Pracownia Elektrotechniki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pracownia Elektrotechniki"

Transkrypt

1 BADANIE TRANSFORMATORA I. Cel ćwiczenia: zapoznanie się z budową i działaniem transformatora w trybie stanu jałowego oraz stanu obciążenia (roboczego), wyznaczenie przekładni i sprawności transformatora. II. Przyrządy: transformator badany, generator mocy jako źródło napięcia, woltomierz szt., amperomierz szt., opornik regulowany (dekadowy). III. Literatura:. T. Dryński, Ćwiczenia laboratoryjne z fizyki, PWN Warszawa 99.. E. Jezierski, Transformatory, Podstawy teoretyczne, WNT Warszawa 965. IV. Wprowadzenie. Jednym z zasadniczych powodów, dla którego prądy przemienne znalazły powszechne zastosowanie, jest możliwość zmiany napięcia w bardzo szerokich granicach i bez dużych strat energii. Przyrządem, który do tego celu służy jest transformator (rys.a). Składa się on z dwóch uzwojeń: pierwotnego P i wtórnego W, nawiniętych na rdzeń żelazny, najczęściej w kształcie prostokąta. Stosowane są też rdzenie innych kształtów, przy czym dość często spotyka się formę pokazaną na rys.b, zwaną podwójnym prostokątem. P Φ o W P I ~ ~ a) b) W Rys.. Zasada budowy transformatora. Z kształtem rdzenia wiąże się zagadnienie większego lub mniejszego rozproszenia strumienia magnetycznego oraz masy zastosowanego żelaza. Rdzeń składa się z cienkich blach żelaznych o grubości ok. 0.5 mm, odizolowanych od siebie dla uniknięcia strat na prądy wirowe.

2 Jeśli pierwotne dołączymy do źródła prądu przemiennego o napięciu, wówczas przez pierwotne popłynie prąd przemienny o natężeniu I ( i I oznaczają chwilowe wartości napięcia i natężenia), a poprzez rdzeń popłynie zmienny strumień magnetyczny Φ 0, którego zmiany będą zgodne ze zmianami natężenia prądu I, tzn. będą w fazie z prądem magnesującym. Strumień magnetyczny wytworzony przez pierwotne przenika również przez wtórne. W transformatorze mamy zatem zmienny strumień magnetyczny Φ 0, który przenika dwa uzwojenia: pierwotne i wtórne, indukując w nich zmienne siły elektromotoryczne: E w pierwotnym i E uzwojeniu wtórnym.. Stan jałowy transformatora Załóżmy najpierw, że wtórne jest otwarte, tzn. do zacisków uzwojenia wtórnego transformatora nie jest podłączony opór obciążenia; mamy wówczas tak zwany stan jałowy. zwojenie pierwotne transformatora zachowuje się wówczas jak zwojnica o określonym oporze indukcyjnym i omowym, przez którą będzie płynął prąd o natężeniu I 0, zwany prądem stanu jałowego transformatora. Zależność przyłożonego napięcia od czasu określa równanie = m sin ωt () gdzie m jest wartością szczytową albo amplitudą napięcia, ω = πf tzw. częstością kołową zmian napięcia. Wiemy, że natężenie prądu w uzwojeniu o określonym oporze indukcyjnym (przy R = 0) jest opóźnione w fazie o π /. Wobec tego mamy π I = Im sin ωt = I m cos ωt () Z II prawa Kirchhoffa dla obwodu pierwotnego (suma sił elektromotorycznych działających w obwodzie zamkniętym jest równa sumie spadków napięć) mamy + E = Ι R (3) Jeżeli założymy, że opór omowy R jest mały, (R = 0), to z ostatniego równania wynika = E (4) czyli napięcie jest skierowane przeciwnie do siły elektromotorycznej E. Strumień magnetyczny przenikając wtórne wywołuje w nim siłę elektromotoryczną indukcji E, która wytworzy na końcówkach uzwojenia napięcie, przy czym mieć będzie kierunek zgodny z kierunkiem E. Słuszna jest zatem równość = E (5) Iloraz napięcia na zaciskach uzwojenia wtórnego transformatora nieobciążonego do napięcia na uzwojeniu pierwotnym jest równy ilorazowi liczb zwojów tych uzwojeń i nosi nazwę przekładni transformatora n = K (6) n = Przez proste dobieranie liczby zwojów uzwojenia pierwotnego i wtórnego możemy w sposób dowolny, ograniczony tylko wytrzymałością na przebicie materiałów izolacyjnych, zmieniać napięcie prądu przemiennego. Ta cecha oraz brak jakichkolwiek ruchomych części stanowią dominujące zalety transformatora, którym zawdzięcza on swe rozpowszechnienie. Przejrzyste przedstawienie stosunków fazowych między prądowymi wielkościami wektorowymi w czasie jałowego stanu transformatora przedstawia rys..

3 π Φ o Rys.. Stosunki fazowe napięcia i natężenia prądu w czasie stanu jałowego. E E =. Transformator w stanie obciążenia Jeśli transformator obciążymy, podłączając do końcówek uzwojenia wtórnego opór omowy R, wówczas w uzwojeniu wtórnym popłynie prąd o natężeniu I. Wytworzone przez niego pole magnetyczne osłabia pierwotny strumień magnetyczny Φ 0 (zgodnie z regułą Lenza). W obwodzie pierwotnym nastąpi jednak wzrost prądu od wartości I 0 do pewnej wartości I. Wytworzony przez ten prąd strumień magnetyczny skompensuje osłabienie wprowadzone przez prąd I tak, że wartość strumienia magnetycznego w dalszym ciągu będzie stała i równa Φ 0. Wówczas prądy I i I są tak przesunięte w fazie względem siebie, że ich suma geometryczna jest równa pierwotnemu prądowi magnesującemu I 0 tzn prądowi stanu jałowego transformatora. Ze względu na istnienie oporu indukcyjnego zarówno w uzwojeniu pierwotnym, jak i wtórnym, prąd I jest przesunięty w fazie w stosunku do napięcia o kąt ϕ, a I w stosunku do napięcia o kąt ϕ. Stosunki fazowe między wielkościami prądowymi transformatora obciążonego przedstawia rys.3. I ϕ Φ o Rys.3. Stosunki fazowe napięcia i natężenia prądu transformatora obciążonego; ϕ, ϕ przesunięcia fazowe prądów I i I względem napięć i. I ϕ Stosunek napięć w uzwojeniu pierwotnym i wtórnym nie odpowiada już przekładni transformatora, gdyż mamy teraz do czynienia ze spadkiem napięcia na oporze omowym uzwojenia wtórnego. Można przyjąć, że napięcie zmierzone w czasie stanu jałowego jest równe czynnej sile elektromotorycznej E w czasie stanu roboczego. Słuszne jest zatem równanie 3

4 (7) = I R gdzie oznacza napięcie na końcówkach uzwojenia wtórnego obciążonego transformatora. Widzimy z niego, że napięcie jest mniejsze od napięcia obliczonego na podstawie przekładni transformatora i to w stopniu tym większym im większe jest obciążenie transformatora. W związku z zasadą zachowania energii należy oczekiwać, że moc prądu dostarczonego przez wtórne powinna być równa mocy prądu płynącego w uzwojeniu pierwotnym, w związku z czym słuszna będzie równość następująca: I = I (stosunek natężeń prądów w obu uzwojeniach jest odwrotny do stosunku napięć). W rzeczywistym przebiegu zjawisk moc oddana przez transformator jest mniejsza od mocy pobranej, gdyż istnieją jeszcze straty cieplne w uzwojeniach (zarówno pierwotnym jak i wtórnym) oraz straty cieplne w rdzeniu związane z powstawaniem prądów wirowych i histerezą żelaza. Sprawność działania danego transformatora można określić przez podanie współczynnika sprawności I cos ϕ η = (8) I cos ϕ gdzie ϕ i ϕ są przesunięciami między napięciem i natężeniem prądu w obwodzie pierwotnym i w obwodzie wtórnym. Z dużym przybliżeniem można przyjąć ϕ = ϕ a wówczas otrzymamy wzór przybliżony na współczynnik sprawności transformatora lub I I I I = η = (9) Jak z powyższego wynika, charakter pracy transformatora określić mogą następujące zasadnicze wielkości: natężenie prądu stanu jałowego, przekładnia transformatora, zależność napięcia wtórnego od obciążenia w czasie stanu roboczego, współczynnik sprawności η, przesunięcie fazowe napięcia i natężenia prądu w uzwojeniu pierwotnym i wtórnym. V. Pomiary.. Stan jałowy transformatora. Wyznaczanie natężenia prądu stanu jałowego. Wyznaczanie przekładni transformatora. Do badania wykorzystujemy transformator dodatkowy będący na wyposażeniu generatora PO-. Stosujemy układ połączeń podany na rys.4. Pierwotne transformatora zasilane jest z wyjścia mocy generatora PO- pozwalającego w sposób ciągły regulować napięcie pierwotne w zakresie napięć 0 7,5 V. Częstotliwość napięcia wyjściowego generatora ustawiamy na 50 Hz. Do uzwojenia wtórnego podłączamy woltomierz cyfrowy V. Ponieważ pobór prądu woltomierza cyfrowego jest niewielki (jest on rzędu mikroampera), to można przyjąć, że obserwowane na nim napięcia będą odpowiadały stanowi nieobciążonego transformatora. Podwyższamy stopniowo napięcie zwiększając je co,5 V. Odczytujemy wskazania woltomierza V, odpowiadające mu wskazania woltomierza V i natężenie prądu z amperomierza A. Odczytane na amperomierzu A natężenie prądu I 0 określa prąd stanu jałowego transformatora albo prąd magnesujący. Jest rzeczą oczywistą, że I 0 zależy od, przy czym powinno się okazać, że wzrost powoduje wzrost I 0. 4

5 pierwotne A transformator wtórne Generator PO- ~0-8V V V Rys. 4. Schemat układu do badania stanu jałowego transformatora. Począwszy od pewnej wartości przyłożonego napięcia natężenie prądu rośnie znacznie szybciej niż w początkowej fazie. Przyczyną jest to, że po przekroczeniu nasycenia rdzenia opór indukcyjny obwodu maleje, pozostaje tylko bardzo mały opór omowy. Charakter zależności I 0 od przedstawia rys.5. Współrzędne punktu przegięcia będą oznaczały odpowiednio napięcie nasycenia n i natężenie nasycenia I n. Nie trzeba uzasadniać, że transformator nie może być dołączony do źródła o napięciu większym niż n. W warunkach naszego ćwiczenia współrzędnych punktu przegięcia nie osiągamy (wartości napięcia są mniejsze od n ). I n n Rys. 5. Zależność natężenia prądu w uzwojeniu pierwotnym od przyłożonego napięcia. Przebieg zależności I 0 od wyznaczamy w odstępach np. co,5 V podwyższając stopniowo napięcie na wyjściu generatora, odczytujemy, i I 0. Wyniki pomiarów notujemy w tabeli I. 5

6 Tabela I. Obwód pierwotny Napięcie Natężenie Obwód wtórny Napięcie Przekładnia K = Wartość średnia przekładni K. Transformator w stanie obciążenia. Stosujemy nieco zmieniony układ połączeń. Do uzwojenia wtórnego oprócz woltomierza V dołączamy regulowany opór R (opornik dekadowy) oraz amperomierz A (rys.6). Należy zbadać :. jak zmienia się napięcie wtórne przy różnych natężeniach prądu obciążenia I (zmiana oporu R ),. jaka jest sprawność transformatora. Dla danego napięcia ustalamy prąd obciążenia I (dobierając odpowiednią wartość oporu R ) i odczytujemy wskazania przyrządów pomiarowych obwodów pierwotnego i wtórnego zapisując je w tabeli II. Następnie zmieniamy wartość prądu obciążenia (zmieniając opór R bez zmiany napięcia ) i powtarzamy procedurę pomiarową. Pomiary wykonujemy dla zakresu prądów obciążenia 0,5 4 ma tak, by otrzymać co najmniej 8 punktów pomiarowych. wagi praktyczne Pomiary rozpoczynamy od maksymalnej wartości prądu obciążenia I. Następnie stopniowo zmniejszamy prąd obciążenia aż do uzyskania zalecanej wartości minimalnej. Napięcie wejściowe w obwodzie pierwotnym transformatora (z generatora) ustawione na początku pomiarów pozostawiamy bez zmiany. W trakcie wykonywania serii pomiarów nie zmieniamy wybranego zakresu amperomierza w obwodzie pierwotnym transformatora. pierwotne I A transformator wtórne I A Generator PO- ~0-8V V V R Rys. 6. Schemat układu do badania transformatora w stanie obciążenia. 6

7 Okaże się teraz, że odczytane napięcia są mniejsze od tych, które wynikają z przekładni transformatora dla stanu jałowego. Przyczyną jest spadek napięcia na oporze wewnętrznym uzwojenia transformatora. Obliczamy moc (pozorną) pierwotną I oraz moc (pozorną) wtórną I, a następnie znajdujemy sprawność pracy transformatora na podstawie równania (9). Napięcie Obwód pierwotny Natężenie I M Moc pozorna p = I Napięcie Obwód wtórny Natężenie I M Moc pozorna p = I Tabela II Sprawność transformatora I cosϕ I cosϕ lub I 00% I Przykładowy przebieg sprawności η transformatora w funkcji prądu obciążenia I przedstawia rysunek 7. η,0 0,5 0 Rys.7 Przykładowy przebieg sprawności η transformatora w funkcji prądu obciążenia I VI. Opracowanie. Zbierając to co powiedziano powyżej, w opracowaniu należy:. Wykreślić zależność prądu I 0 w funkcji napięcia dla stanu jałowego transformatora.. Wyznaczyć przekładnię transformatora dla wszystkich par wartości i oraz obliczyć wartość średnią przekładni. 3. W oparciu o wyniki pomiarów z tabeli Ibliczyć sprawność transformatora. 4. Wykreślić zależność współczynnika sprawności η od prądu obciążenia I. 5. Zaznaczyć na sporządzonym wykresie (punkt ) niepewności pomiarowe I i wynikające z klasy przyrządu lub z danych technicznych miernika. 7

8 DODATEK DO ĆWICZENIA ET-4 (Badanie transformatora) Praktyczne rady. Do pomiarów napięcia i prądu w obwodzie pierwotnym transformatora najlepiej jest wykorzystać mierniki cyfrowe. W obwodzie wtórnym woltomierz powinien być cyfrowy, amperomierz może być analogowy.. Nastawić częstotliwość generatora PO- na 50 Hz. zwojenie pierwotne transformatora podłączyć do zacisków wyjścia mocy generatora (patrz schematy z rys. 4, 6 i 8) i wcisnąć klawisz zakresu napięcia 7,75V. 3. Przy pomiarach w stanie jałowym transformatora napięcie zmieniać co,5 V potencjometrem regulacji napięcia wyjściowego generatora (napięcie odczytujemy na woltomierzu V, nie na mierniku generatora). 4. Wybrać następujące zakresy mierników: woltomierze: woltomierz V 0 V, woltomierz V 00, V amperomierze: dla stanu jałowego: amperomierz A cyfrowy 4 lub 0 ma, amperomierz A analogowy (M3),5 i 6 ma, dla stanu obciążenia: amperomierz A cyfrowy 40 lub 00 ma, amperomierz A analogowy (M3) 5 ma, amperomierz A analogowy (M3) 6 ma i,5 ma. 5. Stan obciążenia transformatora. Amperomierz A cyfrowy (zakres 40 lub 00 ma), amperomierz A analogowy (zakres 6 ma). a) Początkowo na oporniku dekadowym ustawić wartości oporu na zero. Wtedy opór obciążenia jest równy oporowi włączonemu w szereg z opornikiem dekadowym (opór obciążenia wynosi wówczas R =, kω). Przy tym obciążeniu napięcie wyjściowe z generatora ustawić na taką wartość, by woltomierz V wskazywał napięcie z zakresu 3, 3,8 V. Pokrętłami opornika dekadowego ustalić maksymalny zakładany prąd obciążenia równy 4 ma. Wartość nastawionego napięcia początkowego ma zagwarantować nieprzekroczenie ustawionego zakresu pomiarowego amperomierza A. b) Prąd obciążenia zmieniać w zakresie od 0,5 ma do 4 5 ma rozpoczynając od wartości maksymalnej tak, aby uzyskać ok. 8 punktów pomiarowych. Proponowane wartości prądów obciążenia: 4, 3,,,5,, 0,75, 05, 0,5 ma. Dla prądów I = 0,75, 05, 0,5 ma zmienić zakres amperomierza A na,5 ma (dla amperomierza M3). Amperomierze A i A analogowe (M3). c) stawić na amperomierzu A zakres 5 ma, na amperomierzu A zakres 6 ma (patrz wyżej). Początkowo na oporniku dekadowym ustawić wartości oporu na zero. Wtedy opór obciążenia jest równy oporowi włączonemu w szereg z opornikiem dekadowym (opór obciążenia wynosi wówczas R =, kω). Przy tym obciążeniu napięcie wyjściowe z generatora ustawić na taką wartość, by woltomierz V wskazywał napięcie,7,9 V. Pokrętłami opornika dekadowego ustalić maksymalny zakładany prąd obciążenia równy 4 ma. Wartość nastawionego napięcia początkowego ma zagwarantować nieprzekroczenie ustawionych zakresów pomiarowych amperomierzy A i A. 8

9 Dalej postępować wg punktu 5b. Ćwiczenie ET-4 6. Z uwagi na fakt, że uzwojenia transformatora (dodatkowy transformator do generatora PO-) są nawinięte tak, jak w autotransformatorze, należy uziemiony zacisk wyjściowy generatora połączyć z zaciskiem transformatora oznaczonym symbolem masy (rys. 8). pierwotne transformator wtórne A I I A Generator PO- ~0-8V V V R Rys. 8. Schemat układu do badania transformatora w stanie obciążenia z uwzględnieniem wewnętrznych połączeń w puszce zawierającej transformator. 7. Przykładowe wyniki pomiarów transformatora η 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0, 0, 0 Wydajność transformatora w funkcji prądu obciążenia η = η(i η ) I [ma] Wyniki w tabeli poniżej dla: A analogowy, A analogowy. Wyniki w tabeli poniżej dla: A cyfrowy, A analogowy. [V] I [ma] [V] I [ma] η 3,6 9, ,547 3,7 5,54 8, 4 0,638 3,9,74 9, 3 0,707 3,3 7,7 0, 0,79 3,3 5,88 0,6,5 0,84 3,33 4,3, 0,788 3,33 3,33,3 0,75 0,764 3,33,43,6 0,5 0,77 3,34,68,8 0,5 0,56 [V] I [ma] [V] I [ma] η 3,7 6 7,8 4 0,596 3,5,5 9,7 3 0,675 3,76 8,75,5 0,699 3,88 7,4,5 0,685 4,0 5 3,4 0,667 4,08 4 3,9 0,75 0,639 4,6 3, 4,5 0,5 0,559 4,3 5 0,5 0,443 9

BADANIE TRANSFORMATORA I.

BADANIE TRANSFORMATORA I. BADANIE TRANSFORMATORA I. Cel ćwiczenia: zapoznanie się z budową i działaniem transformatora w trybie stanu jałowego oraz stanu obciążenia (roboczego), wyznaczenie przekładni transformatora, jego sprawności

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO Ć W I C Z E N I E nr 9 BADANIE TRANSFORMATORA JEDNOFAZOWEGO CEL ĆWICZENIA: poznanie zasady działania, budowy, właściwości i metod badania transformatora. PROGRAM ĆWICZENIA. Wiadomości ogólne.. Budowa i

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie E9 Badanie transformatora E9.1. Cel ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. W ćwiczeniu przykładając zmienne napięcie do uzwojenia pierwotnego

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTROTECHNIKI

LABORATORIUM PODSTAWY ELEKTROTECHNIKI LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

Badanie silnika indukcyjnego jednofazowego i transformatora

Badanie silnika indukcyjnego jednofazowego i transformatora Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M3 - protokół Badanie silnika indukcyjnego jednofazowego i transformatora Data

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSK 28 PRĄD PRZEMENNY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Od roku 2015 w programie

Bardziej szczegółowo

transformatora jednofazowego.

transformatora jednofazowego. Badanie transformatora jednofazowego. Celem ćwiczenia jest zapoznanie się z budową, zasadami działania oraz podstawowymi właściwościami transformatora jednofazowego pracującego w stanie jałowym, zwarcia

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora POLITECHIKA ŚLĄSKA WYDIAŁ IŻYIERII ŚRODOWISKA I EERGETYKI ISTYTUT MASY I URĄDEŃ EERGETYCYCH LABORATORIUM ELEKTRYCE Badanie transformatora (E 3) Opracował: Dr inż. Włodzimierz OGULEWIC 3. Cel ćwiczenia

Bardziej szczegółowo

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie

Bardziej szczegółowo

07 K AT E D R A FIZYKI STOSOWA N E J

07 K AT E D R A FIZYKI STOSOWA N E J 07 K AT E D R A FIZYKI STOSOWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 7a. Pomiary w układzie szeregowym RLC Wprowadzenie Prąd zmienny płynący w

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ

INSTRUKCJA DO ĆWICZENIA NR 7. Pomiar mocy czynnej, biernej i cosφ INSTRUKCJA DO ĆWICZENIA NR 7 Pomiar mocy czynnej, biernej i cosφ Wstęp Układy elektryczne w postaci szeregowego połączenia RL, podczas zasilania z sieci napięcia przemiennego, pobierają moc czynną, bierną

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego.

I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego. Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PACOWNA ELEKTYCZNA ELEKTONCZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE TANSFOMATOA JEDNOFAZOWEGO rok szkolny klasa grupa data

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Wyznaczenie parametrów schematu zastępczego transformatora

Wyznaczenie parametrów schematu zastępczego transformatora Wyznaczenie parametrów schematu zastępczego transformatora Wprowadzenie Transformator jest statycznym urządzeniem elektrycznym działającym na zasadzie indukcji elektromagnetycznej. adaniem transformatora

Bardziej szczegółowo

Ćwiczenie nr 7. Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi

Ćwiczenie nr 7. Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi Ćwiczenie nr 7 Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi. Cel ćwiczenia Celem ćwiczenia jest badanie dławika jako elementu nieliniowego, wyznaczenie jego parametrów zastępczych

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Laboratorium Elektryczne Montaż Maszyn i Urządzeń Elektrycznych Instrukcja Laboratoryjna: Badanie ogniwa galwanicznego. Opracował: mgr inż.

Bardziej szczegółowo

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA

E1. OBWODY PRĄDU STAŁEGO WYZNACZANIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁA E1. OBWODY PRĄDU STŁEGO WYZNCZNIE OPORU PRZEWODNIKÓW I SIŁY ELEKTROMOTORYCZNEJ ŹRÓDŁ tekst opracowała: Bożena Janowska-Dmoch Prądem elektrycznym nazywamy uporządkowany ruch ładunków elektrycznych wywołany

Bardziej szczegółowo

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000

WIROWYCH. Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW ZAKŁ AD ELEKTROENERGETYKI. Opracował: mgr inż. Edward SKIEPKO. Warszawa 2000 SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁ AD ELEKTROENERGETYKI Ćwiczenie: ĆWICZENIE BADANIE PRĄDÓW WIROWYCH Opracował: mgr inż. Edward SKIEPKO Warszawa 000 Wersja 1.0 www.labenergetyki.prv.pl

Bardziej szczegółowo

MGR Prądy zmienne.

MGR Prądy zmienne. MGR 7 7. Prądy zmienne. Powstawanie prądu sinusoidalnego zmiennego. Wielkości charakteryzujące przebiegi sinusoidalne. Analiza obwodów zawierających elementy R, L, C. Prawa Kirchhoffa w obwodach prądu

Bardziej szczegółowo

ĆWICZENIE NR 7. Badanie i pomiary transformatora

ĆWICZENIE NR 7. Badanie i pomiary transformatora ĆWICZENIE NR 7 Badanie i pomiary transformatora Cel ćwiczenia: Zapoznanie się z pracą i budową transformatorów Wyznaczenie początków i końców uzwojeń pomiar charakterystyk biegu jałowego pomiar charakterystyk

Bardziej szczegółowo

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych

Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych Ćwiczenie E12 Wyznaczanie składowej poziomej natężenia pola magnetycznego Ziemi za pomocą busoli stycznych E12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości składowej poziomej natężenia pola

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

1. Połącz w pary: 3. Aluminiowy pierścień oddala się od nieruchomego magnesu w stronę wskazaną na rysunku przez strzałkę. Imię i nazwisko... Klasa...

1. Połącz w pary: 3. Aluminiowy pierścień oddala się od nieruchomego magnesu w stronę wskazaną na rysunku przez strzałkę. Imię i nazwisko... Klasa... PRĄD PRZEMIENNY Grupa A Imię i nazwisko... Klasa... 1. Połącz w pary: A. Transformator B. Zjawisko indukcji elektromagnetycznej C. Generator w elektrowni D. Dynamo I. wykorzystuje się w wielu urządzeniach,

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Urządzenia przeciwwybuchowe badanie transformatora

Urządzenia przeciwwybuchowe badanie transformatora Temat ćwiczenia: Szkoła Główna Służby Pożarniczej w Warszawie Urządzenia przeciwwybuchowe badanie transformatora - - ` Symbol studiów (np. PK0): - data wykonania ćwiczenia godzina wykonania ćwiczenia Lp.

Bardziej szczegółowo

Źródła zasilania i parametry przebiegu zmiennego

Źródła zasilania i parametry przebiegu zmiennego POLIECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGEYKI INSYU MASZYN I URZĄDZEŃ ENERGEYCZNYCH LABORAORIUM ELEKRYCZNE Źródła zasilania i parametry przebiegu zmiennego (E 1) Opracował: Dr inż. Włodzimierz

Bardziej szczegółowo

Wyznaczanie oporu elektrycznego właściwego przewodników

Wyznaczanie oporu elektrycznego właściwego przewodników Wyznaczanie oporu elektrycznego właściwego przewodników Ćwiczenie nr 7 Wprowadzenie Natężenie prądu płynącego przez przewodnik zależy od przyłożonego napięcia U oraz jego oporu elektrycznego (rezystancji)

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

Wyznaczanie krzywej ładowania kondensatora

Wyznaczanie krzywej ładowania kondensatora Ćwiczenie E10 Wyznaczanie krzywej ładowania kondensatora E10.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie przebiegu procesu ładowania kondensatora oraz wyznaczenie stałej czasowej szeregowego układu.

Bardziej szczegółowo

Obwody sprzężone magnetycznie.

Obwody sprzężone magnetycznie. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, nformatyki i Automatyki nstytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W

UKŁADY PROSTOWNICZE 0.47 / 5W 0.47 / 5W D2 C / 5W UKŁADY PROSTOWNICZE. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem

Bardziej szczegółowo

Pomiar podstawowych wielkości elektrycznych

Pomiar podstawowych wielkości elektrycznych Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 1 Pracownia Elektroniki. Pomiar podstawowych wielkości elektrycznych........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

Układy regulacji i pomiaru napięcia zmiennego.

Układy regulacji i pomiaru napięcia zmiennego. Układy regulacji i pomiaru napięcia zmiennego. 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami regulacji napięcia zmiennego, stosowanymi w tym celu układami elektrycznymi, oraz metodami

Bardziej szczegółowo

Badanie wzmacniacza niskiej częstotliwości

Badanie wzmacniacza niskiej częstotliwości Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 9 Pracownia Elektroniki Badanie wzmacniacza niskiej częstotliwości (Oprac dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia: klasyfikacje

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l

Prawa Maxwella. C o p y rig h t b y p lec iu g 2.p l Prawa Maxwella Pierwsze prawo Maxwella Wyobraźmy sobie sytuację przedstawioną na rysunku. Przewodnik kołowy i magnes zbliżają się do siebie z prędkością v. Sytuację tę można opisać z punktu widzenia dwóch

Bardziej szczegółowo

Laboratorium Elektroenergetycznej Automatyki Zabezpieczeniowej Instrukcja laboratoryjna LABORATORIUM ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ

Laboratorium Elektroenergetycznej Automatyki Zabezpieczeniowej Instrukcja laboratoryjna LABORATORIUM ELEKTROENERGETYCZNEJ AUTOMATYKI ZABEZPIECZENIOWEJ nstrukcja laboratoryjna - 1 - LABORATORUM ELEKTROENERGETYCZNEJ AUTOMATYK ZABEZPECZENOWEJ BADANE PRZEKŁADNKA PRĄDOWEGO TYPU ASK10 1. Cel ćwiczenia Poznanie budowy, zasady działania, danych znamionowych

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów

Bardziej szczegółowo

2.Rezonans w obwodach elektrycznych

2.Rezonans w obwodach elektrycznych 2.Rezonans w obwodach elektrycznych Celem ćwiczenia jest doświadczalne sprawdzenie podstawowych właściwości szeregowych i równoległych rezonansowych obwodów elektrycznych. 2.1. Wiadomości ogólne 2.1.1

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

Zakład Zastosowań Elektroniki i Elektrotechniki

Zakład Zastosowań Elektroniki i Elektrotechniki Zakład Zastosowań Elektroniki i Elektrotechniki Laboratorium Wytwarzania energii elektrycznej Temat ćwiczenia: Badanie alternatora 52 BADANIE CHARAKTERYSTYK EKSPLOATACYJNYCH ALTERNATORÓW SAMO- CHODOWYCH

Bardziej szczegółowo

ĆWICZENIE 2 BADANIE TRANSFORMATORA JEDNOFAZOWEGO

ĆWICZENIE 2 BADANIE TRANSFORMATORA JEDNOFAZOWEGO ĆWICZENIE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwiczenia: poznanie budowy, zasady działania i własności transformatora oraz zachodzących w nim zjawisk w stanie jałowym, przy próbie zwarcia i obciążeniu.1.

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Wyznaczenie napięcia. Mając do dyspozycji: trójnóżkowy element półprzewodnikowy, dwie baterie 4,5 V z opornikami zabezpieczającymi

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

Ćwiczenie nr 3 Sprawdzenie prawa Ohma.

Ćwiczenie nr 3 Sprawdzenie prawa Ohma. Ćwiczenie nr 3 Sprawdzenie prawa Ohma. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne wykazanie i potwierdzenie słuszności zależności określonych prawem Ohma. Zastosowanie prawa Ohma dla zmierzenia oporności

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne

Bardziej szczegółowo

Stanowisko pomiarowe do wyznaczania ró nicowego pr¹du wy³¹czania wy³¹czników ró nicowo-pr¹dowych typu AC

Stanowisko pomiarowe do wyznaczania ró nicowego pr¹du wy³¹czania wy³¹czników ró nicowo-pr¹dowych typu AC ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH Nr 1(4)/2008, s. 91-95 ISSN-1895-3794 Andrzej Kidawa Wy sza Szko³a Zarz¹dzania Ochron¹ Pracy w Katowicach Jagoda G³az Wy sza Szko³a

Bardziej szczegółowo

Pomiar wysokich napięć

Pomiar wysokich napięć Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 0-68 Lublin, ul. Nadbystrzycka 8A www.kueitwn.pollub.pl LABORATORIUM TECHNIKI WYSOKICH NAPIĘĆ Instrukcja

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5

nazywamy mostkiem zrównoważonym w przeciwieństwie do mostka niezrównoważonego, dla którego Z 1 Z 4 Z 2 Z 3. Z 5 Ćwiczenie E- Pomiar oporności i indukcyjności metodą mostkową I. el ćwiczenia: Ocena dokładności pomiaru oporności mostkiem Wheatstone`a, pomiar nieznanej oporności i indukcyjności mostkiem ndersona. II.

Bardziej szczegółowo

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu

E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu E 6.1. Wyznaczanie elementów LC obwodu metodą rezonansu Obowiązujące zagadnienia teoretyczne: INSTRUKACJA WYKONANIA ZADANIA 1. Pojemność elektryczna, indukcyjność 2. Kondensator, cewka 3. Wielkości opisujące

Bardziej szczegółowo

WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Fizyka Kod przedmiotu: ISO73, INO73 Ćwiczenie Nr 7 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH

ĆWICZENIE 6 BADANIE OBWODÓW MAGNETYCZNYCH ĆWCZENE 6 BADANE OBWODÓW MAGNETYCZNYCH Cel ćwiczenia: poznanie procesów fizycznych zachodzących, w cewce nieliniowej i jej własności, przez wyznaczenie rezystancji oraz indukcyjności cewki w różnych warunkach

Bardziej szczegółowo

Segment B.XIII Prąd elektryczny Przygotowała: mgr Bogna Pazderska

Segment B.XIII Prąd elektryczny Przygotowała: mgr Bogna Pazderska Segment B.XIII Prąd elektryczny Przygotowała: mgr Bogna Pazderska Zad. 1 Wyznacz natężenie prądu I 5, wiedząc że I 1 = 1 A, I 2 = 3 A, I 3 = 5 A, I 4 = 4 A. Odp.: Źrd.: I 5 = 5 A Wasiak, Fizyka od A do

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Instrukcja wykonawcza 1. Wykaz przyrządów 1. Panel z ogniwami 5. Zasilacz stabilizowany oświetlacza 2. Oświetlacz 3. Woltomierz napięcia stałego 4. Miliamperomierz

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa

Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Badanie charakterystyki prądowo-napięciowej opornika, żarówki i diody półprzewodnikowej z wykorzystaniem zestawu SONDa Celem doświadczenia jest wyznaczenie charakterystyk prądowo-napięciowych oraz zależności

Bardziej szczegółowo

ENS1C BADANIE DŁAWIKA E04

ENS1C BADANIE DŁAWIKA E04 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych ENS00 03 BADANIE DŁAWIKA Numer ćwiczenia E04 Opracowanie: Dr inż. Anna

Bardziej szczegółowo

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym

Ćwiczenie nr 1. Badanie obwodów jednofazowych RLC przy wymuszeniu sinusoidalnym Ćwiczenie nr Badanie obwodów jednofazowych RC przy wymuszeniu sinusoidalnym. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z rozkładem napięć prądów i mocy w obwodach złożonych z rezystorów cewek i

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD)

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badane silniki BLCD są silnikami bezszczotkowymi prądu stałego (odpowiednikami odwróconego konwencjonalnego silnika prądu stałego z magnesami

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu.

Prostowniki. 1. Cel ćwiczenia. 2. Budowa układu. Prostowniki. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową i właściwościami podstawowych układów prostowniczych: prostownika jednopołówkowego, dwupołówkowego z dzielonym uzwojeniem transformatora

Bardziej szczegółowo

NISKONAPIĘCIOWE PRZEKŁADNIKI PRĄDOWE

NISKONAPIĘCIOWE PRZEKŁADNIKI PRĄDOWE NISKONAPIĘCIOWE PRZEKŁADNIKI PRĄDOWE Miernik parametrów sieci - ND20. www.lumel.com.pl SPIS TREŚCI Charakterystyka ogólna przekładników...3 Seria LCTM z uzwojeniem pierwotnym (odpowiednik WSK 40)...5 Seria

Bardziej szczegółowo