Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Oddziaływania te mogą być różne i dlatego można podzieli je np. na:"

Transkrypt

1 DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo w zmianie kształtu lub wymiarów tego ciała. Zadaniem dynamiki jest badanie związku między wzajemnymi oddziaływaniami ciał i zmianami ich ruchu. Podstawą dynamiki są zasady Newtona. Aby badać ruch ciała wywołany siłą na nie działającą trzeba wiedzieć, jakiego rodzaju jest to siła i skąd się bierze. Dlatego: - muszą być przynajmniej dwa ciała - pomiędzy tymi ciałami musi istnieć oddziaływanie Oddziaływania te mogą być różne i dlatego można podzieli je np. na: - siły elektromagnetyczne, - siły grawitacyjne, lub też na siły: - sprężyste - tarcia - nacisku - ciężkości - wyporu. Co to jest siła? Siła jest wielkością wektorową stanowiącą miarę oddziaływań pomiędzy ciałami, które powodują zmiany kształtu lub stanu ruchu. Jednostką siły w układzie SI jest niuton (1N = [1kg 1m/s 2 ]). Jeden niuton jest to siła, która jednemu kilogramowi nadaje przyspieszenie o wartości 1 m/s 2.

2 Przykłady znanych sił: io Rodzaj siły Wzór Oznaczenia Uwag dotyczy ciał siła ciężkości siła grawitacji siła sprężysta siła tarcia siła wyporu mg F g m m G r 1 2 F r 3 F kx T N F w gv m - masa znajdujących się g - przyspieszenie w pobliżu powierzchni grawitacyjne Ziemi, lub innej planety m 1, m 2 - masy ciał r - odległość między dla wszystkich ciał środkami ciał niebieskich G - stała grawitacji k - współczynnik siła jest zawsze proporcjonalności przeciwnie skierowana x wychylenie do wychylenia N siła nacisku na jest powierzchnię, współczynnikiem - współczynnik tarcia statycznego lub tarcia dynamicznego g - przyspieszenie ziemskie ciężar wypartej cieczy V - objętość - gęstość Siła nacisku Siła nacisku jest jedną z najczęściej spotykanych w naszym codziennym świecie sił i zawsze związana jest z jakąś powierzchnią. Jeśli siła nacisku działa ze strony podłoża na ciało na tym podłożu spoczywające (lub poruszające się) to nazywamy ją siłą reakcji podłoża. 2

3 io Siła nacisku ma jedną ważną własność: jest prostopadła do powierzchni, na która działa, np. na równi siła reakcji - nacisku działa prostopadle do powierzchni, na jakiej spoczywa. Siła tarcia Jeżeli dwie stykające się powierzchnie przesuwają się względem siebie, to obserwuje się zjawisko tarcia statycznego. Ruch ten wymaga stałego działania siły. W typowych sytuacjach tarcia statycznego stosunek siły tarcia f s do nacisku F n trących powierzchni jest stały. Jego wartość nazywana jest współczynnikiem tarcia statycznego. f s s. F n 3

4 io Współczynnik ten jest bezwymiarową wielkością zależną od własności powierzchni trących. Tarcia statycznego występuje, gdy zaczynamy przesuwać (ruszamy z miejsca) stykające się powierzchnie różnych ciał. W odróżnieniu do niego tarcie kinetyczne zachodzi już podczas ruchu. Ponieważ najczęściej trudniej jest ruszyć ciało z miejsca, to w większości przypadków tarcie statyczne jest większe od dynamicznego. Współczynnik tarcia kinetycznego: k nie zależy od prędkości poruszającego się ciała i pola powierzchni stykających się. f k F n Co się dzieje z energią kinetyczną obiektów podlegających tarciu? W większości przypadków energia ta zamieniana jest na energię cieplną. Dlatego samoloty poruszające się z dużymi prędkościami bardzo się rozgrzewają, opony (felgi) samochodów, które wróciły z trasy są ciepłe, a tarcie kawałków drewna o siebie jest starą metodą rozniecania ognia. Jeżeli więc w jakimś ruchu pojawia się tarcie, to oznacza, że w ruchu tym energia mechaniczna nie jest zachowana, ponieważ jej część zamienia się na energię wewnętrzną np. ciepło. 4

5 io Co się stanie, gdy na ciało zaczyna działać niezrównoważona siła? Ciało wówczas zmieni swój stan ruchu - zacznie przyspieszać, zwalniać, ewentualnie zmieniać kierunek ruchu. Ciało nie porusza się ruchem postępowym, gdy suma wektorowa wszystkich sił działających na ciało jest równa zero. Jest to warunek konieczny, ale nie wystarczający. Jeżeli na ciało o masie m działa pojedyncza siła F, to definiujemy ją jako zmianę w czasie pędu ciała: d p F, d t po rozwinięciu F d(mv) d t d m d v v m d t d t Dla ciała o stałej masie F d v m ma. d t Pierwsza zasada dynamik Pierwszą zasadę dynamiki można sformułować następująco: 5

6 io Każde ciało pozostaje w spoczynku lub w ruchu prostoliniowym jednostajnym względem spoczywającego lub poruszającego się ruchem jednostajnym prostoliniowym układu odniesienia, dopóki działanie innych ciał nie zmusi je do zmiany tego stanu Zasada ta wyraża bardzo ważną właściwość ciał polegającą na tym, że każde ciało samorzutnie podtrzymuje swój stan spoczynku lub ruchu prostoliniowego jednostajnego, gdy nie działają na nie inne ciała lub, gdy działanie innych ciał nie powoduje zmiany pierwotnego stanu tego ciała. Właściwość tę nazywamy bezwładnością ciała. Posługując się już wprowadzonym pojęciem siły, można sformułować pierwszą zasadę dynamiki w sposób następujący: Gdy na ciało nie działa żadna siła lub, gdy wypadkowa sił działających na nie jest równa zeru, to ciało to pozostaje w spoczynku lub porusza się ruchem prostoliniowym jednostajnym względem spoczywającego lub poruszającego się ruchem jednostajnym prostoliniowym układu odniesienia. Zasada bezwładności, jak się często nazywa I zasadę dynamiki została odkryta i sformułowana dopiero w pierwszych latach XVII wieku. Pierwsza zasada dynamiki leży u podstaw statyki punktu materialnego. Określa ona, bowiem warunki, przy spełnieniu, których punkty materialne spoczywają. Jeżeli punkt materialny ma spoczywać, to według I zasady dynamiki nie mogą nań działać żadne siły zewnętrzne lub, gdy siły takie działają, to ich wypadkowa musi być równa zeru: n i1 F 0. i Druga zasada dynamiki 6

7 Związek pomiędzy wzajemnym oddziaływaniem ciał a zmianą charakteru ich ruchu postępowego ustala druga zasada dynamiki Newtona. Podaje się zwykle dwa sformułowania tej zasady. Według pierwszego: Ciało, na które działa siła niezrównoważona, porusza się ruchem przyspieszonym z przyspieszeniem proporcjonalnym do wartości tej siły, skierowanym i zwróconym tak samo, jak działająca na ciało siła: F a. m Współczynnikiem proporcjonalności w tym równaniu jest masa ciała. Oznacza to, że masa jest miarą bezwładności ciała w ruchu postępowym. Masa określa, bowiem liczbowo wartość siły potrzebnej do tego, by nadać ciału jednostkowe przyspieszenie (przyspieszenie równe jednostce tej wielkości). Im większa jest wiec masa ciała, tym większą siłą trzeba działać na to ciało, by nadać mu to samo przyspieszenie (by w tym samym stopniu zmienić stan ruchu tego ciała), a to oznacza, że tym większa jest bezwładność ciała. lub Drugą zasadę Newtona możemy podać w innej postaci: d v F m, dt F d dt (m v) Pędem ciała nazywamy wielkość wektorową równą iloczynowi masy ciała i jego prędkości. Fdt d(m v). Popędem siły nazywamy iloczyn siły i czasu, w ciągu, którego ta siła działa na ciało. Jest to również wielkość wektorowa. Druga zasada dynamiki w swoim drugim sformułowaniu brzmi: Przyrost pędu ciała jest równy popędowi siły działającej na to ciało. Jeżeli na ciało działa stała siła F to: io 7

8 md v Fdt, w przypadku ruchu bezwładnego, czyli gdy F 0, pęd ciała jest stały: d (m v) 0, dt io czyli m v const. Gdy na punkt materialny działa kilka sił to słuszna jest zasada niezależności działania sił: jeżeli na ciało (punkt materialny) działa jednocześnie kilka sił, to każda z tych sił nadaje mu przyspieszenie określone przez drugą zasadę dynamiki tak, jakby inne siły nie działały: a 1 m n F i i1. Trzecia zasada dynamiki Rozważmy dwa ciała A i B oddziałujące między sobą. Oddziaływanie to opisują dwie siły: siła, z jaką ciało A działa na ciało B oraz siła, z jaką ciało B działa na ciało A. Związek między tymi dwoma siłami podaje trzecia zasada dynamiki. Gdy dało A działa na ciało B silą F A wtedy ciało B działa jednocześnie na ciało A siłą F R równą co do wartości, równoległą i przeciwnie zwróconą do siły F A : F A F R. Z drugiej i trzeciej zasady dynamiki Newtona wynika zasada zachowania pędu układu zamkniętego. Jest ona jednym z podstawowych praw przyrody. Zasada zachowania pędu Układ ciał nazywamy odosobnionym albo zamkniętym, jeżeli dla każdego ciała tego układu wszystkie siły, działające na nie, pochodzące od ciał zewnętrznych równoważą się. W układzie odosobnionym należy, więc uwzględnić 8

9 tylko siły wzajemnego oddziaływania między ciałami układu, zwane siłami wewnętrznymi. Rozpatrzmy układ odosobniony złożony z n ciał o masach m 1, m 2,..., m n, poruszające się z prędkościami odpowiednio v 1, v 2,..., v n. Siła wewnętrzna, z jaką ciała k-te działa na ciało i-te wynosi F, i zgodnie z trzecią zasadą dynamiki: ik d p d n m v 0 i i dt dt i1 albo n p m i1 i v i const, tzn. suma wektorowa pędów ciał, tworzących układ zamknięty, jest stała. Zasadę zachowania pędu można sformułować: lub wektor pędu zamkniętego układu ciał nie zmienia się z upływem czasu. w inercjalnym układzie odniesienia pęd całkowity układu ciał, na który nie działają siły zewnętrzne lub suma sił zewnętrznych jest równa zero, jest stałym wektorem, niezależnym od zjawisk, zachodzących wewnątrz układu. io Inercjalne i nieinercjalne okłady odniesienia Zasady dynamiki Newtona obowiązują tylko w pewnych ściśle wyróżnionych układach odniesienia. Istnieją takie układy odniesienia, w których zasady te nie obowiązują. Gdy, na przykład, układ odniesienia związany jest z pojazdem poruszającym się ruchem prostoliniowym jednostajnie przyspieszonym, wtedy ciała znajdujące się w tym pojeździe będą się względem tego układu odniesienia poruszały ruchem przyspieszonym, pomimo tego, że nie będą na nie działały żadne niezrównoważone siły. Można, więc wyróżnić dwa rodzaje układów odniesienia. Układy, w których obowiązują zasady dynamiki Newtona, będziemy nazywać układami inercjalnymi oraz układy, w których nie obowiązują zasady dynamiki Newtona, będziemy nazywali układami nieinercjalnymi. 9

10 io Pierwsza zasada dynamiki stwierdza, że jeżeli na ciało nie działają siły zewnętrzne to istnieje taki układ odniesienia, w którym to ciało spoczywa lub porusza się ruchem jednostajnym prostoliniowym. Taki układ nazywamy układem inercjalnym. Każdy ruch musi być opisany względem pewnego układu odniesienia. Układy inercjalne są tak istotne, bo we wszystkich takich układach ruchami ciał rządzą dokładnie te sama prawa. Większość omawianych zagadnień będzie rozwiązywana właśnie w inercjalnych układach odniesienia. Zazwyczaj przyjmuje się, że są to układy, które spoczywają względem gwiazd stałych, ale układ odniesienia związany z Ziemią w większości zagadnień jest dobrym przybliżeniem układu inercjalnego. Ponieważ przyspieszenie ciała zależy od przyspieszenia układu odniesienia (obserwatora), w którym jest mierzone, więc druga zasada dynamiki jest słuszna tylko, gdy obserwator znajduje się w układzie inercjalnym. Siła bezwładności Siła bezwładności jest efektem wynikającym z samego przyspieszenia układu odniesienia. Siła bezwładności nie jest zwykłą siłą, gdyż nie wynika ona z żadnego oddziaływania między ciałami. Jeszcze inaczej można by powiedzieć, że jest ona siłą pozorną. 10

11 Siła bezwładności pojawia się tylko w nieinercjalnych układach odniesienia. io W układach inercjalnych obowiązuje normalna postać II zasady dynamiki Newtona. Można jednak poprawić opis układów nieinercjalnych tak, aby obowiązywała w nich zmodyfikowana wersja II zasady dynamiki. W tym celu do rzeczywistych sił (a więc sił wynikających z oddziaływań) trzeba dodać siłę bezwładności. Siła bezwładności: F bezwadnośei ma uk.odniesienia Minus w tym wzorze wynika z faktu, że siła bezwładności działa przeciwnie do przyspieszenia układu nieinercjalnego. II zasada dynamiki w układach nieinercjalnych: F F oddz bezw a. uk m Przykłady siły bezwładności: - Siła bezwładności podczas ruszania pojazdu - gdy samochód rusza do przodu siła bezwładności wciska pasażerów w fotel, - Siła bezwładności podczas hamowania pojazdu - gdy samochód (lub inny pojazd) nagle hamuje, wtedy siła bezwładności rzuca pasażerem do przodu. - Siła odśrodkowa np. na wirującej karuzeli siła bezwładności wypycha ciała na zewnątrz okręgu. - Siła Coriolisa - siła ta jest podobna do siły odśrodkowej i pojawia się, gdy podczas opisu ruch ciała w obracającym się układzie odniesienia. Siła bezwładności pojawia się zawsze, gdy przechodzimy z opisem do układu nieinercjalnego. Jest ona efektem ruchu samego układu odniesienia. Siła bezwładności dołączona do równania II zasady dynamiki powoduje zmianę opisu sytuacji o ile w układzie inercjalnym ciało widziane było jako pozostające w ruchu, to w układzie nieinercjalnym będzie ono w spoczynku. 11

12 io Posługiwanie się układami nieinercjalnymi ma sens wtedy, gdy ruch ciał trzeba odnieść do obiektów będących w ruchu przyspieszonym np. względem obracającej się Ziemi, względem karuzeli, czy pojazdu poruszającego się z przyspieszeniem. Przykłady ruchu oraz występowania sił bezwładności: 12

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora)

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora) Kinematyka Ocena podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska) KLASA I PROGRAM NAUZANIA LA GIMNAZJUM TO JEST FIZYKA M.RAUN, W. ŚLIWA (M. Małkowska) Kursywą oznaczono treści dodatkowe Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Plan wynikowy (propozycja 61 godzin)

Plan wynikowy (propozycja 61 godzin) 1 Plan wynikowy (propozycja 61 godzin) Kinematyka (19 godzin) *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji realizowanych w ramach danego zagadnienia.

Bardziej szczegółowo

I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych.

I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych. I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych. Ruch jest to zjawisko występujące w przyrodzie, polegające na zmianie położenia przez ciało względem danego punktu. 1. Rozwój poglądów na

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO.

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. JOLANTA SUCHAŃSKA. CEL POMIARU: KONCEPCJA TESTU Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. 2. RODZAJ TESTU: Jest to test sprawdzający, wielostopniowy,

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Czego można się nauczyć z prostego modelu szyny magnetycznej

Czego można się nauczyć z prostego modelu szyny magnetycznej Czego można się nauczyć z prostego modelu szyny magnetycznej 1) Hamowanie magnetyczne I B F L m v L Poprzeczka o masie m może się przesuwać swobodnie po dwóch równoległych szynach, odległych o L od siebie.

Bardziej szczegółowo

Lp. lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą

Lp. lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą Wymagania edukacyjne dla klasy: I TAK, I TI, I TE, I LP/ZI Lp. lekcji Uszczegółowienie treści Wymagania na ocenę dopuszczającą dostateczną dobrą bardzo dobrą 1 2 3 4 5 6 7 Kinematyka - opis ruchu Uczeń:

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

ZADANIA PRACA, MOC, ENREGIA

ZADANIA PRACA, MOC, ENREGIA ZADANIA PRACA, MOC, ENREGIA Aby energia układu wzrosła musi być wykonana nad ciałem praca przez siłę zewnętrzną (spoza układu ciał) Ciało, które posiada energię jest zdolne do wykonania pracy w sensie

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia T + O = [.] KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i

Bardziej szczegółowo

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu Rozdział 2 Ruch i energia 2.1 Kinematyka punktu materialnego 2.1.1 Pojęcie ruchu. Punkt materialny. Równania ruchu Kinematyka jest działem mechaniki opisującym ruch ciał bez podawania jego przyczyn. Przez

Bardziej szczegółowo

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I 2 3 4 Rozdział I. Pierwsze spotkania z fizyką

konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry I 2 3 4 Rozdział I. Pierwsze spotkania z fizyką Przedmiotowy system oceniania (propozycja) Kursywa oznaczono treści dodatkowe Wymagania na poszczególne oceny konieczne podstawowe rozszerzające dopełniające dopuszczający dostateczny dobry bardzo dobry

Bardziej szczegółowo

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII

MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII Miejsce na naklejkę z kodem szkoły dysleksja MATERIAŁ DIAGNOSTYCZNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 13

Bardziej szczegółowo

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ

STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ STATYKA I DYNAMIKA PUNKTU MATERIALNEGO I BRYŁY SZTYWNEJ, WŁASNOŚCI SPRĘŻYSTE CIAŁ ZAGADNIENIA DO ĆWICZEŃ 1. Warunki równowagi ciał. 2. Praktyczne wykorzystanie warunków równowagi w tzw. maszynach prostych.

Bardziej szczegółowo

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM 9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM Co to są kłady inercjalne i nieinercjalne? Układ inercjalny wyróŝnia się tym, Ŝe jeśli ciało w nim spoczywa lb porsza się rchem jednostajnym prostoliniowym,

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Zadanie 8. Kołowrót Numer dania Narysowanie sił działających na układ. czynność danie N N Q 8. Zapisanie równania ruchu obrotowego kołowrotu.

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R.

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. Pytania mogą posłużyć do rozegrania I etapu konkursu rozgrywającego się w macierzystej szkole gimnazjalistów - kandydatów. Matematyka Zad. 1 Ze wzoru wynika,

Bardziej szczegółowo

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony Zasady oceniania do programu nauczania Z fizyką w przyszłość Zakres rozszerzony Zasady ogólne: 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. 2.

Bardziej szczegółowo

Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ

Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ ZDUŃSKA WOLA 16.04.2014R. Międzypowiatowy Konkurs Fizyczny dla uczniów klas II GIMNAZJUM FINAŁ Kod ucznia Instrukcja dla uczestnika konkursu 1. Proszę wpisać odpowiednie litery (wielkie) do poniższej tabeli

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym.

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym. Rozkład materiału nauczania z fizyki. Numer programu: Gm Nr 2/07/2009 Gimnazjum klasa 1.! godzina fizyki w tygodniu. 36 godzin w ciągu roku. Klasa 1 Podręcznik: To jest fizyka. Autor: Marcin Braun, Weronika

Bardziej szczegółowo

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca Fizyka, klasa II Podręcznik: Świat fizyki, cz.2 pod red. Barbary Sagnowskiej 6. Praca. Moc. Energia. Lp. Temat lekcji Wymagania konieczne i podstawowe 1 Praca mechaniczna - podaje przykłady wykonania pracy

Bardziej szczegółowo

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω =

k + l 0 + k 2 k 2m 1 . (3) ) 2 v 1 = 2g (h h 0 ). (5) v 1 = m 1 m 1 + m 2 2g (h h0 ). (6) . (7) (m 1 + m 2 ) 2 h m ( 2 h h 0 k (m 1 + m 2 ) ω = Rozwiazanie zadania 1 1. Dolna płyta podskoczy, jeśli działająca na nią siła naciągu sprężyny będzie większa od siły ciężkości. W chwili oderwania oznacza to, że k(z 0 l 0 ) = m g, (1) gdzie z 0 jest wysokością

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II

ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II ZADANIA DLA CHĘTNYCH NA 6 (SERIA I) KLASA II Oblicz wartość prędkości średniej samochodu, który z miejscowości A do B połowę drogi jechał z prędkością v 1 a drugą połowę z prędkością v 2. Pociąg o długości

Bardziej szczegółowo

Wymagania na poszczególne oceny z fizyki w gimnazjum

Wymagania na poszczególne oceny z fizyki w gimnazjum Wymagania na poszczególne oceny z fizyki w gimnazjum WYMAGANIA OGÓLNE POZIOM WYMAGAŃ wymagania konieczne wymagania podstawowe wymagania rozszerzające wymagania dopełniające wymagania wykraczające STOPIEŃ

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 7. Pole magnetyczne zadania z arkusza I 7.8 7.1 7.9 7.2 7.3 7.10 7.11 7.4 7.12 7.5 7.13 7.6 7.7 7. Pole magnetyczne - 1 - 7.14 7.25 7.15 7.26 7.16 7.17 7.18 7.19 7.20 7.21 7.27 Kwadratową ramkę (rys.)

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

ICT w nauczaniu przedmiotów matematycznych i przyrodniczych w gimnazjach

ICT w nauczaniu przedmiotów matematycznych i przyrodniczych w gimnazjach Projekt ICT w na uczaniu prz e dmio tów ma tematycz nyc h i przyro dn iczyc h w gimnazjac h współfina nsowany prz ez U ni ę E uro p ej ską w r amac h Euro pe jski e go Fu n d usz u Społecz n ego Materiały

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych"

Ćwiczenie: Symulacja zderzeń sprężystych i niesprężystych Ćwiczenie: "Symulacja zderzeń sprężystych i niesprężystych" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

FIZYKA - WYMAGANIA NA OCENĘ DOPUSZCZAJĄCY DLA KLAS PIERWSZYCH (cały rok)

FIZYKA - WYMAGANIA NA OCENĘ DOPUSZCZAJĄCY DLA KLAS PIERWSZYCH (cały rok) FIZYKA - WYMAGANIA NA OCENĘ DOPUSZCZAJĄCY DLA KLAS PIERWSZYCH (cały rok) 1. Co to jest ciało fizyczne? Ciało fizyczne każdy przedmiot oraz organizm żywy mogący stanowić obiekt badań fizyki. 2. Co to jest

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan Dynamika układów mechanicznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele układów mechanicznych opisują ruch ciał sztywnych obserwowany względem przyjętego układu odniesienia Ruch ciała w przestrzeni

Bardziej szczegółowo

Wymagania na poszczególne oceny z fizyki w klasie drugiej i trzeciej liceum zakres rozszerzony.

Wymagania na poszczególne oceny z fizyki w klasie drugiej i trzeciej liceum zakres rozszerzony. Wymagania na poszczególne oceny z fizyki w klasie drugiej i trzeciej liceum zakres rozszerzony. Zasady ogólne 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień

Bardziej szczegółowo

Sprawdzian wiadomości z fizyki przed egzaminem dla uczniów gimnazjum w zadaniach zamkniętych

Sprawdzian wiadomości z fizyki przed egzaminem dla uczniów gimnazjum w zadaniach zamkniętych Sprawdzian wiadomości z fizyki przed egzaminem dla uczniów gimnazjum w zadaniach zamkniętych 1. Do szklanki z gorącą wodą włożono kostkę lodu i kostkę cukru. Co stanie się z lodem i cukrem? a) Lód i cukier

Bardziej szczegółowo

Wymagania edukacyjne z fizyki dla LO zakres rozszerzony.

Wymagania edukacyjne z fizyki dla LO zakres rozszerzony. Wymagania edukacyjne z fizyki dla LO zakres rozszerzony. Ocenę niedostateczną otrzymuje uczeń, który: nie opanował tych wiadomości i umiejętności, które są niezbędne do dalszego kształcenia, nie zna podstawowych

Bardziej szczegółowo

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY

WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM, ROK SZKOLNY 2015/2016, ETAP REJONOWY WOJEWÓDZKI KONKURS Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2015/2016 IMIĘ I NAZWISKO UCZNIA wpisuje komisja konkursowa po rozkodowaniu pracy! KOD UCZNIA: ETAP II REJONOWY Informacje: 1. Czas rozwiązywania

Bardziej szczegółowo

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU.

POWODZENIA! ZDANIA ZAMKNIĘTE. WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 minut KOD UCZESTNIKA KONKURSU. KOD UCZESTNIKA KONKURSU WOJEWÓDZKI KONKURS FIZYCZNY [ETAP SZKOLNY] ROK SZKOLNY 2009/2010 Czas trwania: 90 inut Test składa się z dwóch części. W części pierwszej asz do rozwiązania 15 zadań zakniętych,

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

3.3. Energia mechaniczna. Rodzaje energii mechanicznej

3.3. Energia mechaniczna. Rodzaje energii mechanicznej 1 3.3. Energia mecaniczna. Rodzaje energii mecanicznej Dwa lub więcej oddziałującyc wzajemnie ciał nazywamy układem ciał. Siły wzajemnego oddziaływania na siebie ciał tworzącyc układ są siłami wewnętrznymi

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem

Pole magnetyczne Ziemi. Pole magnetyczne przewodnika z prądem Pole magnetyczne Własność przestrzeni polegającą na tym, że na umieszczoną w niej igiełkę magnetyczną działają siły, nazywamy polem magnetycznym. Pole takie wytwarza ruda magnetytu, magnes stały (czyli

Bardziej szczegółowo

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N.

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N. Wersja A KONKURS FIZYCZNY DLA UCZNIÓW KLAS 3 GIMNAZJUM Masz przed sobą zestaw 20 zadań. Na ich rozwiązanie masz 45 minut. Czytaj uważnie treści zadań. Tylko jedna odpowiedź jest prawidłowa. Za każde prawidłowo

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI ZAKRES ROZSZERZONY SERIA ZROZUMIEĆ FIZYKĘ KLASA DRUGA

WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI ZAKRES ROZSZERZONY SERIA ZROZUMIEĆ FIZYKĘ KLASA DRUGA WYMAGANIA NA POSZCZEGÓLNE OCENY Z FIZYKI ZAKRES ROZSZERZONY SERIA ZROZUMIEĆ FIZYKĘ KLASA DRUGA Uwaga. Szczegółowe warunki i sposób oceniania określa statut szkoły. Zasady ogólne 1. Wymagania na każdy stopień

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka 4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20

Bardziej szczegółowo

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe)

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Pieczęć KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 27 stycznia 2012 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Fizycznego i życzymy powodzenia. Maksymalna liczba

Bardziej szczegółowo

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka.

Wyznaczenie gęstości cieczy za pomocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), komplet odważników, obciążnik, ławeczka. Cel ćwiczenia: WYZNACZANIE GĘSTOŚCI CIECZY ZA POMOCĄ WAGI HYDROSTATYCZNEJ Wyznaczenie gęstości cieczy za poocą wagi hydrostatycznej. Spis przyrządów: waga techniczna (szalkowa), koplet odważników, obciążnik,

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klas szkół ponadgimnazjalnych (poziom rozrzerzony) rok szkolny 2015/2016 (KLASY: 3LA,3LB,3LC) I.

Przedmiotowy system oceniania z fizyki dla klas szkół ponadgimnazjalnych (poziom rozrzerzony) rok szkolny 2015/2016 (KLASY: 3LA,3LB,3LC) I. Przedmiotowy system oceniania z fizyki dla klas szkół ponadgimnazjalnych (poziom rozrzerzony) rok szkolny 2015/2016 Poziomie rozszerzonym Zrozumieć fizykę wydawnictwa Nowa Era, autorzy: M.Braun, K. Byczuk,

Bardziej szczegółowo

KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA. Ciepło jako forma przekazywania energii. Wymagania rozszerzające (PP) (oceny:4,5) (oceny:2,3)

KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA. Ciepło jako forma przekazywania energii. Wymagania rozszerzające (PP) (oceny:4,5) (oceny:2,3) KLASA II (nacobezu) Rozdział I. PRACA, MOC, ENERGIA Temat lekcji Wymagania podstawowe (P) (oceny:2,3) Wymagania rozszerzające (PP) (oceny:4,5) 1. Praca praca jest wykonywana wtedy, gdy pod działaniem siły

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy Eliminacje TEST 27 lutego 2013r. 1. Po wirującej płycie gramofonowej idzie wzdłuż promienia mrówka ze stałą prędkością względem płyty. Torem ruchu mrówki

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 00 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Uwaga!. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Skrypt edukacyjny do zajęć wyrównawczych z fizyki dla klas IV Barbara Kucyniak

Skrypt edukacyjny do zajęć wyrównawczych z fizyki dla klas IV Barbara Kucyniak Projekt Wiedza, kompetencje i praktyka to pewna przyszłość zawodowa technika. Kompleksowy Program Rozwojowy dla Technikum nr 1 w Zespole Szkół Technicznych im. Stanisława Staszica w Rybniku, współfinansowany

Bardziej szczegółowo

Klucz odpowiedzi. Fizyka

Klucz odpowiedzi. Fizyka Klucz odpowiedzi. Fizyka Zadanie Oczekiwana odpowiedź Liczba punktów za czynność zadanie 1.1. Δs = 2π(R r) Δs = 2 3,14 (0,35 0,31) m Δs = 0,25 m. 1 p. za zauważenie, że różnica dróg to różnica obwodów,

Bardziej szczegółowo

Plan wynikowy dla klasy II do programu i podręcznika To jest fizyka

Plan wynikowy dla klasy II do programu i podręcznika To jest fizyka Plan wynikowy dla klasy II do programu i podręcznika To jest fizyka Wymagania Temat lekcji ele operacyjne uczeń: Kategoria celów podstawowe Ponad podstawowe konieczne podstawowe rozszerzające dopełniające

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika To jest fizyka Nowa Era KLASA I

Wymagania na poszczególne oceny przy realizacji programu i podręcznika To jest fizyka Nowa Era KLASA I Wymagania na poszczególne oceny przy realizacji programu i podręcznika To jest fizyka Nowa Era KLASA I Rozdział I. Pierwsze spotkanie z fizyką Temat według programu Temat 1. Czym zajmuje się fizyka Wymagania

Bardziej szczegółowo

Pytania i zagadnienia sprawdzające wiedzę z fizyki.

Pytania i zagadnienia sprawdzające wiedzę z fizyki. Pytania i zagadnienia sprawdzające wiedzę z fizyki. 1. Przeliczanie jednostek. Po co człowiek wprowadził jednostki dla różnych wielkości fizycznych? Wymień kilka znanych ci jednostek fizycznych. Kiedy

Bardziej szczegółowo

Test 1. 1. (4 p.) Na rysunkach przedstawiono siły ciągu silnika i siły oporu działające na samochody osobowe m. jadące z prędkością o wartości 10.

Test 1. 1. (4 p.) Na rysunkach przedstawiono siły ciągu silnika i siły oporu działające na samochody osobowe m. jadące z prędkością o wartości 10. Test 1 1. (4 p.) Na rysunkach przedstawiono siły ciągu silnika i siły oporu działające na samochody osobowe m jadące z prędkością o wartości 10. s I. II. III. Na który samochód działa siła wypadkowa o

Bardziej szczegółowo

1. Odpowiedź c) 2. Odpowiedź d) Przysłaniając połowę soczewki zmniejszamy strumień światła, który przez nią przechodzi. 3.

1. Odpowiedź c) 2. Odpowiedź d) Przysłaniając połowę soczewki zmniejszamy strumień światła, który przez nią przechodzi. 3. 1. Odpowiedź c) Obraz soczewki będzie zielony. Każdy punkt obrazu powstaje przez poprowadzenie promieni przechodzących przez wszystkie części soczewki. Suma czerwonego i zielonego odbierana jest jako kolor

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z fizyki dla uczniów z upośledzeniem w stopniu lekkim.

Szczegółowe wymagania edukacyjne z fizyki dla uczniów z upośledzeniem w stopniu lekkim. Szczegółowe wymagania edukacyjne z fizyki dla uczniów z upośledzeniem w stopniu lekkim. ROZDZIAŁ I. Właściwości materii określa warunki zmian stanu skupienia; określa zmiany stanu skupienia na porównuje

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Wojewódzki Konkurs Fizyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2014/2015 Dzień miesiąc rok Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo