PRAWO FOURIERA - KIRCHOFFA WYKŁAD 12

Wielkość: px
Rozpocząć pokaz od strony:

Download "PRAWO FOURIERA - KIRCHOFFA WYKŁAD 12"

Transkrypt

1 PRAWO FOURIERA - KIRCHOFFA WYKŁAD Daius Mikielewic Politechnika Gdańska Wydiał Mechanicny Kateda echniki Cieplnej

2 Pawo Fouiea-Kichhoa Założenia upascające ównanie F-K:. agadnienie stacjonane, /τ. agadnienie iobaycne, p const 3. bak geneacji wewnętnych źódeł ciepła, q v 4. ciało w stanie stałym, w 5. stałe watości własności iycnych ciała, c p,µ,λ,ρ Bado cęsto mamy do cynienia agadnieniem ciała w stanie stałym, pocesem iobaycnym, gdie własności iycne są stałe. Gęstość stumienia ciepła q-λ gad ρ c p τ ( q q) v

3 Pawo Fouiea Pawo Fouiea-Kichhoa Kichhoa ( ) ( ) ( ) p w p q q w c v p τ τ ρ. Równanie Fouiea a y x a τ. Równanie Poissona 3. Równanie Laplace a λ q v

4 Pawo Fouiea Pawo Fouiea-Kichhoa Kichhoa Układ walcowy θ θ Układ seycny sin sin sin sin φ θ θ θ θ φ θ θ θ θ θ ctg

5 Pawo Fouiea-Kichhoa Waunki jednonacności poblemu Chaakteystycne własności jawiska wa ównaniem óżnickowym to waunki jednonacności poblemu. Waunki te obejmują okład tempeatuy w chwili pocątkowej, geometię ciała oa wajemne oddiaływanie cieplne oważanego układu otoceniem. Opis okładu tempeatuy w obsae w chwili opocęcia analiy nosi nawę waunków pocątkowych. Rokład tempeatuy na begach analiowanego obsau nosi nawę waunków begowych. Dodatkowo, agadnienia konwekcji opisane są ponadto ównaniami ciągłości stugi i ównaniami stanu.

6 Pawo Fouiea-Kichhoa Zagadnienia niestacjonane waunek Cauchy ego, dla τ ( ) ( ), W pypadkach, gdy tempeatua ciała w chwili pocątkowej τ jest stała ( ), const Waunki begowe opisujące wymianę ciepła na begu opatywanego obsau, deiniowane są w jeden cteech następujących sposobów: Okeślony jest okład tempeatuy na begu A w dowolnej chwili, waunek begowy piewsego odaju, waunek Diichleta: ( A, τ ) ( τ ) Okeślona jest watość gęstości stumienia cieplnego na begu A w dowolnej chwili, waunek begowy dugiego odaju, waunek Neumana: λ q( τ ) n A

7 Pawo Fouiea Pawo Fouiea-Kichhoa Kichhoa Okeślona jest tempeatua otacającego ośodka oa ależność, któa opisuje wymianę ciepła pomiędy ciałem a otoceniem na dode konwekcji i pomieniowania, waunek begowy teciego odaju, waunek Newtona: ( ) w A n α λ Okeślone są ówne sobie tempeatuy układu i otocenia na ich styku wówcas na begu układu achodi ówność gęstości stumieni ciepła dla układu i stykającego się nim otocenia, waunek begowy cwatego odaju: '' '' ' ' A A n n λ λ

8 PRZEWODZENIE CIEPŁA W CIAŁACH O MAŁYM OPORZE PRZEWODZENIA WYKŁAD 4 Daius Mikielewic Politechnika Gdańska Wydiał Mechanicny Kateda echniki Cieplnej

9 Pewodenie w ciałach o małym opoe Pewodenie w ciałach o małym opoe cieplnym (Lumped Capacity Method) jest potężnym naędiem w obliceniach niestacjonanej wymiany ciepła. Pyjmijmy, że ciało ma objętość V, powiechnię A, gęstość właściwą ρ, oa ciepło właściwe c. Jego tempeatua, jest jednakowa w całej objętości, i mienia się na skutek wymiany ciepła otacającym je płynem o stałej w casie tempeatue. powiechnia A objętość, V ρ, c, (t) du dt olej w temp. qa U V c( ) q α( ) ρ

10 Pewodenie w ciałach o małym opoe Podstawiając powyżse wyażenia do ównania bilansu enegii: Waunki begowe: Vρc d dt ( ) Aα dla t Po pekstałceniach: d αa ρcv dt d αa ρcv τ dt Rowiąanie ównania ma postać: ln αa τ ρcv e αa τ ρcv e τ τ Cieplna stała casowa: τ ρcv αa

11 Pewodenie w ciałach o małym opoe Zdeiniujmy bewymiaową tempeatuę oa cas: * * τ αaτ τ τ ρcv * Umożliwia to nam analię pypadków gdie występuje gwałtowna miana tempeatuy * τ αaτ τ τ ρcv Aby teoia pewodenia ciepła miała astosowanie musi być spełniony waunek, że opó pewodenia w ciele stałym musi być dużo mniejsy od opou pejmowania ciepła na ewnąt

12 Pewodenie w ciałach o małym opoe Ciała stałe opó pewodenia wewnąewn L / opó konwekcji na ewnąewn / ( λa) αl ( αa) λ Zdeiniujmy bewymiaową licbę Biota: αl Bi λ Wymia chaakteystycny, l, jest wyażony stosunkiem V/A eoię można stosować w pypadku, gdy Bi<. dla płaskich płyt, walców, kul. Wymiay chaakteystycne dla óżnych pypadków:. Płyta o gubości l: Ll/. Walec o pomieniu R: LR/ 3. Kula o pomieniu R LR/3 4. Seścian o kawędi l Ll/6

13 Pewodenie w ciałach o małym opoe Równanie można pedstawić w postaci ależności pomiędy licbami podobieństwa. W tym celu wykładnik licby e należy pekstałcić do postaci: αaτ c ρv p αl aτ l ( Bi)( Fo) λ l V A l L αl Zdeiniujmy bewymiaową licbę Biota: Bi i Fouiea λ Fo aτ l Wymia chaakteystycny, l, jest wyażony stosunkiem V/A eoię można stosować w pypadku, gdy Bi<. dla płaskich płyt, walców, kul ( Bi) ( Fo) l / L e

14 Pewodenie w ciałach o małym opoe Wynacmy jesce stumień ciepła pepływający pe powiechnię ciała. Jest on mienny w casie, gdyż pomimo stałej watości współcynnika wnikania ciepła α, ulega mianie óżnica tempeatu pomiędy ciałem a otacającym je płynem na skutek miany tempeatuy ciała. Chwilowy stumień ciepła: Q& c p ρv d d τ d αa ( ) dτ c ρv p e αa τ c ρv p Całkowita ilość ciepła wymienioną pe ciało, w casie do dowolnej chwili: Q Qd & τ αa( ) e l ( Bi)( Fo) L

15 Pewodenie w ciałach o małym opoe Hatowanie płyty stalowej Płyta stalowa o gubości cm ostaje wyjęta pieca o tempeatue 6 C i wucona do kąpieli olejowej o tempeatue 3 C. Jeżeli współcynnik pejmowania ciepła ma watość 4 W/m K, ile casu poteba aby schłodić płytę do tempeatuy C? Założyć własności iycne mateiału λ, ρ, c jak dla stali, cyli 5 W/mK, 78 kg/m 3, oa 45 J/kg K, odpowiednio. Dane: Sukane: Założenia: Płyta stalowa hatowana w oleju. Cas schłodenia 6 C do C. Ciało o małym opoe pewodenia.

16 Pewodenie w ciałach o małym opoe Spawdamy watość licby Biota: V/AWHL/WHL/ Biα(L/)/λ4*.5/5.4 cyli Bi.4 <. Wynika stąd, że ciało ma mały opó cieplny pewodenia i można skoystać omawianej teoii

17 Pewodenie w ciałach o małym opoe Znajdźmy stałą casową agadnienia Podstawiając dane adania, tj.: 6 o C, inal o C, 3 o C Rowiąujemy e wględu na cas:

18 Pewodenie w ciałach o małym opoe Końcówka temopay, któą można modelować a pomocą kulki, jest używana do pomiau tempeatuy w pepływie gau. Współcynnik pejmowania ciepła pomiędy powiechnią końcówki a gaem wynosi α4 W/m K. Własności temoiycne końcówki wynosą λ W/mK, c4 J/kgK, ρ85 km/m 3. Wynacyć śednicę końcówki temopay tak aby miała ona stałą casową ówną s. Zakładając, że pocątkowo końcówka ma tempeatuę 5 o C i następnie jest użyta do pomiau tempeatuy gau o tempeatue o C, ile casu ajmie wskaanie pe końcówkę tempeatuy 99 o C? końcówki temopay α łące temopay λ

19 Pewodenie w ciałach o małym opoe Założenia:. empeatua końcówki stała w każdej chwili casu. Radiacyjna wymiana ciepła otoceniem do pominięcia 3. Pewodenie ciepła pe końcówki do pominięcia 4. Stałe własności temoiycne końcówki ρπd τ αa απd 6 ( ρcv ) c 3 V A 6ατ D ρc 3 πd D π D 6 αd Bi 6 λ τ τ αa ( ρcv ) i ln 4 ρdc i n 6α 4 5 ln 5.s 5τ 99

20 PRZEWODZENIE CIEPŁA W SANACH USALONYCH PRĘY I ŻEBRA WYKŁAD 5 Daius Mikielewic Politechnika Gdańska Wydiał Mechanicny Kateda echniki Cieplnej

21 Wstęp CEL SOSOWALNOŚCI ŻEBER Bioąc pod uwagę akt, że wymiana ciepła popawia się wa e więksaniem powiechni wymiany ciepła, jak ównież bioąc pod uwagę akt że opó cieplny pomiędy powiechnią wymiany ciepła oa otoceniem jest cęsto dużo więksy od poostałych opoów cieplnych to celem intensyikacji wymiany ciepła cęsto używa się żebe.

22 Wstęp

23 Wstęp

24 Zastosowania w elektonice

25 eoia pętów najpostsego żeba Pęt umocowany do powiechni ciała stałego celem owinięcia powiechni

26 eoia pętów αp x (- )

27 eoia pętów Ropatmy bilans ciepła dla elementanej objętości kontolnej x qa qa dq A x αp x dx ( ) Wykoystując pawo Fouiea, q-λ gad, oa akładając stałą watość λ: d λa αp dx ( ) Otymujemy ównanie óżnickowe dugiego ędu e stałymi współcynnikami: d dx m ( ) Można je owiąać akładając następujące waunki begowe: m α P λ A x d λ α x dx x L ( ) L lub d dx x

28 eoia pętów Dla waunków begowych dla xl mamy następujące okłady tempeatuy: d λ α x dx x L ( ) L d dx x x x

29 eoia pętów Mając do owiąania ównanie óżnickowe dugiego ędu, wpowadamy mienną: d dx m ( ) Ogólna postać ównania do owiąania: m α P λ A d ϑ ϑ m dx Postać ogólna owiąania otymujemy metodą pewidywań: ϑ lub ϑ ϑ Ce mx De mx ( mx) F cosh( mx) E sinh

30 eoia pętów Zakładając, że gadient tempeatuy na końcu pęta pyjmuje watość, żebo doskonale aiolowane, mamy dla x: ϑ C D Zakładając, że żebo jest nieskońcenie długie: ϑ L Ce ml De ml Rokład tempeatuy w żebe pybiea postać: ϑ ϑ cosh cosh [ m( L x) ] ( ml) m α P λ A

31 eoia pętów stumień ciepła Ciepło wymieniane pe żebo na dode pewodenia ciepła: L Q & α P ( dx ) Podstawiając poil tempeatuy dla żeba doskonale aiolowanego: ϑ ϑ cosh cosh Otymujemy: L αp( ) Q& cosh ( ml) [ m( L x) ] ( ml) cosh ( ml)( L x) Aby owiąać powyżse ównanie należy wykonać podstawienie: ( L x) ξ m Rowiąanie końcowe: ( ) αp L Q& m cosh( ml) ( cosh( ξ ) dξ ) αp m cosh ( ) ( ml) sinh dx dξ dx m ( ) sinh( ml) cosh( ml) αp m ( ) tgh( ml)

32 eoia pętów stumień ciepła Podobne owiąanie można uyskać deinicji stumienia ciepła: Q& λa d dx x λa λa [ ] dx cosh( ml) x ( msinh[ m( L x) ]) cosh( ml) d cosh m ( ) ( L x) ( ) Jest to ównoważne apisem popednio wypowadonym: x λa ( ) tgh( ml) ( ) tgh( ml) A( ) tgh( ml) P Q& α λ m m α P λ A

33 eoia pętów spawność żeba Wymiana ciepła jest najwięksa jest najwięksa jeżeli żebo jest utymywane w tempeatue podstawy. Spawność żeba to stosunek ecywistego stumienia ciepła wymienianego pe żebo do stumienia ciepła, któe odpowiadałoby stumieniowi ciepła żeba utymywanego w stałej tempeatue podstawy. η Q& Q& ideal Q& αpl ( ) αp m α ( ) tgh( ml) PL( ) tgh( ml) ml tgh( ml) η ml ml

34 Żebo postokątne W paktyce inżynieskiej występuje seeg innych odajów żebe. Poniżej ostanie omówionych kilka pykładów: W paktyce inżynieskiej można koystać e woów wypowadonych dla pypadków pęta, py wpowadeniu onaceń jak obok: R th αp tgh ml m Opó cieplny żeba: αplη ( )

35 Spawność powiechni ożebowanej α( A A ) αaη R i R i Całkowita spawność powiechni ożebowanej: t ( A A ) ηa Aη Rowiąując e wględu na spawność całkowitą: A ( ) ηt η A Opó cieplny powiechni ożebowanej: R th αaη t Q& A δ A λ α η α A

36 Celowość stosowania żebe Stosowanie żebe jest celowe tylko w pypadku, gdy pe ożebowanie powiechni osiąga się więksenie stumienia pejmowanego ciepła. Dla wypowadenia kyteium celowości stosowania żebe chłodących należy pyównać do ea pochodną dq/dh. Celowość stosowania żebe okeśla teoetycnie waunek, Biαδ/λ< W paktyce aleca się stosowanie żebe gdy Bi<.4

37 Celowość stosowania żebe Spawdić celowość stosowania żebe w pypadku cienkich żebe stalowych omywanych gaem (δmm, λ45 W/mK, α5w/m K) oa żebe odlewanych omywanych wodą (δ mm, α W/m K). Dla pypadku, Biαδ/λ5*./45.3 Dla pypadku, Biαδ/λ*./45.44 WNIOSEK: Stosowanie żebe ma sens w pypadku

38 Celowość stosowania żebe W podsumowaniu oważań dotycących powiechni ożebowanych należy stwiedić że: stosowanie żebowania powiechni jest celowe, gdy współcynnik wnikania ciepła po tej stonie pegody jest mały, dla żebe postych o pekoju postokątnym, ożebowanie powoduje więksenie ilości wnikającego ciepła jeżeli spełniony jest waunek, gdie onaca połowę gubości żeba, stosowanie ożebowania powiechni jest wykle badiej asadne w pypadku wymiany ciepła pomiędy pegodą a gaem niż pomiędy pegodą a ciecą, py doboe kstałtu żebe należy bać pod uwagę wględy konstukcyjne, oa akt, że ożebowanie powiechni powoduje więksenie opou pepływu cynnika omywającego tę powiechnie, ożebowanie powiechni powoduje więksenie użycia mateiału na wykonanie elementu powiechnią ożebowaną.

39 Żeba o miennym pekoju Elementany bilans enegii: Upascając: Podstawiając pawo Fouiea: q ( ) t q( π ) ( tq) d π t 4π d α d d d d ( tq) α ( ) d d β ( ) ( ) π ( ) α P β m λ A Robimy podstawienie: ϑ β

40 Żeba o miennym pekoju Żeba o miennym pekoju ( ) d d d d β A P m λ α β Równanie pewodenia ciepła: Podstawienie: ϑ β ϑ ϑ ϑ d d d d Otymujemy ównanie: Waunki begowe: ϑ β d d d d ϑ β Możliwe jest naleienie owiąania analitycnego w ależności od unkcji Bessela: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,, K I K I F K F I I F K ϑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) / K I I K K I I K β β β β β β β β β η Spawność żeba okągłego:

41 Żeba o miennym pekoju

42 Żeba o miennym pekoju

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko

Funkcje analityczne. Wykład 13. Zastosowanie rachunku residuów do rozwiązywania problemów analizy rzeczywistej. Paweł Mleczko Funkcje analitycne Wykład 3. Zastosowanie achunku esiduów do owiąywania poblemów analiy ecywistej Paweł Mlecko Funkcje analitycne ok akademicki 8/9 Plan wykładu W casie wykładu omawiać będiemy astosowanie

Bardziej szczegółowo

Optyka wiązek - Wiązka Gaussowska

Optyka wiązek - Wiązka Gaussowska Optyka wiąek - iąka Gaussowska iąka Gaussowska Rokład espolonego pola optycnego } exp{ ik U jest espolonym okładem pola któy musi być owiąaniem ównania Helmholt a: Gdie k jest licbą alową chaakteyującą

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

Zakład Procesów Chemicznych i Biochemicznych Politechniki Wrocławskiej. Termodynamika Procesowa Laboratorium. Wyznaczanie współczynników dyfuzji

Zakład Procesów Chemicznych i Biochemicznych Politechniki Wrocławskiej. Termodynamika Procesowa Laboratorium. Wyznaczanie współczynników dyfuzji Zakład Pocesów Chemicnych i Biochemicnych Politechniki Wocławskiej Temodynamika Pocesowa Laboatoium Wynacanie współcynników dyfuji Wocław 007 . Cel ćwicenia Celem ćwicenia jest wynacenie współcynnika dyfuji

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Naa -Japonia W-3 (Jaosewic 1 slajdów Dynamika punku maeialnego Dynamika Układ inecjalny Zasady dynamiki: piewsa asada dynamiki duga asada dynamiki; pęd ciała popęd siły ecia asada dynamiki (pawo akcji

Bardziej szczegółowo

MODELOWANIE INŻYNIERSKIE ISSN X 38, s , Gliwice 2009

MODELOWANIE INŻYNIERSKIE ISSN X 38, s , Gliwice 2009 MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 38, s. 19-114, Gliwice 9 ZASOSOWANIE MEODY HYBRYDOWEJ DO ROZWIĄZANIA ZAGADNIENIA ODWRONEGO WYKORZYSANEGO W WYZNACZANIU KIERUNKOWCH WŁAŚCIWOŚCI CIEPLNYCH CIAŁ OROROPOWYCH

Bardziej szczegółowo

Pręty silnie zakrzywione 1

Pręty silnie zakrzywione 1 Pęt silnie akwione. DEFIICJ Pętem silnie akwionm nawam pęt, któego oś jest płaską kwą, a stosunek wmiau pekoju popecnego (leżącego w płascźnie kwin) do pomienia kwin osi ciężkości () pęta spełnia waunek.

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła):. PRZEWODZENIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

Czarnodziurowy Wszechświat a ziemska grawitacja

Czarnodziurowy Wszechświat a ziemska grawitacja biniew Osiak Canodiuowy a iemska awitacja 07.06.08 Canodiuowy a iemska awitacja biniew Osiak -mail: biniew.osiak@mail.com http://ocid.o/0000-000-007-06x http://vixa.o/autho/biniew_osiak tescenie Pedstawiono

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Publiczne Gimnazjum w Miechowicach Wielkich 1 września na i rozumie pojęcie potęgi o wykładniku naturalnym,

Publiczne Gimnazjum w Miechowicach Wielkich 1 września na i rozumie pojęcie potęgi o wykładniku naturalnym, Pblicne Gimnajm w Miechowicach Wielkich 1 weśnia 2010 Dopscający na i omie pojęcie potęgi o wykładnik natalnym, mie apisać potęgę w postaci ilocyn, mie apisać ilocyn jednakowych cynników w postaci potęgi,

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Grawitacja: - wiąże wszystkie masy we Wszechświecie, - jest najsłabszą wśród znanych nam sił, - działa na wszystkich odległościach,

Grawitacja: - wiąże wszystkie masy we Wszechświecie, - jest najsłabszą wśród znanych nam sił, - działa na wszystkich odległościach, POLE GAWITACYJNE Fakt odkycia pe Newtona Pawa Gawitacji Powsechnej (naywanej też pawem Ciążenia Powsechnego) miał dla owoju ludkości nacnie więkse nacenie niż to sobie awycaj wyobażamy Jest to spowodowane

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

SYMULACJA NUMERYCZNA KRZEPNIĘCIA ODLEWU OSIOWO-SYMETRYCZNEGO WYPEŁNIANEGO OD DOŁU Z DOLEWANIEM DO NADLEWU

SYMULACJA NUMERYCZNA KRZEPNIĘCIA ODLEWU OSIOWO-SYMETRYCZNEGO WYPEŁNIANEGO OD DOŁU Z DOLEWANIEM DO NADLEWU 36/ Achies of Foundy Yea 001 Volume 1 1 (/) Achiwum Odlewnictwa Rok 001 Rocnik 1 N 1 (/) PAN Katowice PL ISSN 164-5308 SYULACJA NUERYCZNA KRZEPNIĘCIA ODLEWU OSIOWO-SYETRYCZNEGO WYPEŁNIANEGO OD DOŁU Z DOLEWANIE

Bardziej szczegółowo

SYMULACJA NUMERYCZNA JAMY SKURCZOWEJ W KRZEPNĄCYM ODLEWIE STALIWNYM

SYMULACJA NUMERYCZNA JAMY SKURCZOWEJ W KRZEPNĄCYM ODLEWIE STALIWNYM 3/4 Achies of Foundy, Yea 00, Volume, 4 Achiwum Odlewnictwa, Rok 00, Rocnik, N 4 PAN Katowice PL ISSN 164-5308 SYULACJA NUERYCZNA JAY SKURCZOWEJ W KRZEPNĄCY ODLEWIE STALIWNY L. SOWA 1 Instytut echaniki

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

Fizyka dla Informatyki Stosowanej

Fizyka dla Informatyki Stosowanej Fiyka dla nfomatyki Stosowanej Jacek Golak Semest imowy 018/019 Wykład n 1 Na ostatnim wykładie wkocyliśmy w magnetym, omawiając Definicję pola magnetycnego (wó Loenta) Linie pola magnetycnego Siłę diałającą

Bardziej szczegółowo

Guanajuato, Mexico, August 2015

Guanajuato, Mexico, August 2015 Guanajuao Meico Augus 15 W-3 Jaosewic 1 slajdów Dnamika punku maeialnego Dnamika Układ inecjaln Zasad dnamiki: piewsa asada dnamiki duga asada dnamiki pęd ciała popęd sił ecia asada dnamiki pawo akcji

Bardziej szczegółowo

J. Szantyr Wykład 11 Równanie Naviera-Stokesa

J. Szantyr Wykład 11 Równanie Naviera-Stokesa J. Sant Wkład Równanie Naviea-Stokesa Podstawienie ależności wnikającch model łn Newtona do ównania achowania ęd daje ównanie nane jako ównanie Naviea-Stokesa. Geoge Stokes 89 903 Clade Navie 785-836 Naviea-Stokesa.

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

Błędy obliczeń w analizach systemów obsługi funkcjonujące na budowie

Błędy obliczeń w analizach systemów obsługi funkcjonujące na budowie Błędy obliceń w analiach systemów obsługi funkcjonujące na budowie D inż. Andej Więckowski, Politechnika Kakowska Populane modele teoii kolejek opisują funkcjonowanie systemów obsługi w nieskońconym pediale

Bardziej szczegółowo

Analiza uchybowa układów dyskretnych

Analiza uchybowa układów dyskretnych Akademia Moska w Gdyni ateda Automatyki Okętowej eoia steowania Analia uchybowa układów dysketnych Miosław omea. WPOWADZENIE Analia uchybowa eowadona w tym oacowaniu oganicona jest tylko do układów jednostkowym

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów ANALIZA PRZEKAZYWANIA CIEPŁA I FORMOWANIA SIĘ PROFILU TEMPERATURY DLA NIEŚCIŚLIWEGO, LEPKIEGO PRZEPŁYWU LAMINARNEGO W PRZEWODZIE ZAMKNIĘTYM Cel ćwiczenia Celem ćwiczenia będzie obserwacja procesu formowania

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu

Bardziej szczegółowo

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I

Aerodynamika I. wykład 3: Ściśliwy opływ profilu. POLITECHNIKA WARSZAWSKA - wydz. Mechaniczny Energetyki i Lotnictwa A E R O D Y N A M I K A I Aerodynamika I Ściśliwy opływ profilu transoniczny przepływ wokół RAE-8 M = 0.73, Re = 6.5 10 6, α = 3.19 Ściśliwe przepływy potencjalne Teoria pełnego potencjału Wprowadźmy potencjał prędkości (zakładamy

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl

Bardziej szczegółowo

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta. Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Maria Dems. T. Koter, E. Jezierski, W. Paszek

Maria Dems. T. Koter, E. Jezierski, W. Paszek Sany niesalone masyn synchonicnych Maia Dems. Koe, E. Jeieski, W. Pasek Zwacie aowe pąnicy synchonicnej San wacia salonego, wany akże waciem nomalnym lb pomiaowym yskje się pe wacie acisków wonika (j (sojana

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

- substancje zawierające swobodne nośniki ładunku elektrycznego:

- substancje zawierające swobodne nośniki ładunku elektrycznego: Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo

Bardziej szczegółowo

WYMIANA (TRANSPORT) CIEPŁA

WYMIANA (TRANSPORT) CIEPŁA WYMIANA CIEPŁA WYMIANA (TRANSPORT) CIEPŁA PRZEWODZENIE (KONDUKCJA) - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek. Proces ten trwa dopóty, dopóki temperatura

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

WYBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATYCZNEGO CIĄGNIKA ROLNICZEGO. Bronisław Kolator

WYBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATYCZNEGO CIĄGNIKA ROLNICZEGO. Bronisław Kolator MOTROL, 26, 8, 118 124 WBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATCZNEGO CIĄGNIKA ROLNICZEGO Bonisław Kolato Kateda Eksploatacji Pojadów i Masyn, Uniwesytet Wamińsko-Mauski w Olstynie Stescenie.

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Zad 1. Obliczyć ilość ciepła potrzebnego do nagrzania stalowego pręta o promieniu r = 3cm długości l = 6m. C do temperatury t k

Zad 1. Obliczyć ilość ciepła potrzebnego do nagrzania stalowego pręta o promieniu r = 3cm długości l = 6m. C do temperatury t k Zad 1. Obliczyć ilość ciepła potrzebnego do nagrzania stalowego pręta o promieniu r = 3cm i długości l = 6m od temperatury t 0 = 20 C do temperatury t k = 1250 C. Porównać uzyskaną wartość energii z energią

Bardziej szczegółowo

Coba, Mexico, August 2015

Coba, Mexico, August 2015 Coba, Meico, August 015 W-6 (Jaosewic) 10 sladów Pola siłowe i ich chaaktestka Pola siłowe: poęcie i odae pól siłowch, wielkości chaakteuące pola siłowe Pola achowawce Pole gawitacne: uch w polu gawitacnm

Bardziej szczegółowo

Podstawy elektrodynamiki 1

Podstawy elektrodynamiki 1 Wstęp Podstawy eektodynamiki Zakes wykładu Podęcniki Waunki aicenia D hab. inż. Włodimie Zieniutyc, pof. nadw. PG, pok. 74, e-mai: w@eti.pg.gda.p Zakes wykładu Zakes wykładu cd. Wstęp Matematycne naędia

Bardziej szczegółowo

Wyznaczenie współczynników przejmowania ciepła dla konwekcji wymuszonej

Wyznaczenie współczynników przejmowania ciepła dla konwekcji wymuszonej LABORATORIUM TERMODYNAMIKI INSTYTUTU TECHNIKI CIEPLNEJ I MECHANIKI PŁYNÓW WYDZIAŁ MECHANICZNO-ENERGETYCZNY POLITECHNIKI WROCŁAWSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwiczenia 18 Wyznaczenie współczynników

Bardziej szczegółowo

Masa centralna a krzywa rotacji dysków akrecyjnych w układach samograwitujących

Masa centralna a krzywa rotacji dysków akrecyjnych w układach samograwitujących Masa centalna a kywa otacji dysków akecyjnych w układach samogawitujących Masa centalna a kywa otacji dysków akecyjnych w układach samogawitujących Michał Pióg Instytut Fiyki im. Maiana Smoluchowskiego

Bardziej szczegółowo

KINEMATYKA. Pojęcia podstawowe

KINEMATYKA. Pojęcia podstawowe KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

Wycena europejskiej opcji kupna model ciągły

Wycena europejskiej opcji kupna model ciągły Henyk Kogie Uniesytet ceciński Wycena euopejskiej opcji kupna model ciągły tescenie elem tego atykułu jest ukaanie paktycnego ykoystania metody matyngałoej dla pocesó ciągłych do yceny euopejskiej opcji

Bardziej szczegółowo

PRZENIKANIE CIEPŁA W CHŁODNICY POWIETRZNEJ

PRZENIKANIE CIEPŁA W CHŁODNICY POWIETRZNEJ 1. Wprowadzenie PRZENIKANIE CIEPŁA W CHŁODNICY POWIERZNEJ Ruch ciepła między dwoma ośrodkami gazowymi lub ciekłymi przez przegrodę z ciała stałego nosi nazwę przenikania ciepła. W pojęciu tym mieści się

Bardziej szczegółowo

Teoria Względności. Czarne Dziury

Teoria Względności. Czarne Dziury Teoia Względności Zbigniew Osiak Czane Dziuy 11 Zbigniew Osiak (Tekst) TEORIA WZGLĘD OŚCI Czane Dziuy Małgozata Osiak (Ilustacje) Copyight by Zbigniew Osiak (tt) and Małgozata Osiak (illustations) Wszelkie

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE

MIESZANY PROBLEM POCZĄTKOWO-BRZEGOWY W TEORII TERMOKONSOLIDACJI. ZAGADNIENIE POCZĄTKOWE Górnictwo i Geoinżynieria ok 33 Zesyt 1 9 Jan Gasyński* MIESZANY POBLEM POCZĄKOWO-BZEGOWY W EOII EMOKONSOLIDACJI. ZAGADNIENIE POCZĄKOWE 1. Wstęp Analia stanów naprężenia i odkstałcenia w gruncie poostaje

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ

ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ Górnictwo i Geoinżynieria Rok 3 Zesyt 008 Marian Paluch*, Antoni Tajduś* ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ. Wstęp Zajmować będiemy

Bardziej szczegółowo

Wyznaczanie współczynnika wnikania ciepła dla konwekcji swobodnej

Wyznaczanie współczynnika wnikania ciepła dla konwekcji swobodnej Kateda Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie wsółczynnika wnikania cieła dla konwekcji swobodnej - - Pojęcia odstawowe Konwekcja- zjawisko wymiany cieła między owiezchnią

Bardziej szczegółowo

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE

DWUCZĘŚCIOWE ŁOŻYSKO POROWATE PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź, 1 14 maja 1999 r. Karol Kremiński Politechnika Warsawska DWUCZĘŚCIOWE ŁOŻYSKO POROWATE SŁOWA KLUCZOWE: łożysko śligowe, tuleja porowata, prepuscalność

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne Równanie Schrödingera dla elektronu w atomie wodoru Równanie nieależne od casu w trech wymiarach współrędne prostokątne ψ ψ ψ h V m + + x y + ( x, y, ) ψ = E ψ funkcja falowa ψ( x, y, ) Energia potencjalna

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I

Studia magisterskie ENERGETYKA. Jan A. Szantyr. Wybrane zagadnienia z mechaniki płynów. Ćwiczenia 2. Wyznaczanie reakcji hydrodynamicznych I Studia magisteskie ENERGETYK Jan. Szanty Wybane zagadnienia z mehaniki płynów Ćwizenia Wyznazanie eakji hydodynamiznyh I Pzykład 1 Z dyszy o śedniah =80 [mm] i d=0 [mm] wypływa woda ze śednią pędkośią

Bardziej szczegółowo

Termodynamika i technika cieplna Wymiana ciepła, masy i pędu w procesach metalurgicznych i odlewniczych

Termodynamika i technika cieplna Wymiana ciepła, masy i pędu w procesach metalurgicznych i odlewniczych 2R TTT88A Termod.TechCieplna WymCiepMasyPędu Teor- Zad-Lab (29zadań plus prosta krzyżówka techniczna) Konspekt do ćwiczeń audytoryjnych i laboratoryjnych z przedmiotów Termodynamika i technika cieplna

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

s s INSTRUKCJA STANOWISKOWA

s s INSTRUKCJA STANOWISKOWA INSTKCJA STANOWISKOWA Wstęp. Przewodzenie ciepła zachodzi w obszarze jednego ciała, w którym istnieją różnice temperatur. Ciepło płynie od miejsca o temperaturze wyższej do miejsca o temperaturze niższej.

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

rozwarcia 2α porusza sie wzd luż swojej osi (w strone

rozwarcia 2α porusza sie wzd luż swojej osi (w strone Zadanie Pocisk w kszta lcie stożka o polu podstawy S i kacie ozwacia 2α pousza sie z pedkości a v wzd luż swojej osi w stone wiezcho lka) w badzo ozzedzonym jednoatomowym gazie. Tempeatua gazu jest na

Bardziej szczegółowo

ĆWICZENIE 2 BADANIE TRANSPORTU CIEPŁA W WARUNKACH STACJONARNYCH

ĆWICZENIE 2 BADANIE TRANSPORTU CIEPŁA W WARUNKACH STACJONARNYCH ĆWICZENIE BADANIE TRANSPORTU CIEPŁA W WARUNKACH STACJONARNYCH Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z podstawowymi zjawiskami fizycznymi towarzyszącymi wymianie ciepła w warunkach stacjonarnych

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

Wprowadzenie do zagadnienia procesu przewodzenia ciepła w warunkach ustalonych

Wprowadzenie do zagadnienia procesu przewodzenia ciepła w warunkach ustalonych Rok - Termodynamika i technika cieplna Materiały do ćwiczeń audytoryjnych - teoria i zadania ( opr. dr inż. A. Gradowski, 3. 01. 010 ) Plik: Z-1zadan-R-G3-w6 Wprowadzenie do zagadnienia procesu przewodzenia

Bardziej szczegółowo

Rozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie

Rozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie 6 Rozdział WARSTWOWY MODL ZNISZCZNIA POWŁOK W CZASI PRZMIANY WODA-LÓD Wpowadzenie Występujące po latach eksploatacji zniszczenia zewnętznych powłok i tynków budowli zabytkowych posiadają często typowo

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra

Fizyka statystyczna Termodynamika bliskiej nierównowagi. P. F. Góra Fizyka statystyczna Termodynamika bliskiej nierównowagi P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Nasze wszystkie dotychczasowe rozważania dotyczyły układów w równowadze termodynamicznej lub

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych FIZYKA BUDOWLI zagadnienia cieplno-wilgotnościowe pzegód budowlanych 1 wilgoć w pzegodach budowlanych pzyczyny zawilgocenia pzegód budowlanych wilgoć technologiczna związana z pocesem wytwazania i podukcji

Bardziej szczegółowo

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga! Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku

Bardziej szczegółowo

Symulacja przepływu ciepła dla wybranych warunków badanego układu

Symulacja przepływu ciepła dla wybranych warunków badanego układu Symulacja przepływu ciepła dla wybranych warunków badanego układu I. Część teoretyczna Ciepło jest formą przekazywana energii, która jest spowodowana różnicą temperatur (inną formą przekazywania energii

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE. POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo