Elementy statystyki STA - Wykład 5

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy statystyki STA - Wykład 5"

Transkrypt

1 STA - Wykład 5 Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza 1

2 ANOVA 2

3 Model jednoczynnikowej analizy wariancji Na model jednoczynnikowej analizy wariancji możemy traktować jako uogólnienie modelu dwóch prób prostych niezależnych o jednakowych wariancjach, na przypadek k, (k > 2) prób niezależnych. gdzie X ij = µ i + ε ij, j = 1,..., n i, i = 1, 2,... k X ij j-ta obserwacja badanej cechy X w i-tej grupie, µ i wartość oczekiwana (średnia, "prawdziwa" wartość) badanej cechy X w i-tej grupie, ε ij błędy. 3

4 Założenia O błędach zakładamy, że: sa niezależne (dokładnie: sa niezależnymi zmiennymi losowymi), maja wartość oczekiwana równa zero (nie ma błędu systematycznego), tzn. E(ε ij ) = 0, j = 1,..., n i, i = 1, 2,... k, maja jednakowa, stała i niezerowa wariancję, tzn. Var(ε ij ) = σ 2, j = 1,..., n i, i = 1, 2... k. Uwaga: Model ma k + 1 parametrów: µ 1,... µ k i σ 2. 4

5 Test ANOVA dla k prób niezależnych Rozważamy model jednoczynnikowej analizy wariancji z dodatkowym założeniem normalności rozkładów błędów. Hipoteza zerowa: wartości oczekiwane (średnie) badanej cechy w k grupach nie różnia się istotnie: H 0 : µ 1 = µ 2 = = µ k. Hipoteza alternatywna: co najmniej dla jednej pary grup, wartości oczekiwane (średnie) badanej cechy różnia się istotnie: H 1 : H 0. 5

6 Jednoczynnikowa ANOVA Wartość statystyki testowej obliczamy ze wzoru: F = SSA k 1 / SSE n k, gdzie SSA = k n i ( x i x) 2, SSE = i=1 k n i (x ij x i ) 2, i=1 j=1 x i = 1 n i n i j=1 x ij, x = 1 n k n i x ij, n = i=1 j=1 k n i. Przy braku istotnych różnic statystyka ta ma rozkład F z k 1 i n k stopniami swobody. i=1 6

7 Tabela analizy wariancji Tradycyjnie wyniki analizy wariancji przedstawiamy w postaci tabeli. Źródło Suma Liczba stopni Średnie Statystyka zmienności kwadratów swobody kwadraty testowa Pomiędzy grupami SSA k 1 MSA F Wewnatrz grup SSE n k MSE Całość SST n 1 MST MSA = SSA/(k 1), MSE = SSE/(n k), MST = SST /(n 1). 7

8 Test Bartletta Założenie jednorodności wariancji błędów możemy zweryfikować testem Bartletta (przy dodatkowym założeniu normalności rozkładu błędów). Hipoteza zerowa: H 0 : σ 2 1 = σ 2 2 = = σ 2 k Hipoteza alternatywna: H 1 : H 0 Statystyka testowa: gdzie B = 1 k C (n k) ln MSE (n i 1) ln Si 2, C = 1 + i=1 1 [ k 1 3(k 1) n i 1 1 ]. n k i 1 Rozkład statystyki testowej: B H0 χ 2 (k 1), (graniczny) 8

9 Jednoczynnikowa ANOVA układy doświadczalne Na test jednoczynnikowej analizy wariancji możemy patrzeć jak na badanie istotności wpływu czynnika A na majac a charakter ilościowy i ciagły cechę X. Czynnik występuje na k poziomach które oznaczamy A 1, A 2,..., A k. Poziomy czynnika A nazywamy obiektami doświadczalnymi. Obiekty doświadczalne sa kontrolowane przez eksperymentatora, przy czym każdy z nich jest zwiazany z pewna liczba tzw. jednostek doświadczalnych. Liczba jednostek doświadczalnych zwiazana z określonym obiektem nazywana jest liczba replikacji tego obiektu. Kojarz ac różne obiekty z jednostkami doświadczalnymi, eksperymentator kreuje różne populacje, które pragnie porównać na podstawie obserwacji badanej w doświadczeniu cechy X. 9

10 Układ całkowicie losowy Model jednoczynnikowej analizy wariancji zwiazany jest z układem doświadczalnym zwanym "układem całkowicie losowym". W eksperymencie badamy jaki wpływ na badana cechę populacji X ma "czynnik" A. Czynnik A posiada k poziomów A 1, A 2,..., A k. Każdy poziom czynnika jest obiektem doświadczalnym. Z i-tym obiektem zwiazanych jest n i jednostek doświadczalnych. Model dla układu całkowicie losowego zapisujemy w postaci: X ij = µ + α i + ε ij, gdzie µ średnia ogólna, α i efekt i tego obiektu, k i=1 α i = 0, ε ij błędy. j = 1,..., n i, i = 1, 2,... k Uwaga: Założenia dotyczace błędów sa identyczne jak w modelu jednoczynnikowej analizy wariancji. 10

11 Hipoteza zerowa: czynnik A ma istotny wpływ na cechę X: H 0 : α 1 = α 2 = = α k. Hipoteza alternatywna: czynnik A nie ma istotnego wpływu na cechę X: H 1 : H 0. Statystyka testowa: F = SSA k 1 / SSE n k SSA = k n i ( X i. X.. ) 2, SSE = i=1 k n i (X ij X i. ) 2, i=1 j=1 X i. = 1 n i n i j=1 X ij, X.. = 1 n k n i k X ij, n = n i. i=1 j=1 i=1 Rozkład statystyki testowej: F H0 F(k 1, n k) 11

12 Tabela analizy wariancji Tradycyjnie wyniki analizy wariancji przedstawiamy w postaci tabeli. Źródło Suma Liczba stopni Średnie Statystyka zmienności kwadratów swobody kwadraty testowa Obiekty SSA k 1 MSA F Bład SSE n k MSE Całość SST n 1 MST MSA = SSA/(k 1), MSE = SSE/(n k), MST = SST /(n 1). 12

13 ANOVA Analysis of Variance Sir Ronald A. Fisher ( ) 13

14 Porównania wielokrotne (post hoc) Procedury porównań wielokrotnych stosujemy wtedy, gdy zostanie odrzucona hipoteza zerowa w teście analizy wariancji!!! Procedura LSD Fishera. Polega na testowaniu, dla każdej pary (i, j), i, j = 1, 2,..., k, i j, oddzielnie hipotezy zerowej: H 0 : µ i = µ j, przeciwko hipotezie alternatywnej H 1 : µ i µ j. Statystyka testowa: t = X i. X j. MSE ni n j n i + n j. Rozkład statystyki testowej: t H0 t(n k) 14

15 Porównania wielokrotne (post hoc) Procedura HSD Tukey a. Niech n 1 = n 2 = = n k = m. Polega na testowaniu, jednocześnie dla wszystkich par (i, j), i, j = 1, 2,..., k, i j, hipotez zerowych: H 0 : µ i = µ j, przeciwko hipotezom alternatywnym Statystyka testowa: H 1 : µ i µ j. q = X i. X j. m. MSE Rozkład statystyki testowej: q H0 q(k, k(m 1)) 15

16 HSD Honestly Significant Difference John Wilder Tukey ( ) 16

17 Układ losowych bloków kompletnych W celu wyeliminowania niejednorodności jednostek eksperymentalnych możemy pogrupować je w bloki. Grupowanie to podporzadkowane jest zasadzie, zgodnie z która naturalna zmienność jednostek wewnatrz każdego bloku powinna być możliwie najmniejsza, podczas gdy zmienność jednostek pochodzacych z różnych bloków może być duża. W ten sposób stwarzamy porównywanym obiektom bardziej wyrównane warunki i równocześnie ograniczamy w doświadczeniu wpływ naturalnej zmienności jednostek eksperymentalnych na wielkość wariancji błędu. 17

18 Układ losowych bloków kompletnych Model dla układu losowych bloków kompletnych zapisujemy w postaci: X ij = µ + α i + β j + ε ij, i = 1,..., k, j = 1,..., b, gdzie µ średnia ogólna, α i efekt i tego obiektu, k i=1 α i = 0, β j efekt j tego bloku, b j=1 β j = 0, ε ij błędy. Uwaga: Założenia dotyczace błędów sa identyczne jak w modelu jednoczynnikowej analizy wariancji. 18

19 Hipoteza zerowa: czynnik A ma istotny wpływ na cechę X: H 0 : α 1 = α 2 = = α k. Hipoteza alternatywna: czynnik A nie ma istotnego wpływu na cechę X: H 1 : H 0. Statystyka testowa: F = SSA/ SSE b 1 k SSA = b ( X i. X.. ) 2, SSE = i=1 k b (X ij X i. X.j + X.. ) 2, i=1 j=1 X i. = 1 b X ij, X.j = 1 k b j=1 k X ij, X.. = 1 n i=1 k b X ij, n = kb. i=1 j=1 Rozkład statystyki testowej: F H0 F(k 1, (k 1)(b 1)) 19

20 Tabela analizy wariancji Źródło Suma Liczba stopni Średnie Statystyka zmienności kwadratów swobody kwadraty testowa Obiekty SSA k 1 MSA F Bloki SSB b 1 MSB Bład SSE (k 1)(b 1) MSE Całość SST kb 1 MST MSA = SSA/(k 1), MSB = SSB/(b 1), MSE = SSE/(k 1)(b 1), MST = SST /(kb 1). 20

21 R Funkcje zwiazane z analiza wariancji ): aov procedura główna, bartlett.test test Bartletta, LSD.test(agricolae) procedura LSD Fishera, HSD.test(agricolae) procedura HSD Tukeya. 21

Testy post-hoc. Wrocław, 6 czerwca 2016

Testy post-hoc. Wrocław, 6 czerwca 2016 Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

Analiza wariancji i kowariancji

Analiza wariancji i kowariancji Analiza wariancji i kowariancji Historia Analiza wariancji jest metodą zaproponowaną przez Ronalda A. Fishera. Po zakończeniu pierwszej wojny światowej był on pracownikiem laboratorium statystycznego w

Bardziej szczegółowo

Porównanie wielu rozkładów normalnych

Porównanie wielu rozkładów normalnych Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA

JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA JEDNOCZYNNIKOWA ANALIZA WARIANCJI, ANOVA 1 Obserwowana (badana) cecha Y Czynnik wpływający na Y (badany) A A i i ty poziom czynnika A a liczba poziomów (j=1..a), n i liczba powtórzeń w i tej populacji

Bardziej szczegółowo

Zadania ze statystyki cz.8. Zadanie 1.

Zadania ze statystyki cz.8. Zadanie 1. Zadania ze statystyki cz.8. Zadanie 1. Wykonano pewien eksperyment skuteczności działania pewnej reklamy na zmianę postawy. Wylosowano 10 osobową próbę studentów, których poproszono o ocenę pewnego produktu,

Bardziej szczegółowo

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14 Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Analiza wariancji, część 2

Analiza wariancji, część 2 Analiza wariancji, część 2 1 / 74 Analiza kontrastów a priori Testy post hoc porównują wszystkie możliwe pary średnich i wykonuje się je dopiero po stwierdzeniu za pomocą testu F istotności danego czynnika.

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Analiza wariancji. Źródło: Aczel A. D. Statystyka w zarządzaniu. Barbara Gładysz

Analiza wariancji. Źródło: Aczel A. D. Statystyka w zarządzaniu. Barbara Gładysz Analiza wariancji Źródło: Aczel A. D. Statystyka w zarządzaniu Analiza wariancji jednoczynnikowa Populacja Pole trójkąty 1 4 5 3 7 4 8 kwadraty 1 10 11 3 1 4 13 kółka 1 1 3 3 Populacja Pole trójkąty 1

Bardziej szczegółowo

Analizy wariancji ANOVA (analysis of variance)

Analizy wariancji ANOVA (analysis of variance) ANOVA Analizy wariancji ANOVA (analysis of variance) jest to metoda równoczesnego badania istotności różnic między wieloma średnimi z prób pochodzących z wielu populacji (grup). Model jednoczynnikowy analiza

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości

Bardziej szczegółowo

Analiza wariancji. Źródło: Aczel A. D. Statystyka w zarządzaniu. Barbara Gładysz

Analiza wariancji. Źródło: Aczel A. D. Statystyka w zarządzaniu. Barbara Gładysz Analiza wariancji Źródło: Aczel A. D. Statystyka w zarządzaniu Analiza wariancji jednoczynnikowa Populacja Pole trójkąty 4 5 3 7 4 8 kwadraty 0 3 4 3 kółka 3 3 Populacja Pole trójkąty 4 5 3 7 4 8 SUMA

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analiza wariancji jest metodą pozwalającą na podział zmienności zaobserwowanej wśród wyników eksperymentalnych na oddzielne części. Każdą z tych części możemy przypisać oddzielnemu

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

Pakiety statystyczne - Wykªad 8

Pakiety statystyczne - Wykªad 8 Pakiety statystyczne - Wykªad 8 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Analiza wariancji 1. Rys historyczny 2. Podstawy teoretyczne

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

JEDNOCZYNNIKOWA ANOVA

JEDNOCZYNNIKOWA ANOVA Analizę ANOVA wykorzystujemy do wykrycia różnic pomiędzy średnimi w więcej niż dwóch grupach/więcej niż w dwóch pomiarach JEDNOCZYNNIKOWA ANOVA porównania jednej zmiennej pomiędzy więcej niż dwoma grupami

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 19 kwietnia 2011 Testy dla dwóch grup 1 Analiza danych dla dwóch grup: test t-studenta dla dwóch grup sparowanych; test t-studenta dla dwóch grup niezależnych (jednakowe wariancje) test Z dla dwóch grup

Bardziej szczegółowo

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015 Problem dwóch prób X = (X 1, X 2,..., X n ) - próba z rozkładu normalnego N (µ, σ 2 X ),

Bardziej szczegółowo

hipotez statystycznych

hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji

Metody Statystyczne. Metody Statystyczne. #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji gkrol@mail.wz.uw.edu.pl #8 Błąd I i II rodzaju powtórzenie. Dwuczynnikowa analiza wariancji 1 Ryzyko błędu - powtórzenie Statystyka niczego nie dowodzi, czyni tylko wszystko mniej lub bardziej prawdopodobnym

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie

, a ilość poziomów czynnika A., b ilość poziomów czynnika B. gdzie Test Scheffego, gdzie (1) n to ilość powtórzeń (pomiarów) w jednej grupie (zabiegu) Test NIR Istnieje wiele testów dla porównań wielokrotnych opartych o najmniejszą istotna różnicę między średnimi (NIR).

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Jak sprawdzić normalność rozkładu w teście dla prób zależnych?

Jak sprawdzić normalność rozkładu w teście dla prób zależnych? Jak sprawdzić normalność rozkładu w teście dla prób zależnych? W pliku zalezne_10.sta znajdują się dwie zmienne: czasu biegu przed rozpoczęciem cyklu treningowego (zmienna 1) oraz czasu biegu po zakończeniu

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008

Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 Redaktor: Alicja Zagrodzka Korekta: Krystyna Chludzińska Projekt okładki: Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2000, 2008 ISBN 978-83-7383-296-1 Wydawnictwo Naukowe Scholar

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Analiza wariancji (ANalysis Of Variance - ANOVA)

Analiza wariancji (ANalysis Of Variance - ANOVA) Analiza wariancji (ANalysis Of Variance - ANOVA) W poprzednim rozdziale przedstawiono sposób porównywania dwóch wartości średnich. Często jednak zachodzi potrzeba porównywania większej liczby średnich

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA JEDNOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że dwie populacje o rozkładach normalnych mają jednakowe wartości średnie. Co jednak

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 6 Metody sprawdzania założeń w analizie wariancji: -Sprawdzanie równości (jednorodności) wariancji testy: - Cochrana - Hartleya - Bartletta -Sprawdzanie zgodności

Bardziej szczegółowo

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA

ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA ANALIZA WARIANCJI - KLASYFIKACJA WIELOCZYNNIKOWA Na poprzednich zajęciach omawialiśmy testy dla weryfikacji hipotez, że kilka średnich dla analizowanej zmiennej grupującej mają jednakowe wartości średnie.

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich.

Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. Ćwiczenie: Weryfikacja hipotez statystycznych dla jednej i dwóch średnich. EXCEL Do weryfikacji różnic między dwiema grupami jednostek doświadczalnych w Excelu wykorzystujemy funkcję o nazwie T.TEST. Zastosowana

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań.

Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań. Wykład: Założenia analizy wariancji. Analiza wariancji złożona i testy wielokrotnych porównań. Założenia analizy wariancji: Niezależność zmiennych objaśniających (czynników). Homogeniczność wariancji (równość

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Matematyczne metody w naukach biomedycznych: regresja i analiza wariancji.

Matematyczne metody w naukach biomedycznych: regresja i analiza wariancji. Matematyczne metody w naukach biomedycznych: regresja i analiza wariancji. Anna Gambin 23 listopada 2013 Spis treści 1 Analiza regresji 1 1.1 Historia..................................... 2 2 Modele liniowe

Bardziej szczegółowo

1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech

1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech 1) Wprowadzenie; 2) Doświadczenia jednoczynnikowe; 3) Doświadczenia dwuczynnikowe; 4) Doświadczenia trójczynnikowe; 5) Badanie współzależności cech ilościowych; 6) Badanie zależności liniowej pomiędzy

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

O testach wielowymiarowej normalności opartych na statystyce Shapiro-Wilka

O testach wielowymiarowej normalności opartych na statystyce Shapiro-Wilka O testach wielowymiarowej normalności opartych na statystyce Shapiro-Wilka Katedra Zastosowań Matematyki i Informatyki Uniwersytet Przyrodniczy w Lublinie Wisła 2012, 7.12.2012 Plan prezentacji 1 Wprowadzenie

Bardziej szczegółowo