Detekcja i korekcja błędów w transmisji cyfrowej

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Detekcja i korekcja błędów w transmisji cyfrowej"

Transkrypt

1 Detekcja i korekcja błędów w transmisji cyfrowej

2 Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe) (burst error) długość paczki błędów wymazanie danych (erasure) całkowita niepewność względem wartości zakłóconych bitów, ale miejsca tych bitów są znane

3 CRC (Cyclic Redundancy Check) metoda najbardziej popularna i skuteczna

4 Przykład CRC w systemie dziesiętnym Liczba (informacja) nadawana 745 wybieramy dzielnik np. 7 przesuwamy liczbę w lewo 745 dzielimy przez 7 otrzymujemy resztę 2. Należałoby tę resztę odjąć od 745, aby uzyskać liczbę podzielną przez 7, ale wtedy zmieniłaby się liczba informacyjna Można dodać dopełnienie do 7, czyli dodać 5 Ostatecznie liczba 745 zostaje zakodowana do postaci 7455, która dzieli się przez 7. Jeżeli odebrana liczba będzie zawierać jeden błąd np nie dzielą się bez reszty przez 7 błąd można wykryć dzieli się przez 7!! Zmieniona liczba różni się o od oryginału, a jest podzielne przez 7.

5 Słowa i liczby binarne są reprezentowane przez wielomiany zmiennej Każda potęga w tym wielomianie reprezentuje odpowiednią pozycję cyfry binarnej ma wartość nieoznaczoną, dlatego nie można obliczać wartości tego wielomianu W systemie dwójkowym

6 Arytmetyka wielomianów Dodawanie modulo 2 bez przeniesień z uwzględnieniem właściwych potęg zmiennej ( 7 6 ) ( 6 5 ) 7 ( ) 6 5 ( ) 7 5 Odejmowanie to dodawanie elementu przeciwnego element przeciwny Element przeciwny do a taki, że a + (-a) =, b a b ( a) W arytmetyce mod 2 + = i + = W arytmetyce modulo 2 odejmowanie jest równoważne dodawaniu!

7 Mnożenie ( )( 2 ) ( ) 2 ( ) 3 Dzielenie iloraz : dzielnik reszta : reszta

8 Metoda CRC polega na dodawaniu bitów będących resztą z dzielenia wielomian generujący Traktując bity reszty jako najmniej znaczące, należy bity wiadomości przesunąć odpowiednio w lewo, czyli zwiększyć ich wagę n-k razy, aby zrobić miejsce dla bitów reszty n - k = liczba bitów reszty = liczba bitów dodatkowych

9 Procedura CRC ) przyjmujemy wielomian generujący g() stopnia g = n k; 2) słowo wiadomości (binarne) przedstawiamy w postaci wielomianu m(); 3) wielomian m() przesuwamy w lewo o g pozycji, tj. zwiększamy wagę jego wszystkich wyrazów g razy, a puste miejsca w wielomianie uzupełniamy zerami; 4) otrzymujemy wielomian m() g ; 5) wielomian ten dzielimy przez g(); 6) resztę z dzielenia dopisujemy do wielomianu m() g, 7) otrzymujemy wielomian m() g + r(); 8) zamieniamy go na liczbę binarną otrzymujemy końcowe słowo kodowe. m( ) nk m()

10 Po stronie odbiorczej odbieramy całe słowo łącznie z bitami reszty i dzielimy je przez ten sam wielomian generujący Dlaczego? słowo powinno podzielić się bez reszty! Jak można zapisać wielomian całego słowa kodowego? nk c( ) m( ) r( ) gdzie n = długość słowa kodowego, k = długość wiadomości m( ) nk m()

11 ) ( ) ( ) ( ) ( r q g m k n ) ( ) ( ) ( r m c k n ale podstawiając ) ( ) ( ) ( ) ( ) ( r r q g c k n m ) (... w stosowanej arytmetyce Prawidłowe słowo kodowe dzieli się bez reszty przez wielomian generujący... i to jest sprawdzane po stronie odbiorczej bo w ten sposób została wyznaczona r()

12 słowo kodowe poprawne c() słowo niepoprawne (błędne) c () przy czym c' ( ) c( ) e( ) dodawanie mod 2! e() = wektor błędów - słowo zawierające i ; jedynka oznacza, że na danym miejscu wystąpił błąd np. e() = - na 5. bicie wystąpił błąd e() = - błąd paczkowy o długości 6 bitów sprawdzana jest podzielność c () przez g() c' ( ) g( ) q( ) e( ) to jest na pewno podzielne czy to jest podzielne przez g()?

13 Wybór wielomianu g() e() nie powinno być podzielne przez g() w przeciwnym razie nie wykryje się błędu! Dla błędów pojedynczych e() =... albo... albo 2... albo 3... albo 4... itd.. Dlatego Wielomian generujący g() nie powinien mieć postaci m - nie może być jednomianem m[, n-]

14 Wybór wielomianu g() Dla błędów podwójnych e() = +... albo albo albo albo itd.. ogólnie e() = i + j = i (+ j-i ) j, i numery = < i < j < n- błędnych bitów Wiadomo już, że g() nie dzieli bez reszty i czy może podzielić bez reszty (+ j-i )?

15 Wybór wielomianu g() Jeżeli g() jest primitive (nierozkładalny) to nie dzieli dwumianu ( + j-i ) dla j - i < 2 n - k - n - k = stopień wielomianu g() Przykład n = 7 k = 3 wielomian g() = nie dzieli (+ n ) dla n < 5 n taki błąd podwójny oraz krótsze będą wykryte

16 Wybór wielomianu g() niektóre stosowane wielomiany generujące CRC reszta 8-bitowa nagłówek ATM CRC reszta -bitowa ATM AAL CRC itd. CRC IBM Bisync ITU HDLC, XMODEM, V.4 CCITT-32 ITU LAN, IEEE 82, V.42 Przykładowo, wielomian CRC-2 wykrywa wszystkie błędy paczkowe o długości 2 b, 99,95% błędów o długości 3 b i 99,976% jeszcze dłuższych!

17 Najlepsze wielomiany generujące wg S. Jackowskiego (Telekomunikacja - Pol. Radomska) n = 3 n = 7 n = 5 n = 3 n = 63 n = 27 n = długość całego słowa

18 Dotychczas było tylko wykrywanie błędów lepiej błędy wykrywać i korygować do tego celu potrzebny jest znaczny nadmiar informacji kodowanie nadmiarowe - - przekształcanie k-pozycyjnych binarnych ciągów informacyjnych w n-pozycyjne ciągi kodowe, gdzie n > k

19 Rodzaje kodów korekcyjnych (protekcyjnych)

20 Kodowanie blokowe - proces kodowania w i-tym takcie nie zależy od przebiegu kodowania w poprzednich taktach. oznaczenie kodu nadmiarowego kod (n,k) bity informacyjne bity nadmiarowe bity informacyjne wydzielone od bitów nadmiarowych kod systematyczny bity informacyjne i bity nadmiarowe pomieszane kod niesystematyczny

21 Zdolność korekcyjna kodu zależy od odległości Hamminga między słowami kodowymi Odległość Hamminga - liczba pozycji bitów, na których dwa słowa kodowe się różnią d H inaczej miara niepodobieństwa słów kodowych Minimalna odległość Hamminga dla kodu - najmniejsza odległość dla dowolnej pary słów z danej przestrzeni kodowej d Hmin

22 Detekcja błędów Największa krotność błędów wykrywanych przez blokowy kod nadmiarowy (n,k) o odległości d Hmin wynosi d H min Korekcja błędów Szukamy takiego słowa kodowego, które jest najbardziej podobne do znanych słów kodowych (ma najmniejszą odległość H. od słowa odebranego). Ilość błędów korygowalnych d E H min 2 część całkowita

23 Błąd typu wymazanie danych (erasure) całkowita niepewność względem zakłóconych bitów, ale miejsca tych bitów są znane liczba korygowalnych błędów wymazania d H min liczba korygowalnych zwykłych błędów d E H min 2 korekcja błędów wymazania jest łatwiejsza!

24 Przykład z jednowymiarową przestrzenią kodową d H = d H = 2 d H = 3 d H = 4 d H = 5 poprawne słowo kodowe niepoprawne słowo kodowe skutek zakłócenia

25 Formalne przedstawienie kodowania nadmiarowego Słowo informacyjne m m 2 m 3 m 4 m 5 m 6 m 7 m 8 m(, k) Macierz generująca G (k n) Słowo kodowe c c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c c c 2 c(, n)

26 słowo informacyjne macierz generująca = słowo kodowe m G = c m [m m 2 m 3 m 4 ] G = [m m 2 m 3 m 4 m m 2 m 4 m m 3 m 4 m 2 m 3 m 4 ] = c Macierz G zawiera podmacierz jednostkową stopnia k oraz podmacierz zadającą kod (do obliczania bitów dodatkowych). Wiersze i kolumny G można przestawić wtedy otrzyma się kod niesystematyczny.

27 Po stronie odbiorczej Kod odebrany c c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c c c 2 Macierz kontroli parzystości H syndrom s s s 2 s 3 s 4 odbiór bez błędów syndrom = macierz odbiór błędny - syndrom wskazuje pozycję błędu

28 Dokładniejsza postać macierzy G i H Na pewno istnieje ścisły związek między macierzami G i H c = m G oraz s = c H uwaga tradycyjnie przyjmuje się, że przy kontroli parzystości korzysta się z macierzy transponowanej, tzn. s = c H T i tak będzie to stosowane postulat: c H T = dla słowa poprawnego ale c = m G m G H T = dla dowolnego słowa informacyjnego G H T G H T = związek między macierzami

29 Dokładniejsza postać macierzy G i H W przypadku słowa błędnego ma być s c H T dla słowa błędnego, ale c = c + e (c + e) H T = c H T + e H T = s = e H T Dla odpowiednio skonstruowanej macierzy H wartość syndromu nie zależy od słowa informacyjnego, a tylko od rozkładu błędów. G H T =

30 Dokładniejsza postać macierzy G i H G = [ P ] podmacierz jednostkowa n k podmacierz zadająca kod aby G H T =, macierz H T powinna być postaci przy mnożeniu macierzy każdy składnik będzie postaci p r,m p r,m, a to jest zawsze =.

31 Dokładniejsza postać macierzy G i H zatem nietransponowana macierz H będzie równa n H = [ P T ] n-k

32 Liczba m bitów korekcyjnych niezbędnych do skorygowania t błędnych bitów. liczba ta musi spełniać nierówność 2 m t i k i m wzór uniwersalny, niezależny od zastosowanego kodu korekcyjnego a b a! b!( a b)!

33 Kodowanie za pomocą wielomianu generującego wyznaczane są bity reszty z dzielenia i one stanowią bity nadmiarowe; jeżeli będzie ich dostatecznie dużo można skorygować błędy Kodery wielomianowe są proste do realizacji sprzętowej

34 Układowa realizacja kodowania wielomianowego dane wej przerzutniki MS

35 Układowa realizacja kodowania wielomianowego dane wej. po pierwszym takcie zegara najpierw bity bardziej znaczące

36 Układowa realizacja kodowania wielomianowego dane wej. słowo informacyjne najpierw bity bardziej znaczące koder koder2 bity reszty

37 Przykład kodera IBM Bisync (z systemu IBM36) g()=

38 Kody cykliczne największe zastosowanie praktyczne (prosta realizacja układowa) specyficzne kody wielomianowe cykliczność = wektory kodowe po przesunięciu symboli ( w kółko ) też należą do prawidłowych słów kodowych c c 2 c 3 c 4 c 5 c 6... to są słowa kodowe (łącznie z bitami nadmiarowymi)!

39 Kodowanie Reeda-Solomona szczególnie do korekcji błędów paczkowych Podstawowa jednostka w kodzie RS = grupa bitów (symbol), a nie bit Aby skorygować t symboli potrzeba 2t symboli dodatkowych (np. bajtów) symbol s-bitowy (np. s = 8) wtedy maksymalna długość całego słowa n = 2 s

40 Przykład kodowania korekcyjnego dotyczącego grup bitów, np. bajtów A B C X Y A+B+C A+2B+3C Jeżeli odebrano (jeden bajt błędny) A B C X Y Oblicza się A+B+C = 5; wartość błędu = X-(A+B+C) = 54-5 = 4 Ale gdzie ten błąd wystąpił? Oblicza się A+2B+3C = 5; (Y 5) / 4 = 3 Miejsce błędu = Y X Y X miejsce błędu Kod koryguje jeden bajt kosztem 2 bajtów dodatkowych

