pojęcia te nie są równoznaczne. Dźwięk to pojęcie czysto fizyczne, natomiast

Bardziej szczegółowo

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie. Ćwiczenie T - 6 Fale dźwiękowe i zjawisko dudnień I. Cel ćwiczenia: rejestracja i analiza fal dźwiękowych oraz zjawiska dudnienia. II. Przyrządy: interfejs CoachLab II +, czujnik dźwięku, dwa kamertony

Bardziej szczegółowo

10.3 / Izolacyjność akustyczna.

10.3 / Izolacyjność akustyczna. 300 7A Jak klasa 6 + 5 min 450 8A Jak klasa 7 + 5 min 600 9A Jak klasa 8 + 5 min Exxx Powyżej 600 Pa czas trwania każdego stopnia powinien wynosić 5 min > 600 Odwołując się do przedstawionej wcześniej

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1241

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1241 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1241 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 10 Data wydania: 25 lipca 2016 r Nazwa i adres CENTRUM TECHNIKI

Bardziej szczegółowo

p p p zmierzona wartość ciśnienia akustycznego w Pa, p 0 ciśnienie odniesienia równe Pa.

p p p zmierzona wartość ciśnienia akustycznego w Pa, p 0 ciśnienie odniesienia równe Pa. POLTECHKA ŚLĄSKA. WYDZAŁ ORGAZACJ ZARZĄDZAA. Strona: 1 1. CEL ĆWCZEA Celem ćwiczenia jest ugruntowanie wiadomości dotyczących pomiarów hałasu maszyn, zależności zachodzących pomiędzy ciśnieniem, natężeniem

Bardziej szczegółowo

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis, Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje

Bardziej szczegółowo

AKUSTYKA. Fizyka Budowli. Akustyka techniczna WYKŁAD Z PRZEDMIOTU: a) akustyki urbanistycznej. b) akustyki wnętrz

AKUSTYKA. Fizyka Budowli. Akustyka techniczna WYKŁAD Z PRZEDMIOTU: a) akustyki urbanistycznej. b) akustyki wnętrz AKUSTYKA WYKŁAD Z PRZEDMIOTU: Fizyka Budowli Akustyka techniczna Kształtowaniem właściwych warunków akustycznych w miejscu pobytu ludzi zajmuje się dyscyplina naukowa zwana akustyką techniczną. W budownictwie

Bardziej szczegółowo

Wymagania szczegółowe w zakresie ochrony przed hałasem i drganiami

Wymagania szczegółowe w zakresie ochrony przed hałasem i drganiami Załącznik nr 1 Wymagania szczegółowe w zakresie ochrony przed hałasem i drganiami 1. Parametry ochrony przed hałasem i drganiami 1) Wymagania szczegółowe dotyczące ochrony przed hałasem pomieszczeń w budynkach

Bardziej szczegółowo

WYDZIAŁ BUDOWNICTWA CZŁONEK EUROPEJSKIEGO STOWARZYSZENIA WYDZIAŁÓW BUDOWNICTWA. KATEDRA BUDOWNICTWA OGÓLNEGO i FIZYKI BUDOWLI

WYDZIAŁ BUDOWNICTWA CZŁONEK EUROPEJSKIEGO STOWARZYSZENIA WYDZIAŁÓW BUDOWNICTWA. KATEDRA BUDOWNICTWA OGÓLNEGO i FIZYKI BUDOWLI P O L I T E C H N I K A Ś L Ą S K A WYDZIAŁ BUDOWNICTWA CZŁONEK EUROPEJSKIEGO STOWARZYSZENIA WYDZIAŁÓW BUDOWNICTWA KATEDRA BUDOWNICTWA OGÓLNEGO i FIZYKI BUDOWLI Ul. AKADEMICKA 5 44-100 GLIWICE Tel./Fax:

Bardziej szczegółowo

Polska - Al. Kasztanowa 14a 53-125 Wrocław

Polska - Al. Kasztanowa 14a 53-125 Wrocław ZLECENIODAWCA: aa_design aa_studio group - arch sp. z o.o. Polska - Al. Kasztanowa 14a 53-125 Wrocław INWESTOR: Inter IKEA Centre Polska S.A. z siedzibą w Jankach, 05-090 Raszyn, Plac Szwedzki 3 OBIEKT:

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 017/018 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B.

Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i B. Imię i nazwisko Pytanie 1/ Na wykresie przedstawiono zależność drogi od czasu trwania ruchu dla ciał A i Wskaż poprawną odpowiedź Które stwierdzenie jest prawdziwe? Prędkości obu ciał są takie same Ciało

Bardziej szczegółowo

Doświadczalne wyznaczanie prędkości dźwięku w powietrzu

Doświadczalne wyznaczanie prędkości dźwięku w powietrzu Doświadczalne wyznaczanie prędkości dźwięku w powietrzu Autorzy: Kamil Ćwintal, Adam Tużnik, Klaudia Bernat, Paweł Safiański uczniowie klasy I LO w Zespole Szkół Ogólnokształcących im. Edwarda Szylki w

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

P r o b l e m b a d a w c z y n r 6 6

P r o b l e m b a d a w c z y n r 6 6 Załącznik 1 P r o b l e m b a d a w c z y n r 6 6 POLITECHNIKA LUBELSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA ZAKŁAD INŻYNIERII ŚRODOWISKA WEWNĘTRZNEGO 20-618 LUBLIN, NADBYSTRZYCKA 40B OPRACOWANIE POD TYTUŁEM:

Bardziej szczegółowo

APROBATA TECHNICZNA ITB AT-15-7147/2013. Nawiewniki powietrza ZEFIR montowane w oknach i drzwiach balkonowych WARSZAWA

APROBATA TECHNICZNA ITB AT-15-7147/2013. Nawiewniki powietrza ZEFIR montowane w oknach i drzwiach balkonowych WARSZAWA APROBATA TECHNICZNA ITB AT-15-7147/2013 Nawiewniki powietrza ZEFIR montowane w oknach i drzwiach balkonowych WARSZAWA Aprobata techniczna została opracowana w Zakładzie Aprobat Technicznych przez mgr inż.

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

6. Ochrona przed hałasem...64

6. Ochrona przed hałasem...64 Apartamentowiec Hortus, Warszawa, Polska SunGuard SN 2/34 Beata Korwin-Szymanowska z pracowni architektonicznej Naj Architekci....4.1 Wpływ hałasu na człowieka...4.2 Rodzaje dźwięku...4.2.1 Wartości graniczne...4.2.2

Bardziej szczegółowo

Procedura orientacyjna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych

Procedura orientacyjna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych Procedura orientacyjna wyznaczania poziomu mocy źródeł ultradźwiękowych w oparciu o pomiary poziomu ciśnienia akustycznego w punktach pomiarowych lub metodą omiatania na powierzchni pomiarowej prostopadłościennej

Bardziej szczegółowo

NOWE STANOWISKA POMIAROWE W AKREDYTOWANYM LABORATORIUM AKUSTYCZNYM ZESPOŁU LABORATORIÓW BADAWCZYCH ITB

NOWE STANOWISKA POMIAROWE W AKREDYTOWANYM LABORATORIUM AKUSTYCZNYM ZESPOŁU LABORATORIÓW BADAWCZYCH ITB PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK nr 3 (127) 2003 BUILDING RESEARCH INSTITUTE - QUARTERLY No 3 (127) 2003 Marek Niemas* NOWE STANOWISKA POMIAROWE W AKREDYTOWANYM LABORATORIUM AKUSTYCZNYM

Bardziej szczegółowo

Ochrona przeciwdźwiękowa (wykład ) Józef Kotus

Ochrona przeciwdźwiękowa (wykład ) Józef Kotus Ochrona przeciwdźwiękowa (wykład 2 06.03.2008) Józef Kotus Wpływ hałasu na jakośćŝycia i zdrowie człowieka Straty związane z występowaniem hałasu Hałasem nazywa się wszystkie niepoŝądane, nieprzyjemne,

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1.

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. 2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. pokaz ruchu falowego 2. opis ruchu falowego słowami, wykresami, równaniami

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

LIGA klasa 2 - styczeń 2017

LIGA klasa 2 - styczeń 2017 LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od

Bardziej szczegółowo

APROBATA TECHNICZNA ITB AT /2011. Nawiewniki powietrza VENTAIR SIMPRESS montowane w oknach lub drzwiach balkonowych WARSZAWA

APROBATA TECHNICZNA ITB AT /2011. Nawiewniki powietrza VENTAIR SIMPRESS montowane w oknach lub drzwiach balkonowych WARSZAWA APROBATA TECHNICZNA ITB AT-15-8681/2011 Nawiewniki powietrza VENTAIR SIMPRESS montowane w oknach lub drzwiach balkonowych WARSZAWA Aprobata techniczna została opracowana w Zakładzie Aprobat Technicznych

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

Nawiewniki okienne - rodzaje, zasada działania, przepisy i wymagania

Nawiewniki okienne - rodzaje, zasada działania, przepisy i wymagania Nawiewniki okienne - rodzaje, zasada działania, przepisy i wymagania Nawiew powietrza jest niezbędnym elementem każdego systemu wentylacji i bezpośrednio wpływa na skuteczność jego działania. Do końca

Bardziej szczegółowo

AKUSTYKA. Matura 2007

AKUSTYKA. Matura 2007 Matura 007 AKUSTYKA Zadanie 3. Wózek (1 pkt) Wózek z nadajnikiem fal ultradźwiękowych, spoczywający w chwili t = 0, zaczyna oddalać się od nieruchomego odbiornika ruchem jednostajnie przyspieszonym. odbiornik

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ Nr GLA-1130/13

SPRAWOZDANIE Z BADAŃ Nr GLA-1130/13 ZESPÓŁ LABORATORIÓW BADAWCZYCH GRYFITLAB Spółka z o.o. ul. Prosta 2, Łozienica 72-100 Goleniów ul. Prosta 2, Łozienica 72-100 Goleniów Tel. 7-900-481 SPRAWOZDANIE Z BADAŃ Zleceniodawca: Producent: PAROC

Bardziej szczegółowo

Zestaw 1. Nawiewniki powietrza SM 1000 4000 Trickle firmy Brook Design Hardware Ltd. Lokalizacja (źródło hałasu) plac zabaw

Zestaw 1. Nawiewniki powietrza SM 1000 4000 Trickle firmy Brook Design Hardware Ltd. Lokalizacja (źródło hałasu) plac zabaw Zestaw 1 Lokalizacja (źródło hałasu) plac zabaw Budynek mieszkalny pokój Miarodajny poziom dźwięku A Dzień: 61dB Noc: 35dB Wysokość H w świetle 2,85m Wymiar A 2,65m Okno Ok1 600 x 1200mm drewniane systemu

Bardziej szczegółowo

Akustyka budowlana 30/12/2015. c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli

Akustyka budowlana 30/12/2015. c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli Akustyka budowlana Wprowadzenie Dźwięk jest zjawiskiem falowym wywołanym drganiami cząstek ośrodka. Sposoby wytwarzania fal akustycznych: przez drgania mechaniczne przez turbulencję Wprowadzenie czas droga

Bardziej szczegółowo

FALE DŹWIĘKOWE. fale podłużne. Acos sin

FALE DŹWIĘKOWE. fale podłużne. Acos sin ELEMENTY AKUSTYKI Fale dźwiękowe. Prędkość dźwięku. Charakter dźwięku. Wysokość, barwa i natężenie dźwięku. Poziom natężenia i głośności. Dudnienia. Zjawisko Dopplera. Fala dziobowa. Fala uderzeniowa.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)

Bardziej szczegółowo

NORMALIZACJA W ZAKRESIE AKUSTYKI BUDOWLANEJ - POSTĘP WE WDRAŻANIU NORM EN ISO JAKO NORM KRAJOWYCH

NORMALIZACJA W ZAKRESIE AKUSTYKI BUDOWLANEJ - POSTĘP WE WDRAŻANIU NORM EN ISO JAKO NORM KRAJOWYCH PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK nr 1 (109) 1999 BUILDING RESEARCH INSTITUTE - QUARTERLY No 1 (109) 1999 Iwonna Żuchowicz-Wodnikowska* NORMALIZACJA W ZAKRESIE AKUSTYKI BUDOWLANEJ - POSTĘP

Bardziej szczegółowo

APROBATA TECHNICZNA ITB AT /2010

APROBATA TECHNICZNA ITB AT /2010 APROBATA TECHNICZNA ITB AT-15-8294/2010 Nawiewniki powietrza higrosterowane EMM i EHA oraz sterowane ręcznie EMF i DPO montowane w oknach lub drzwiach balkonowych WARSZAWA Aprobata techniczna została opracowana

Bardziej szczegółowo

Elementy akustyczne wykorzystywane. w systemach wentylacyjnych. Zasady skutecznej wentylacji. Marcin Spędzia

Elementy akustyczne wykorzystywane. w systemach wentylacyjnych. Zasady skutecznej wentylacji. Marcin Spędzia Kraków 07.12.2011 nawiewniki okienne Elementy akustyczne wykorzystywane w systemach wentylacyjnych Marcin Spędzia Ze względu na sposób działania wyróżniamy: nawiewniki higrosterowane, nawiewniki ciśnieniowe,

Bardziej szczegółowo

Prognozowanie izolacyjności akustycznej przegród wewnętrznych

Prognozowanie izolacyjności akustycznej przegród wewnętrznych Prognozowanie izolacyjności akustycznej przegród wewnętrznych Data wprowadzenia: 19.06.2017 r. Na etapie projektu, kiedy budynek istnieje co najwyżej na ekranie monitora, w celu weryfikacji wymagań związanych

Bardziej szczegółowo

Nowy Sącz 01.03.2011 Energooszczędny system wentylacji mechanicznej w świetle nowych przepisów

Nowy Sącz 01.03.2011 Energooszczędny system wentylacji mechanicznej w świetle nowych przepisów Nowy Sącz 01.03.2011 Energooszczędny system wentylacji mechanicznej w świetle nowych przepisów mgr inż. Marcin Spędzia definicja wentylacji Wentylacja to zorganizowana wymiana powietrza w budynku, polegająca

Bardziej szczegółowo

OCHRONA PRZECIWDŹWIĘKOWA BUDYNKU

OCHRONA PRZECIWDŹWIĘKOWA BUDYNKU OCHRONA PRZECIWDŹWIĘKOWA BUDYNKU 1 2 6 7 10 5 9 4 8 11 12 3 Schemat transmisji dźwięku przez przegrodę: 1 - dźwięk powietrzny padający, 2 - dźwięk powracający do pomieszczenia, 3 - dźwięk przechodzący

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Akustyka budynków. Jak wykonać projekt zgodnie z prawem?

Akustyka budynków. Jak wykonać projekt zgodnie z prawem? EN1 Akustyka budynków. Jak wykonać projekt zgodnie z prawem? dr inż. Elżbieta Nowicka Slajd 1 EN1 na koniec dodać nr slajdów Elżbieta Nowicka ITB; 2009-06-10 Wstęp dr inż. Elżbieta Nowicka Pojęcie ochrona

Bardziej szczegółowo

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH Autor: Tomasz Kocur Podstawa programowa, III etap edukacyjny Cele kształcenia wymagania ogólne II. Przeprowadzanie doświadczeń i wyciąganie wniosków

Bardziej szczegółowo

Wymagania akustyczne jakie powinno spełniać środowisko pracy dotyczące hałasu pod względem możliwości wykonywania prac wymagających koncentracji uwagi

Wymagania akustyczne jakie powinno spełniać środowisko pracy dotyczące hałasu pod względem możliwości wykonywania prac wymagających koncentracji uwagi Wymagania akustyczne jakie powinno spełniać środowisko pracy dotyczące hałasu pod względem możliwości wykonywania prac wymagających koncentracji uwagi dr inż. Witold Mikulski, mgr inż. Izabela Warmiak

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

APROBATA TECHNICZNA ITB AT /2011. Higrosterowane nawiewniki powietrza EXR/EHA2 montowane w oknach lub drzwiach balkonowych WARSZAWA

APROBATA TECHNICZNA ITB AT /2011. Higrosterowane nawiewniki powietrza EXR/EHA2 montowane w oknach lub drzwiach balkonowych WARSZAWA APROBATA TECHNICZNA ITB AT-15-8700/2011 Higrosterowane nawiewniki powietrza EXR/EHA2 montowane w oknach lub drzwiach balkonowych WARSZAWA Aprobata techniczna została opracowana w Zakładzie Aprobat Technicznych

Bardziej szczegółowo

Hałas słyszalny w środowisku pracy. Ocena możliwości wykonywania pracy

Hałas słyszalny w środowisku pracy. Ocena możliwości wykonywania pracy 4. Hałas słyszalny w środowisku pracy. Ocena możliwości wykonywania 1 Hałas słyszalny w środowisku pracy Ocena możliwości wykonywania pracy 4.1. Charakterystyka zjawiska Środowisko akustyczne obejmuje

Bardziej szczegółowo

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ

Bardziej szczegółowo

Fale w przyrodzie - dźwięk

Fale w przyrodzie - dźwięk Fale w przyrodzie - dźwięk Fala Fala porusza się do przodu. Co dzieje się z cząsteczkami? Nie poruszają się razem z falą. Wykonują drganie i pozostają na swoich miejscach Ruch falowy nie powoduje transportu

Bardziej szczegółowo

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk Dźwięk jest to fala akustyczna rozchodząca się w ośrodku sprężystym lub wrażenie słuchowe wywołane tą falą. Fale akustyczne to fale głosowe, czyli falowe

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

W TROSCE O CISZĘ I ŚRODOWISKO - NOWOCZESNE SZYBY DŹWIĘKOCHŁONE. 26.02.2008 r.

W TROSCE O CISZĘ I ŚRODOWISKO - NOWOCZESNE SZYBY DŹWIĘKOCHŁONE. 26.02.2008 r. W TROSCE O CISZĘ I ŚRODOWISKO - NOWOCZESNE SZYBY DŹWIĘKOCHŁONE. 26.02.2008 r. Konstruowanie szyb chroniących przed hałasem towarzyszącym nam w duŝych skupiskach ludzkich oraz wszędzie tam gdzie występuje

Bardziej szczegółowo

Problemy pomiaru ciśnienia i temperatury gazu w warunkach dużych prędkości. Juliusz Makowski Common S.A.

Problemy pomiaru ciśnienia i temperatury gazu w warunkach dużych prędkości. Juliusz Makowski Common S.A. Problemy pomiaru ciśnienia i temperatury gazu w warunkach dużych prędkości Juliusz Makowski Common S.A. Plan prezentacji Wstęp Wpływ wzrostu prędkości na pomiar temperatury Erozja Wiry Karmana za tuleją

Bardziej szczegółowo

OCENA OCHRONY CIEPLNEJ

OCENA OCHRONY CIEPLNEJ OCENA OCHRONY CIEPLNEJ 26. W jakich jednostkach oblicza się opór R? a) (m 2 *K) / W b) kwh/m 2 c) kw/m 2 27. Jaka jest zależność pomiędzy współczynnikiem przewodzenia ciepła λ, grubością warstwy materiału

Bardziej szczegółowo

mgr inż. Dariusz Borowiecki

mgr inż. Dariusz Borowiecki Ul. Bytomska 13, 62-300 Września 508 056696 NIP 7891599567 e-mail: akustyka@kopereksolutions.pl www.kopereksolutions.pl Inwestor: Zlecający: Temat opracowania: Gmina Gniezno UL. Reymonta 9-11, 62-200 Gniezno

Bardziej szczegółowo

Ma x licz ba pkt. Rodzaj/forma zadania

Ma x licz ba pkt. Rodzaj/forma zadania KARTOTEKA TESTU I SCHEMAT OCENIANIA - szkoła podstawowa - etap rejonowy Nr zada nia Cele ogólne 1 I. Wykorzystanie pojęć i wielkości 2 III. Planowanie i przeprowadzanie obserwacji lub doświadczeń oraz

Bardziej szczegółowo

STAN NORMALIZACJI ZWIĄZANEJ Z AKUSTYKĄ BUDOWLANĄ

STAN NORMALIZACJI ZWIĄZANEJ Z AKUSTYKĄ BUDOWLANĄ PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK nr 4 (152) 2009 BUILDING RESEARCH INSTITUTE - QUARTERLY No 4 (152) 2009 Anna lżewska* STAN NORMALIZACJI ZWIĄZANEJ Z AKUSTYKĄ BUDOWLANĄ W artykule omówiono

Bardziej szczegółowo

Imię i nazwisko ucznia Klasa Data

Imię i nazwisko ucznia Klasa Data ID Testu: 245YAC9 Imię i nazwisko ucznia Klasa Data 1. Jednostka częstotliwości jest: A. Hz B. m C. m s D. s 2. Okres drgań jest to A. amplituda drgania. B. czas jednego pełnego drgania. C. częstotliwość,

Bardziej szczegółowo

JAK POPRAWIĆ IZOLACJĘ AKUSTYCZNĄ W BUDYNKACH PRZEMYSŁOWYCH?

JAK POPRAWIĆ IZOLACJĘ AKUSTYCZNĄ W BUDYNKACH PRZEMYSŁOWYCH? IZOLACYJNOŚĆ AKUSTYCZNA PRZEGRÓD BUDOWLANYCH JAK POPRAWIĆ IZOLACJĘ AKUSTYCZNĄ W BUDYNKACH PRZEMYSŁOWYCH? Zaprojektowanie właściwej izolacji akustycznej przegród budowlanych stanowi problem trudny do rozwiązania

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Przyjmij w zadaniach prędkość

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Sposoby oceny dźwiękochłonności materiałów izolacyjnych

Sposoby oceny dźwiękochłonności materiałów izolacyjnych Sposoby oceny dźwiękochłonności materiałów izolacyjnych Czynnikami mającymi zasadniczy wpływ na komfort pracy w budynkach są: mikroklimat pomieszczenia, warunki akustyczne, oświetlenie, promieniowanie

Bardziej szczegółowo

Nawiewniki wyporowe do wentylacji kuchni

Nawiewniki wyporowe do wentylacji kuchni Nawiewniki wyporowe do wentylacji kuchni 2016 Nawiewniki JHP OPIS Nawiewniki JHP przeznaczone są do wyporowej dystrybucji powietrza. Przystosowane zostały do wentylacji pomieszczeń kuchennych, gdzie występują

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura 11. Ruch drgający i fale mechaniczne zadania z arkusza I 11.6 11.1 11.7 11.8 11.9 11.2 11.10 11.3 11.4 11.11 11.12 11.5 11. Ruch drgający i fale mechaniczne - 1 - 11.13 11.22 11.14 11.15 11.16 11.17 11.23

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ. Metody kształcenia (wg W. Okonia): dyskusja, eksperyment pokazowy, wykład

SCENARIUSZ ZAJĘĆ. Metody kształcenia (wg W. Okonia): dyskusja, eksperyment pokazowy, wykład Katarzyna Budzanowska SCENARIUSZ ZAJĘĆ Typ szkoły: ponadgimnazjalna Etap kształcenia: IV Rodzaj zajęć: lekcje fizyki Temat zajęć: Aby zagrać tak jak Chopin Cechy fal dźwiękowych Cele kształcenia: 1. Cel

Bardziej szczegółowo