41 Kody splotowe (P. Elias 955) dane wejściowe kodowane są na bieżąco (jak dochodzą do wejścia) nie ma potrzeby zapamiętywania bloków danych w celu ich zakodowania dane wejściowe dane zakodowane przykład prostego kodera splotowego elementy pamięciowe multiplekser na każdy bit wejściowy przypada aż 3 bity wyjściowe! sprawność kodera =/3 bit informacji i 2 nadmiarowe

42 poz. funkcja przejścia = poz.2 funkcja przejścia = + D 2 poz.3 funkcja przejścia = + D + D 2 D = operator opóźnienia D = opóźnienie o takt D 2 = opóźnienie o 2 takty, itd. odpowiedź impulsowa kodera = przy pobudzeniu impulsem, tzn. wejściowy ciąg bitów = na. wyjściu + na 2. wyjściu + na 3. wyjściu

43 poz. funkcja przejścia = poz.2 funkcja przejścia = + D 2 poz.3 funkcja przejścia = + D + D 2 D = operator opóźnienia D = opóźnienie o takt D 2 = opóźnienie o 2 takty, itd. odpowiedź impulsowa kodera = przy pobudzeniu impulsem, tzn. wejściowy ciąg bitów = na. wyjściu + na 2. wyjściu + na 3. wyjściu odpowiedź impulsowa kodera =

44 poz. funkcja przejścia = poz.2 funkcja przejścia = + D 2 poz.3 funkcja przejścia = + D + D 2 D = operator opóźnienia D = opóźnienie o takt D 2 = opóźnienie o 2 takty, itd. odpowiedź impulsowa kodera = przy pobudzeniu impulsem, tzn. wejściowy ciąg bitów = na. wyjściu + na 2. wyjściu + na 3. wyjściu odpowiedź impulsowa kodera =

45 poz. funkcja przejścia = poz.2 funkcja przejścia = + D 2 poz.3 funkcja przejścia = + D + D 2 D = operator opóźnienia D = opóźnienie o takt D 2 = opóźnienie o 2 takty, itd. odpowiedź impulsowa kodera = przy pobudzeniu impulsem, tzn. wejściowy ciąg bitów = na. wyjściu + na 2. wyjściu + na 3. wyjściu odpowiedź impulsowa kodera =

46 poz. funkcja przejścia = poz.2 funkcja przejścia = + D 2 poz.3 funkcja przejścia = + D + D 2 D = operator opóźnienia D = opóźnienie o takt D 2 = opóźnienie o 2 takty, itd. odpowiedź impulsowa kodera = przy pobudzeniu impulsem, tzn. wejściowy ciąg bitów = na. wyjściu + na 2. wyjściu + na 3. wyjściu odpowiedź impulsowa kodera =

47 poz. funkcja przejścia = poz.2 funkcja przejścia = + D 2 poz.3 funkcja przejścia = + D + D 2 D = operator opóźnienia D = opóźnienie o takt D 2 = opóźnienie o 2 takty, itd. odpowiedź impulsowa kodera = przy pobudzeniu impulsem, tzn. wejściowy ciąg bitów = na. wyjściu + na 2. wyjściu + na 3. wyjściu odpowiedź impulsowa kodera =...

48 krata (trellis) stany kodera wyrażone przez stany przerzutników generowane stany na wyjściu pewne przejścia są niedozwolone!

49 stany kodera przy danej sekwencji bitów wejściowych dla kodów splotowych nie można określić odległości Hamminga, bo słowa kodowe jako takie nie isstnieją!

50 dekodowanie kodów splotowych algorytm Viterbiego przykład A. Viterbi poszukiwanie takiego ciągu bitów, aby był on najmniej odległy (np. w sensie Hamminga) od ciągu odebranego współczesne dekodery Viterbiego specjalizowane układy scalone GSM, DVB, UMTS, WLAN

51 koder splotowy z systemu radiofonii DAB

52

Detekcja i korekcja błędów w transmisji cyfrowej

Detekcja i korekcja błędów w transmisji cyfrowej Detekcja i korekcja błędów w transmisji cyfrowej Błędy w transmisji cyfrowej pojedyncze wielokrotne. całkowita niepewność względem miejsca zakłóconych bitów oraz czy w ogóle występują paczkowe (grupowe)

Bardziej szczegółowo

W11 Kody nadmiarowe, zastosowania w transmisji danych

W11 Kody nadmiarowe, zastosowania w transmisji danych W11 Kody nadmiarowe, zastosowania w transmisji danych Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Kody nadmiarowe w systemach transmisji cyfrowej 2. Typy kodów,

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska

Zygmunt Kubiak Instytut Informatyki Politechnika Poznańska Instytut Informatyki Politechnika Poznańska Proces transmisji może w prowadzać błędy do przesyłanych wiadomości błędy pojedyncze lub grupowe Detekcja: Wymaga uznania, że niektóre wiadomości są nieważne

Bardziej szczegółowo

Kody splotowe. Zastosowanie

Kody splotowe. Zastosowanie Kody splotowe Zastosowanie Niekiedy potrzeba buforowania fragmentu wiadomości przed zakodowaniem, tak jak to ma miejsce w koderze blokowym, jest przeszkodą, gdyż dane do zakodowania napływają strumieniem.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 7: Kody korygujące błędy Gniewomir Sarbicki Błędy transmisji i kodowanie nadmiarowe Zakładamy, że przy pewnym małym prawdopodobieństwie ɛ przy transmisji bit zmienia wartość.

Bardziej szczegółowo

Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe)

Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe) Systemy bezpieczne i FTC (Niezawodne Systemy Cyfrowe) dr inż Krzysztof Berezowski 220/C3 tel +48 71 320 27-59 krzysztofberezowski@pwrwrocpl 1 Wybrane kody dr inż Krzysztof Berezowski 220/C3 tel +48 71

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa

Bardziej szczegółowo

Kody blokowe Wykład 2, 10 III 2011

Kody blokowe Wykład 2, 10 III 2011 Kody blokowe Wykład 2, 10 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Podstawy Informatyki: Kody. Korekcja błędów.

Podstawy Informatyki: Kody. Korekcja błędów. Podstawy Informatyki: Kody. Korekcja błędów. Adam Kolany Instytut Techniczny adamkolany@pm.katowice.pl Adam Kolany (PWSZ Nowy Sącz, IT) Podstawy Informatyki: Kody. Korekcja błędów. 11 stycznia 2012 1 /

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Sieci Komputerowe Mechanizmy kontroli błędów w sieciach

Sieci Komputerowe Mechanizmy kontroli błędów w sieciach Sieci Komputerowe Mechanizmy kontroli błędów w sieciach dr Zbigniew Lipiński Instytut Matematyki i Informatyki ul. Oleska 48 50-204 Opole zlipinski@math.uni.opole.pl Zagadnienia Zasady kontroli błędów

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Polska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach

Polska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach Polska-Brazylia 5:0, czyli o poprawianiu błędów w przekazywanych informacjach Witold Tomaszewski Instytut Matematyki Politechniki Śląskiej e-mail: Witold.Tomaszewski@polsl.pl Witold Tomaszewski (Instytut

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

Cyfrowy zapis informacji

Cyfrowy zapis informacji F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Arytmetyka komputera

Arytmetyka komputera Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka

Bardziej szczegółowo

Arytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska,

Arytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska, Arytmetyka Magdalena Lemańska System dziesiętny System dziesiętny Weźmy liczbę 178. Składa się ona z jednej setki, siedmiu dziesiątek i ośmiu jedności. System dziesiętny System dziesiętny Weźmy liczbę

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

KODOWANIE KANAŁOWE (NADMIAROWE) ERROR CONTROL CODING

KODOWANIE KANAŁOWE (NADMIAROWE) ERROR CONTROL CODING KODOWANIE KANAŁOWE (NADMIAROWE) ERROR CONTROL CODING - W celu zabezpieczenia danych przed błędami do danych informacyjnych dołącza się według ściśle określonej reguły (definiującej dany kod) dodatkowe

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

1259 (10) = 1 * * * * 100 = 1 * * * *1

1259 (10) = 1 * * * * 100 = 1 * * * *1 Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. GOLOMBA I RICE'A mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 4, strona 1. KOMPRESJA ALGORYTMEM ARYTMETYCZNYM, GOLOMBA I RICE'A Idea algorytmu arytmetycznego Przykład kodowania arytmetycznego Renormalizacja

Bardziej szczegółowo

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011

Układy arytmetyczne. Joanna Ledzińska III rok EiT AGH 2011 Układy arytmetyczne Joanna Ledzińska III rok EiT AGH 2011 Plan prezentacji Metody zapisu liczb ze znakiem Układy arytmetyczne: Układy dodające Półsumator Pełny sumator Półsubtraktor Pełny subtraktor Układy

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Tranzystor JFET i MOSFET zas. działania

Tranzystor JFET i MOSFET zas. działania Tranzystor JFET i MOSFET zas. działania brak kanału v GS =v t (cutoff ) kanał otwarty brak kanału kanał otwarty kanał zamknięty w.2, p. kanał zamknięty Co było na ostatnim wykładzie? Układy cyfrowe Najczęściej

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:

B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską: Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka

Bardziej szczegółowo

Teoria informacji i kodowania

Teoria informacji i kodowania Teoria informacji i kodowania Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Systemów i Sieci Radiokomunikacyjnych dr inż. Małgorzata Gajewska e-mail: malgorzata.gajewska@eti.pg.gda.pl

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Kody blokowe Wykład 1, 3 III 2011

Kody blokowe Wykład 1, 3 III 2011 Kody blokowe Wykład 1, 3 III 2011 Literatura 1. R.M. Roth, Introduction to Coding Theory, 2006 2. W.C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, 2003 3. D.R. Hankerson et al., Coding Theory

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część VII Układy cyfrowe Janusz Brzychczyk IF UJ Układy cyfrowe W układach cyfrowych sygnały napięciowe (lub prądowe) przyjmują tylko określoną liczbę poziomów, którym przyporządkowywane

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Wprowadzanie nadmiaru informacyjnego dla transmitowanych szeregowo danych w kompaktowych sterownikach PLC firmy Mitsubishi Electric

Wprowadzanie nadmiaru informacyjnego dla transmitowanych szeregowo danych w kompaktowych sterownikach PLC firmy Mitsubishi Electric Wprowadzanie nadmiaru informacyjnego dla transmitowanych szeregowo danych w kompaktowych sterownikach PLC firmy Mitsubishi Electric Roman Mielcarek 1. Wprowadzenie W sterownikach PLC typu FX firmy Mitsubishi

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Pracownia Komputerowa wyk ad V

Pracownia Komputerowa wyk ad V Pracownia Komputerowa wyk ad V dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Mikrooperacje. Mikrooperacje arytmetyczne

Mikrooperacje. Mikrooperacje arytmetyczne Przygotowanie: Przemysław Sołtan e-mail: kerk@moskit.ie.tu.koszalin.pl Mikrooperacje Mikrooperacja to elementarna operacja wykonywana podczas jednego taktu zegara mikroprocesora na informacji przechowywanej

Bardziej szczegółowo

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015

teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 teoria informacji Kanały komunikacyjne, kody korygujące Mariusz Różycki 25 sierpnia 2015 1 wczoraj Wprowadzenie matematyczne. Entropia i informacja. Kodowanie. Kod ASCII. Stopa kodu. Kody bezprefiksowe.

Bardziej szczegółowo

Kodowe zabezpieczenie przed błędami oraz kanał telekomunikacyjny i jego właściwości

Kodowe zabezpieczenie przed błędami oraz kanał telekomunikacyjny i jego właściwości Kodowe zabezpieczenie przed błędami oraz kanał telekomunikacyjny i jego właściwości Mikołaj Leszczuk 2010-12-27 Spis treści wykładu Kodowe zabezpieczenie przed błędami Definicje Odległość Hamminga Waga

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014

Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Lista tematów na kolokwium z wykładu z Techniki Cyfrowej w roku ak. 2013/2014 Temat 1. Algebra Boole a i bramki 1). Podać przykład dowolnego prawa lub tożsamości, które jest spełnione w algebrze Boole

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 9 - Podstawy matematyczne automatyki procesów dyskretnych Instytut Automatyki i Robotyki Warszawa, 2015 Kody liczb całkowitych nieujemnych Kody liczbowe dzielimy na analityczne nieanalityczne (symboliczne)

Bardziej szczegółowo

Operacje arytmetyczne w systemie dwójkowym

Operacje arytmetyczne w systemie dwójkowym Artykuł pobrano ze strony eioba.pl Operacje arytmetyczne w systemie dwójkowym Zasady arytmetyki w systemie binarnym są identyczne (prawie) jak w dobrze nam znanym systemie dziesiętnym. Zaletą arytmetyki

Bardziej szczegółowo

Pracownia Komputerowa wykład VI

Pracownia Komputerowa wykład VI Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q).

1 WPROWADZENIE 1. Agata Pilitowska. parzysta. 3. Znaleźć odległość kodu kontroli parzystości nad ciałem GF (q). 1 WPROWADZENIE 1 Kody korekcyjne - zadania Agata Pilitowska 1 Wprowadzenie 1. Pokazać, że dla dowolnych wektorów c, f Z n 2, d(c, f ) = n (c i f i ) 2, i=1 wt(c + f ) = wt(c) + wt(f ) 2wt(cf ), wt(c +

Bardziej szczegółowo

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska

Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia

ćwiczenie 202 Temat: Układy kombinacyjne 1. Cel ćwiczenia Opracował: dr inż. Jarosław Mierzwa KTER INFORMTKI TEHNIZNEJ Ćwiczenia laboratoryjne z Logiki Układów yfrowych ćwiczenie 202 Temat: Układy kombinacyjne 1. el ćwiczenia Ćwiczenie ma na celu praktyczne zapoznanie

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne

Def. Kod jednoznacznie definiowalny Def. Kod przedrostkowy Def. Kod optymalny. Przykłady kodów. Kody optymalne Załóżmy, że mamy źródło S, które generuje symbole ze zbioru S={x, x 2,..., x N } z prawdopodobieństwem P={p, p 2,..., p N }, symbolom tym odpowiadają kody P={c, c 2,..., c N }. fektywność danego sposobu

Bardziej szczegółowo

4. Systemy algebraiczne i wielomiany nad ciałami zastosowania Rodzaje systemów algebraicznych ciała, grupy, pierścienie

4. Systemy algebraiczne i wielomiany nad ciałami zastosowania Rodzaje systemów algebraicznych ciała, grupy, pierścienie Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik

Bardziej szczegółowo

Poziomy zabezpieczeń danych w sieciach szerokopasmowych opartych na technice ATM

Poziomy zabezpieczeń danych w sieciach szerokopasmowych opartych na technice ATM Jacek Majewski, Zbigniew Zakrzewski Instytut Telekomunikacji ATR w Bydgoszczy, Bydgoszcz Poziomy zabezpieczeń danych w sieciach szerokopasmowych opartych na technice ATM W opracowaniu przedstawiono charakterystykę

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

Podstawy Informatyki Elementarne podzespoły komputera

Podstawy Informatyki Elementarne podzespoły komputera Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Reprezentacja informacji Podstawowe bramki logiczne 2 Przerzutniki Przerzutnik SR Rejestry Liczniki 3 Magistrala Sygnały

Bardziej szczegółowo

OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE

OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE OCHRONA INFORMACJI W SYSTEMACH I SIECIACH KOMPUTEROWYCH SYMETRYCZNE SZYFRY BLOKOWE 1 Tryby pracy szyfrów blokowych Rzadko zdarza się, by tekst jawny zawierał tylko 64 bity, czyli 8 znaków kodu ASCII. Zwykle

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

Układy kombinacyjne. cz.2

Układy kombinacyjne. cz.2 Układy kombinacyjne cz.2 Układy kombinacyjne 2/26 Kombinacyjne bloki funkcjonalne Kombinacyjne bloki funkcjonalne - dekodery 3/26 Dekodery Są to układy zamieniające wybrany kod binarny (najczęściej NB)

Bardziej szczegółowo

- Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation Modulacje cyfrowe Podstawowe modulacje cyfrowe ASK - Amplitude Shift Keying FSK - Frequency Shift Keying PSK - Phase Shift Keying QAM - Quadrature Amplitude Modulation Modulacje cyfrowe Efekywność widmowa

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

Bramki logiczne Podstawowe składniki wszystkich układów logicznych

Bramki logiczne Podstawowe składniki wszystkich układów logicznych Układy logiczne Bramki logiczne A B A B AND NAND A B A B OR NOR A NOT A B A B XOR NXOR A NOT A B AND NAND A B OR NOR A B XOR NXOR Podstawowe składniki wszystkich układów logicznych 2 Podstawowe tożsamości

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo