XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków - 10 lutego 2017 r. TEST DLA GRUPY ELEKTRYCZNEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków - 10 lutego 2017 r. TEST DLA GRUPY ELEKTRYCZNEJ"

Transkrypt

1 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków - 10 lutego 2017 r. TEST DLA GRUPY ELEKTRYCZNEJ WYJAŚNIENIE: Przed przystąpieniem do udzielenia odpowiedzi przeczytaj uważnie poniższy tekst. Test zawiera 50 pytań. Odpowiedzi należy udzielać na załączonej karcie odpowiedzi. W lewym górnym rogu karty wpisz swoje dane, w polu oznaczonym jako KOD wpisz przyznany Ci KOD a następnie zamaluj kratki odpowiadające poszczególnym cyfrom KODU. Należy wybrać jedną poprawną odpowiedź oznaczoną literami a, b, c, d i zamalować odpowiadające jej pole na karcie odpowiedzi. Jeżeli uważasz, że żadna odpowiedź nie jest właściwa, zamaluj pole odpowiadające pozycji e. UWAGA!!! Nie ma możliwości poprawek zaznaczonej odpowiedzi!!! Można korzystać jedynie z przyborów do pisania i rozdawanych kart brudnopisów. Korzystanie z kalkulatorów, notebook ów, telefonów komórkowych itp. jest zabronione. Za każdą prawidłową odpowiedź otrzymuje się jeden punkt. Dla każdego zadania możesz zaznaczyć tylko jedną odpowiedź każdy inny przypadek będzie traktowany jako błędna odpowiedź. Maksymalna liczba punktów 50. CZAS ROZWIĄZYWANIA: 120 min. Życzymy powodzenia.

2 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (2 z 9) 1Z a d a n i e 1.. Wyznaczyć rezystancję zastępczą dwójnika. Dane: R = 2 Ω, R = R = 4 Ω, j = αi, α = 3. a) 1 Ω b) 2 Ω c) 3 Ω d) 4 Ω 1Z a d a n i e 2.. Dwie żarówki (traktowane jako rezystory liniowe) o mocy 10 W każda i napięciu znamionowym 100 V, zasilono ze źródła (traktowanego jako idealne) o napięciu 100 V. Łączna moc pobierana przez obie żarówki wynosi: a) 5 W b) 10 W c) 20 W d) 100 W 1Z a d a n i e 3.. Gdy przełącznik znajdował się w pozycji 1 amperomierz A wskazywał wartość 6 A, a gdy przełącznik umieszczono w pozycji 2, amperomierz A wskazał wartość równą 4 A. Ile wskazuje woltomierz V (przy przełączniku w pozycji 2 ), jeżeli rezystancja R 2 = 1 Ω. a) 3 V b) 6 V c) 12 V d) 24 V 1Z a d a n i e 4.. Dane są parametry elementów: R = 3 Ω, R = 12 Ω, R = 6 Ω, R = 12 Ω; rezystancja zastępcza R dwójnika z rysunku wynosi: a) 3 Ω b) 4,5 Ω c) 6 Ω d) 9 Ω 1Z a d a n i e 5.. W obwodzie jak na schemacie amperomierz pokazuje 10 A, dane: R = 3 Ω, R = 3 Ω, R = 9 Ω, R = 1 Ω, Woltomierz wskazuje: a) 4/7 V b) 12 V c) 13,5 V d) 15 V 1Z a d a n i e 6.. W obwodzie jak na schemacie przy napięciu dwójnika U = 40 V, dane: R = R = 4 Ω, R = R = 5 Ω. Amperomierz wskazuje: a) 0.5 A b) 1 A c) 4 A d) 12 A

3 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (3 z 9) 1Z a d a n i e 7.. Wyznaczyć o ile zmieni się moc rozpraszana w elemencie R po zamknięciu wyłącznika (jak na schemacie). Napięcie U nie zależy od pozycji wyłącznika. Dane: R = 2 Ω, R = 12 Ω, R = R = 4 Ω, U = 48 V. Moc P : a) wzrośnie o 48 W b) zmaleje o 96 W c) zmaleje o 112 W d) nie ulegnie zmianie 1Z a d a n i e 8.. Dwójnik zasilany napięciem stałym U = 15 V ; przy wyłączniku (jak na rysunku) otwartym, amperomierz wskazuje 10 A. Rezystancja R = 1 Ω. Po zamknięciu wyłącznika, wskazanie amperomierza: a) zmaleje o 2 A b) nie zmieni się c) wzrośnie d) żadna z proponowanych odpowiedzi 1Z a d a n i e 9.. W obwodzie w stanie ustalonym, w chwili t = 0[s], wyłącznik w zostaje zamknięty. Ile wynosi natężenie prądu I, w chwili t = 1[s]. Dane: E = 2,718 V, R = 1 Ω, L = 1 H. a) 0 A b) ~0,52 A c) ~1,718 A d) 12,34 A 1Z a d a n i e 10.. W obwodzie w stanie ustalonym, w chwili t = 0[s], przełącznik oznaczony literą w zostaje przełączony z pozycji 1 do pozycji 2. Ile wynosi energia rozproszona w elemencie R od chwili t do nieskończoności. Dane: E = 12 V, R = 1 Ω, C = 4 F, R = 3 Ω. a) 162 J b) 352 J c) 450 J d) 498 J 1Z a d a n i e 11.. Dwójnik pasywny zasilany jest ze źródła napięcia sinusoidalnie zmiennego. Wartość chwilowa mocy dwójnika, dana jest zależnością: p(t) = sin(450t) [W]. Moc czynna dwójnika wynosi zatem: a) 25 W b) 80 W c) 80 2 W d) 105 W 1Z a d a n i e 12.. Na zaciskach dwójnika RLC będącego w stanie rezonansu napięć, dane jest napięcie: u (t) = 2 sin(1000t) [V]. Ile wynosi dobroć układu rezonansowego, jeżeli wiadomo, że: R = 0.5 Ω, L = 5 mh. a) Q = 0,5 b) Q = 10 c) Q = 200 d) Q = 1000

4 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (4 z 9) 1Z a d a n i e 13.. W obwodzie dane są: j (t) = 3 sin(4t) + 1 sin(12t) [A], L = L = M = 1 [H]. Wskazanie woltomierza wynosi: a) 2 2 V b) 6 V c) 6 2 V d) 12 V 1Z a d a n i e 14.. W układzie trójfazowym, dane są napięcia fazowe: e = 120 2sin(ωt) + 10sin(3ωt) [V], e = 120 2sin(ωt ) + 10sin(3ωt) [V], oraz wiadomo, że pulsacja: ω = 314. Wskazanie woltomierza wynosi: a) 120 V b) 130 V c) V d) V 1Z a d a n i e 15.. W układzie trójfazowym symetrycznym (wyłącznik zamknięty), amperomierz wskazuje 20 A. Wskazanie amperomierza po otwarciu wyłącznika w fazie C, wynosi: a) 10 A b) 17,32 A c) 20 A d) 34,64 A 1Z a d a n i e 16.. W układzie trójfazowym symetrycznym zasilanym ze źródła o zgodnej kolejności faz, wskazania watomierzy wynoszą odpowiednio: W 450 W oraz W 450 W. Po zmianie kolejności faz (na przeciwną), wskazanie watomierza W wynosi: a) 0 W b) 300 W c) 450 W d) 900 W 1Z a d a n i e 17.. W układzie trójfazowym symetrycznym, amperomierz pokazuje 2 A, woltomierz V. Wiedząc, że moc czynna odbiornika trójfazowego wynosi 300 W, ile wynosi współczynnik mocy odbiornika? a) 0,5 b) 0,8 c) 0,9 d) 0,95 1Z a d a n i e 18.. W układzie trójfazowym symetrycznym, o kolejności faz zgodnej, zasilającym odbiornik symetryczny o charakterze pojemnościowym, o mocy czynnej wynoszącej 0 W, woltomierz pokazuje 200 V, a amperomierz 2 A. Wskazanie watomierza wynosi: a) 0 W b) W c) 200 W d) 400 W

5 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (5 z 9) 1Z a d a n i e 19.. W układzie trójfazowym symetrycznym, odbiornik trójfazowy (symetryczny) ma charakter indukcyjny, a jego współczynnik mocy wynosi 0,8. Amperomierz pokazuje 5 A, a woltomierz 200 V. Dobrać reaktancję fazy baterii kondensatorów (skojarzonych w gwiazdę), tak, aby dokonać kompensacji mocy biernej w układzie. a) ~38,5 Ω b) 400 Ω c) 550 Ω d) 800 Ω 1Z a d a n i e 20.. Rezystancja nieliniowa ma charakterystykę: u(i) = 0,5 i. Przez element nieliniowy płynie prąd o natężeniu 2 A. Ile wynosi rezystancja dynamiczna w punkcie pracy: a) 2Ω b) 0.5 Ω c) 4Ω d) 8Ω 1Z a d a n i e 21.. Rezystor nieliniowy o charakterystyce jak na rysunku, został zasilony z układu, dzięki któremu napięcie na tym elemencie wyniosło 60 V. Moc elementu wynosi: a) 10 W b) 180 W c) 1200 W d) 3600 W 1Z a d a n i e W obwodzie jak na schemacie znajduje się element R o charakterystyce nieliniowej: U = I + 4I. Ile wynosi natężenie prądu I, jeżeli: E = 14 V, R = 1 Ω. a) I = 2 A b) I = 3 A c) I = 4 A d) I = 7 A 1Z a d a n i e Który z materiałów charakteryzuje najmniejsza przenikalność względna elektryczna: a) krzem b) polietylen c) grafit d) woda 1Z a d a n i e W układzie według schematu świeci dioda LED: a) czerwona b) żadna c) żółta d) wszystkie

6 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (6 z 9) 1Z a d a n i e 25.. Natężenie prądu emitera w układzie wynosi: a) 0 ma b) około 100 ma c) 101 ma d) około 11 ma 1Z a d a n i e 26.. W układzie ze wzmacniaczem operacyjnym odwracającym (jak na rysunku), napięcia: u = 2 mv, u = 5 mv, R = 2 kω. Rezystancja R wynosi: a) 0,4 Ω b) 0,8 kω c) 2,5 kω d) 5 k Ω 1Z a d a n i e 27.. W przypadku osoby porażonej prądem, przy prawidłowym postępowaniu: a) należy wezwać pogotowie ratunkowe b) należy odłączyć źródło zasilania powodujące porażenie c) należy sprawdzić stan osoby porażonej i w razie konieczności zastosować sztuczne oddychanie wykonując naprzemiennie 20 wdechów i 2 uciśnięcia mostka d) należy sprawdzić stan osoby porażonej, w razie konieczności wezwać pogotowie ratunkowe, i wykonywać odpowiednio sztuczne oddychanie 1Z a d a n i e 28.. Które z poniższych zdań nie jest prawdziwe: a) natężenie ziemskiego pola magnetycznego w Polsce wynosi około 24 A/m b) w powietrzu, natężeniu pola magnetycznego wynoszącym 100 A/m odpowiada indukcja magnetyczna wynosząca około 133 µt c) ziemski biegun magnetyczny pokrywa się z ziemskim biegunem geograficznym d) diamagnetyki charakteryzuje względna przenikalność magnetyczna mniejsza od 1 (od jedności) 1Z a d a n i e 29.. Współczynnik SAR (współczynnik absorpcji swoistej), to: a) miara szybkości pochłaniania energii pola elektromagnetycznego na jednostkę masy, przez tkanki ciała ludzkiego b) pojemność cieplna tkanek na jednostkę masy c) energia zgromadzona w polu magnetycznym odniesiona do masy urządzenia d) miara wyrażająca zdolność do emisji promieniowania niejonizującego na jednostkę masy 1Z a d a n i e 30.. Które z poniższych zdań jest poprawne. a) moc czynna to kwadrat wartości średniej mocy chwilowej b) moc pozorna to suma podniesionych do kwadratu wartości: mocy czynnej i mocy biernej c) moc czynna to wartość średnia mocy chwilowej d) moc czynna to pierwiastek z uśrednionej wartości mocy chwilowej

7 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (7 z 9) 1Z a d a n i e 31.. Które z poniższych zdań jest prawdziwe: a) stałe w czasie pole magnetyczne powoduje powstanie pola elektrycznego wewnątrz obiektu przemieszczającego się względem źródła pola, gdy rozkład pola magnetycznego nie jest jednorodny w przestrzeni b) strumień indukcji pola magnetycznego przez dowolną zamkniętą powierzchnie nie zawsze jest zerowy c) jednostką indukcji pola magnetycznego w układzie SI jest Wb (weber) d) w otoczeniu ładunku elektrycznego izolowanego, natężenie pola elektrycznego zawsze jest zerowe 1Z a d a n i e 32.. Prąd przesunięcia w dielektryku powstaje poprzez: a) oddziaływanie stałego w czasie pola elektrycznego b) gdy dielektryk umieszczony jest w zewnętrznym, stałym w czasie polu magnetycznym c) oddziaływanie stałego w czasie prądu przewodzenia d) oddziaływanie pola elektrycznego zmiennego w czasie 1Z a d a n i e 33.. Posługując się tabelą 33, dobrać najmniejszy możliwy przekrój żyły kabla miedzianego (ułożonego w ziemi) zasilającego odbiornik trójfazowy o napięciu znamionowym 400 V, pobierający moc 48 kw. Współczynnik mocy urządzenia wynosi 0,9. a) 6 mm 2 b) 10 mm 2 c) 25 mm 2 d) 50 mm 2 Tab.33. Obciążalność długotrwała kabli elektroenergetycznych o izolacji polwinitowej, 3- i 4-żyłowych, o napięciu znamionowym do 1 kv, ułożonych w miejscach osłoniętych od bezpośredniego działania promieni słonecznych. Prądy wyrażone w amperach. Kabel ułożony w ziemi Kabel prowadzony w powietrzu Przekrój [mm 2 ] Cu Al Cu Al Z a d a n i e 34.. Linia elektroenergetyczna średniego napięcia zasila grupę odbiorów o określonej, stałej mocy. Po przebudowie linii i dwukrotnym zwiększeniu napięcia znamionowego, straty mocy: a) nie uległy zmianie b) wzrosły 2-krotnie c) zmalały 2-krotnie d) zmalały około 4-krotnie 1Z a d a n i e 35.. W linii kablowej stosunek reaktancji indukcyjnej do rezystancji wynosi 4:3, straty mocy biernej przy przesyle energii wynoszą 400 kvar, straty mocy czynnej wynoszą: a) 150 kw b) 300 kw c) 400 kw d) 533 kw

8 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (8 z 9) 1Z a d a n i e 36.. Efekt naskórkowy w obwodach prądu przemiennego polega na: a) zmniejszaniu gęstości prądu wraz z odległością od osi przewodu b) wzroście prądu w przewodzie, przy tej samej różnicy potencjałów na jego końcach c) nierównomiernym rozkładzie gęstości prądu w przekroju przewodu d) zmniejszeniu efektywnej rezystywności przewodu 1Z a d a n i e 37.. Klasa przyrządu pomiarowego: a) wyraża maksymalny błąd bezwzględny z jakim mierzona jest dana wielkość b) wyraża błąd względny z jakim mierzona jest dana wielkość c) wyraża minimalny błąd bezwzględny z jakim mierzona jest dana wielkość d) wyraża maksymalny błąd procentowy w stosunku do pełnego zakresu pomiarowego 1Z a d a n i e 38.. Jaka wielkość fizyczna jest sygnałem wyjściowym z hallotronu. a) natężenie prądu stałego b) natężenie pola magnetycznego c) natężenie prądu przemiennego d) napięcie stałe 1Z a d a n i e 39.. Odtworzenie sygnału ciągłego (o najwyższej składowej widma wynoszącej f ) na podstawie sygnału dyskretnego: a) jest możliwe o ile częstotliwość próbkowania f > 2f b) jest możliwe jeżeli częstotliwość próbkowania f < 2f c) jest możliwe jeżeli częstotliwość próbkowania f < f d) jest możliwe zawsze gdy częstotliwość próbkowania f > f 1Z a d a n i e 40.. W układzie jak na schemacie, wartości logiczne na wejściu wynoszą: x=1, y=1. Wartość logiczna na wyjściu (z) wynosi: a) z = 0 b) z = 1 c) z = 2x d) z = x+y 1Z a d a n i e 41.. Nadprzewodnikowy zasobnik energii (SMES), to: a) urządzenie służące do gromadzenia energii, z wykorzystaniem stałego pola magnetycznego b) kondensator o dużej pojemności, gromadzący energię w polu elektrycznym c) generator prądu przemiennego, którego części przewodzące wykonane są z nadprzewodnika d) akumulator z żelowym elektrolitem, którego części przewodzącego wykonane są z nadprzewodnika 1Z a d a n i e 42.. Najwyższy poziom napięcia, w wykorzystywanych sieciach elektroenergetycznych wysokiego napięcia w Polsce, wynosi: a) 110 kv b) 220 kv c) 400 kv d) 1500 kv 1Z a d a n i e 43.. Napięcie kolejowej sieci trakcyjnej w Polsce, na większości linii to: a) napięcie sinusoidalnie zmienne, 3000 V b) napięcie stałe, 3000 V c) napięcie stałe, 6000 V d) napięcie sinusoidalnie zmienne, V

9 XL Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków/Bieruń Test dla grupy elektrycznej. (9 z 9) 1Z a d a n i e 44.. Część odbieraka prądu (pantografu) stosowanego do pobierania energii z napowietrznej sieci trakcyjnej, stykająca się bezpośrednio z przewodem to: a) ślizgacz b) chwytak c) twornik d) stycznik 1Z a d a n i e 45.. Wytrzymałość elektryczna dielektryka jest definiowana jako: a) iloczyn średniego natężenia pola elektrycznego występującego w dielektryku oraz odległości pomiędzy częściami przewodzącymi do których doprowadzone jest napięcie b) iloraz napięcia przy którym następuje przebicie oraz rezystancji skrośnej pomiędzy częściami czynnymi do których doprowadzone jest napięcie c) iloraz napięcia przy którym następuje przebicie oraz prądu pomiędzy częściami czynnymi do których doprowadzone jest napięcie d) iloraz napięcia przy którym następuje przebicie oraz odległości pomiędzy częściami przewodzącymi do których doprowadzone jest napięcie 1Z a d a n i e 46.. Autotransformator ma 1200 zwojów i jest zbudowany na napięcie zasilające 600 V. Na odczepie wykonanym po 600 zwojach uzyskuje się napięcie: a) 200 V b) 300 V c) 600 V d) 1200 V 1Z a d a n i e 47.. Transformator trójuzwojeniowy z rozdzielonymi uzwojeniami, o jednakowych napięciach znamionowych uzwojeń dolnego napięcia, stosowany jest w celu: a) ograniczenia prądów zwarcia w sieci po stronie dolnego napięcia b) umożliwienia tworzenia sieci SN dwustronnie zasilanej c) redukcji kosztów budowy urządzenia d) zwiększenia mocy dostarczanej do sieci po stronie dolnego napięcia 1Z a d a n i e 48.. Zmniejszanie napięcia zasilającego silnik asynchroniczny przy rozruchu, powoduje: a) zwiększenie momentu elektromagnetycznego b) zwiększenie prądu rozruchowego silnika przy jednoczesnym zwiększeniem mocy mechanicznej c) zmniejszenie prądu rozruchowego silnika d) zwiększenie mocy mechanicznej przy jednoczesnym zmniejszeniu prądu rozruchowego 1Z a d a n i e 49.. Silnik obcowzbudny prądu stałego: a) charakteryzuje się tym, że pracuje z jedną, znamionową prędkością obrotową b) ma stała moc mechaniczną, niezależną od napięcia zasilającego c) jest silnikiem, którego prędkości nie da się regulować za pomocą wielkości elektrycznych d) jest silnikiem, który może pracować w dużym zakresie prędkości obrotowej 1Z a d a n i e 50.. Warunkiem koniecznym działania silnika reluktancyjnego jest: a) mała rezystancja uzwojeń wirnika b) wysoka przewodność elektryczna materiału tworzącego wirnik c) budowa wirnika jako struktury klatkowej d) wystąpienie asymetrii magnetycznej wirnika 1 K O N I E C.

TEST DLA GRUPY ELEKTRYCZNEJ

TEST DLA GRUPY ELEKTRYCZNEJ XXXIX Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej K R A K Ó W, R A D O M 12.02.2016, 22-23.04.2016 WYJAŚNIENIE: TEST DLA GRUPY ELEKTRYCZNEJ Przed przystąpieniem do udzielenia odpowiedzi

Bardziej szczegółowo

XXXVIII Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej CZĘSTOCHOWA TEST DLA GRUPY ELEKTRYCZNEJ

XXXVIII Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej CZĘSTOCHOWA TEST DLA GRUPY ELEKTRYCZNEJ XXXVIII Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej 31.03-01.04.2015 CZĘSTOCHOWA WYJAŚNIENIE: TEST DLA GRUPY ELEKTRYCZNEJ Przed przystąpieniem do udzielenia odpowiedzi przeczytaj uważnie

Bardziej szczegółowo

TEST DLA GRUPY ELEKTRYCZNEJ

TEST DLA GRUPY ELEKTRYCZNEJ XXXV Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej 29-30.03.2012 Wałbrzych TEST DLA GRUPY ELEKTRYCZNEJ WYJAŚNIENIE: Przed przystąpieniem do udzielenia odpowiedzi przeczytaj uważnie tekst.

Bardziej szczegółowo

XLI Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków - 9 lutego 2018 r. TEST DLA GRUPY ELEKTRYCZNEJ

XLI Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków - 9 lutego 2018 r. TEST DLA GRUPY ELEKTRYCZNEJ XLI Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Kraków - 9 lutego 2018 r. TEST DLA GRUPY ELEKTRYCZNEJ WYJAŚNIENIE: Przed przystąpieniem do udzielenia odpowiedzi przeczytaj uważnie poniższy

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2016/2017. Zadania z elektrotechniki na zawody I stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2016/2017. Zadania z elektrotechniki na zawody I stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2016/2017 Zadania z elektrotechniki na zawody I stopnia Instrukcja dla zdającego 1. Czas trwania zawodów: 120 minut.

Bardziej szczegółowo

Zaznacz właściwą odpowiedź

Zaznacz właściwą odpowiedź EUOEEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 200/20 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź Zadanie Kondensator o pojemności C =

Bardziej szczegółowo

XXXVII Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej LUBLIN TEST DLA GRUPY ELEKTRYCZNEJ

XXXVII Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej LUBLIN TEST DLA GRUPY ELEKTRYCZNEJ XXXVII Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej 27-28.03.2014 LUBLIN WYJAŚNIENIE: TEST DLA GRUPY ELEKTRYCZNEJ Przed przystąpieniem do udzielenia odpowiedzi przeczytaj uważnie tekst.

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015. Zadania z elektrotechniki na zawody I stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015. Zadania z elektrotechniki na zawody I stopnia EUOELEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 2014/2015 Zadania z elektrotechniki na zawody I stopnia 1. Czas trwania zawodów: 120 minut. 2. Test zawiera 16 zadań zamkniętych.

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna

XXXIV OOwEE - Kraków 2011 Grupa Elektryczna 1. Przed zamknięciem wyłącznika prąd I = 9A. Po zamknięciu wyłącznika będzie a) I = 27A b) I = 18A c) I = 13,5A d) I = 6A 2. Prąd I jest równy a) 0,5A b) 0 c) 1A d) 1A 3. Woltomierz wskazuje 10V. W takim

Bardziej szczegółowo

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża:

Teoria obwodów. 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: Teoria obwodów 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę superpozycji

Bardziej szczegółowo

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna) EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2013/2014 EUOELEKTA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej ok szkolny 2013/2014 Zadania z elektrotechniki na zawody I stopnia (grupa elektryczna) Instrukcja dla zdającego 1. Czas trwania zawodów:

Bardziej szczegółowo

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści

Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, Spis treści Elementy elektrotechniki i elektroniki dla wydziałów chemicznych / Zdzisław Gientkowski. Bydgoszcz, 2015 Spis treści Przedmowa 7 Wstęp 9 1. PODSTAWY ELEKTROTECHNIKI 11 1.1. Prąd stały 11 1.1.1. Podstawowe

Bardziej szczegółowo

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą:

(EL1A_U09) 4. Przy otwartym przełączniku, woltomierz idealny wskazał 0. Po zamknięciu wyłącznika woltomierz i amperomierz idealny wskażą: Teoria obwodów (EL1A_U07) 1. Zdanie: skutek kilku przyczyn działających równocześnie jest sumą skutków tych przyczyn działających oddzielnie wyraża: a) zasadę wzajemności b) twierdzenie Thevenina c) zasadę

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektrotechniki na zawody I stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektrotechniki na zawody I stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 Zadania z elektrotechniki na zawody I stopnia Instrukcja dla zdającego 1. Czas trwania zawodów: 120 minut.

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3

X X. Rysunek 1. Rozwiązanie zadania 1 Dane są: impedancje zespolone cewek. a, gdzie a = e 3 EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 20/202 Odpowiedzi do zadań dla grupy elektrycznej na zawody II stopnia Zadanie Na rysunku przedstawiono schemat obwodu

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY 1. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD Wydział IMi Zadania z elektrotechniki i elektroniki 2014 A. W obwodzie jak na rysunku oblicz wskazanie woltomierza pracującego w trybie TU MS. Przyjmij diodę, jako element idealny. Dane: = 230 2sin( t),

Bardziej szczegółowo

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski

Indukcja wzajemna. Transformator. dr inż. Romuald Kędzierski Indukcja wzajemna Transformator dr inż. Romuald Kędzierski Do czego służy transformator? Jest to urządzenie (zwane też maszyną elektryczną), które wykorzystując zjawisko indukcji elektromagnetycznej pozwala

Bardziej szczegółowo

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego.

Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. Lekcja 10. Temat: Moc odbiorników prądu stałego. Moc czynna, bierna i pozorna w obwodach prądu zmiennego. 1. Moc odbiorników prądu stałego Prąd płynący przez odbiornik powoduje wydzielanie się określonej

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

TRANSFORMATORY. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego TRANSFORMATORY Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Maszyny elektryczne Przemiana energii za pośrednictwem pola magnetycznego i prądu elektrycznego

Bardziej szczegółowo

Prąd przemienny - wprowadzenie

Prąd przemienny - wprowadzenie Prąd przemienny - wprowadzenie Prądem zmiennym nazywa się wszelkie prądy elektryczne, dla których zależność natężenia prądu od czasu nie jest funkcją stałą. Zmienność ta może związana również ze zmianą

Bardziej szczegółowo

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w

Bardziej szczegółowo

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny

Bardziej szczegółowo

TEST DLA GRUPY ELEKTRYCZNEJ

TEST DLA GRUPY ELEKTRYCZNEJ XXXVI Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej 21-22.03.2013 JAROSŁAW Zespół Szkół Technicznych i Ogólnokształcących im. Stefana Banacha WYJAŚNIENIE: TEST DLA GRUPY ELEKTRYCZNEJ Przed

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

12.7 Sprawdzenie wiadomości 225

12.7 Sprawdzenie wiadomości 225 Od autora 8 1. Prąd elektryczny 9 1.1 Budowa materii 9 1.2 Przewodnictwo elektryczne materii 12 1.3 Prąd elektryczny i jego parametry 13 1.3.1 Pojęcie prądu elektrycznego 13 1.3.2 Parametry prądu 15 1.4

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 1 Podstawowe prawa obwodów elektrycznych Prąd elektryczny definicja fizyczna Prąd elektryczny powstaje jako uporządkowany ruch

Bardziej szczegółowo

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.

Maszyny elektryczne. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Maszyny elektryczne Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział maszyn elektrycznych Transformatory - energia prądu przemiennego jest zamieniana w energię

Bardziej szczegółowo

3. Jeżeli pojemność jednego z trzech takich samych kondensatorów wynosi 3 µf to pojemność zastępcza układu wynosi:

3. Jeżeli pojemność jednego z trzech takich samych kondensatorów wynosi 3 µf to pojemność zastępcza układu wynosi: 1. Jeżeli dwa punktowe ładunki o wartości 10 C każdy, oddziałują w próżni siłą elektrostatycznego odpychania równą 9 10 9 N, to odległość między nimi jest równa: a) 10-4 m b) 10 - m c) 10 m d) 10 m. W

Bardziej szczegółowo

Spis treści 3. Spis treści

Spis treści 3. Spis treści Spis treści 3 Spis treści Przedmowa 11 1. Pomiary wielkości elektrycznych 13 1.1. Przyrządy pomiarowe 16 1.2. Woltomierze elektromagnetyczne 18 1.3. Amperomierze elektromagnetyczne 19 1.4. Watomierze prądu

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE

POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 ZADANIA ZAMKNIĘTE DO ZDOBYCIA PUNKTÓW 50 POWTÓRKA PRZED KONKURSEM CZĘŚĆ 14 Jest to powtórka przed etapem rejonowym (głównie elektrostatyka). ZADANIA ZAMKNIĘTE łącznie pkt. zamknięte otwarte SUMA zadanie 1 1 pkt Po włączeniu

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 28 PRĄD PRZEMIENNY autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSK 28 PRĄD PRZEMENNY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Od roku 2015 w programie

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1.

R 1 = 20 V J = 4,0 A R 1 = 5,0 Ω R 2 = 3,0 Ω X L = 6,0 Ω X C = 2,5 Ω. Rys. 1. EROELEKR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 9/ Rozwiązania zadań dla grupy elektrycznej na zawody stopnia adanie nr (autor dr inŝ. Eugeniusz RoŜnowski) Stosując twierdzenie

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROEEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 013/014 Instrukcja dla zdającego Zadania z elektroniki na zawody I stopnia (grupa elektroniczna) 1. Czas trwania zawodów:

Bardziej szczegółowo

CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy

CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy CZĘŚĆ DRUGA Obliczanie rozpływu prądów, spadków napięć, strat napięcia, współczynnika mocy ZADANIE.. W linii prądu przemiennego o napięciu znamionowym 00/0 V, przedstawionej na poniższym rysunku obliczyć:

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 3 Zagadnienie mocy w obwodzie RLC przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie sinusoidalnie

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia

Ćwiczenie nr 4. Badanie filtrów składowych symetrycznych prądu i napięcia Ćwiczenie nr 4 Badanie filtrów składowych symetrycznych prądu i napięcia 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą składowych symetrycznych, pomiarem składowych w układach praktycznych

Bardziej szczegółowo

Ćwiczenia tablicowe nr 1

Ćwiczenia tablicowe nr 1 Ćwiczenia tablicowe nr 1 Temat Pomiary mocy i energii Wymagane wiadomości teoretyczne 1. Pomiar mocy w sieciach 3 fazowych 3 przewodowych: przy obciążeniu symetrycznym i niesymetrycznym 2. Pomiar mocy

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy

Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne

Bardziej szczegółowo

29 PRĄD PRZEMIENNY. CZĘŚĆ 2

29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Włodzimierz Wolczyński 29 PRĄD PRZEMIENNY. CZĘŚĆ 2 Opory bierne Indukcyjny L - indukcyjność = Szeregowy obwód RLC Pojemnościowy C pojemność = = ( + ) = = = = Z X L Impedancja (zawada) = + ( ) φ R X C =

Bardziej szczegółowo

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych

Kondensator. Kondensator jest to układ dwóch przewodników przedzielonych Kondensatory Kondensator Kondensator jest to układ dwóch przewodników przedzielonych dielektrykiem, na których zgromadzone są ładunki elektryczne jednakowej wartości ale o przeciwnych znakach. Budowa Najprostsze

Bardziej szczegółowo

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia.

Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Temat: Dobór przekroju przewodów ze względu na wytrzymałość mechaniczną, obciążalność prądową i dopuszczalny spadek napięcia. Dobór przekroju przewodów ze względu na obciążalność prądową długotrwałą wykonuje

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

1. W obwodzie R=30 Ω. Rezystancja zastępcza obwodu widziana z zacisków AB wynosi: a) 60 Ω; b) 70 Ω; c) 80 Ω; d) 90 Ω.

1. W obwodzie R=30 Ω. Rezystancja zastępcza obwodu widziana z zacisków AB wynosi: a) 60 Ω; b) 70 Ω; c) 80 Ω; d) 90 Ω. 1. W obwodzie =30 Ω. ezystancja zastępcza obwodu widziana z zacisków B wynosi: B a) 60 Ω; b) 70 Ω; c) 80 Ω; d) 90 Ω. 2. W obwodzie =60 Ω. ezystancja zastępcza obwodu widziana z zacisków B nie wynosi: B

Bardziej szczegółowo

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi:

1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: 1. W gałęzi obwodu elektrycznego jak na rysunku poniżej wartość napięcia Ux wynosi: A. 10 V B. 5,7 V C. -5,7 V D. 2,5 V 2. Zasilacz dołączony jest do akumulatora 12 V i pobiera z niego prąd o natężeniu

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE

st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 4 OBWODY TRÓJFAZOWE Układem

Bardziej szczegółowo

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć

REZONANS SZEREGOWY I RÓWNOLEGŁY. I. Rezonans napięć REZONANS SZEREGOWY I RÓWNOLEGŁY I. Rezonans napięć Zjawisko rezonansu napięć występuje w gałęzi szeregowej RLC i polega na tym, Ŝe przy określonej częstotliwości sygnałów w obwodzie, zwanej częstotliwością

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów I-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Model matematyczny pomiaru. 2. Wzorce jednostek miar. 3. Błąd pomiaru.

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY Zespół zkół Technicznych w karżysku-kamiennej prawozdanie z ćwiczenia nr Temat ćwiczenia: OWN ELEKTYZN ELEKTONZN imię i nazwisko OMY MOY rok szkolny klasa grupa data wykonania. el ćwiczenia: oznanie pośredniej

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015 IMI Zadania zaliczenie wykładu lektrotechnika i elektronika MD 2015 Dla t < 0 obwód w stanie ustalonym. chwili t = 0 zamknięto wyłącznik. Sformułuj równanie różniczkowe obwodu w dziedzinie czasu, z którego

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5

BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO Strona 1/5 BADANIE JEDNOFAZOWEGO SILNIKA ASYNCHRONICZNEGO 1. Wiadomości wstępne Silniki asynchroniczne jednofazowe są szeroko stosowane wszędzie tam, gdzie

Bardziej szczegółowo

Elektromagnetyzm. pole magnetyczne prądu elektrycznego

Elektromagnetyzm. pole magnetyczne prądu elektrycznego Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne. 2.Obecność oraz kierunek linii

Bardziej szczegółowo

Silnik indukcyjny - historia

Silnik indukcyjny - historia Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba

Bardziej szczegółowo

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego

POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego POLE MAGNETYCZNE Własności pola magnetycznego. Źródła pola magnetycznego Pole magnetyczne magnesu trwałego Pole magnetyczne Ziemi Jeśli przez przewód płynie prąd to wokół przewodu jest pole magnetyczne.

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Instytut Elektrotechniki i Automatyki Okrętowej Część 8 Maszyny asynchroniczne indukcyjne prądu zmiennego Maszyny asynchroniczne

Bardziej szczegółowo

UKŁADY KONDENSATOROWE

UKŁADY KONDENSATOROWE UKŁADY KONDENSATOROWE 3.1. Wyprowadzić wzory na: a) pojemność kondensatora sferycznego z izolacją jednorodną (ε), b) pojemność kondensatora sferycznego z izolacją warstwową (ε 1, ε 2 ) c) pojemność odosobnionej

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Pracownia elektryczna MontaŜ Maszyn Instrukcja laboratoryjna Pomiar mocy w układach prądu przemiennego (dwa ćwiczenia) Opracował: mgr inŝ.

Bardziej szczegółowo

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego

Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego 1 Ćwiczenie nr.13 Pomiar mocy czynnej prądu trójfazowego A. Zasada pomiaru mocy za pomocą jednego i trzech watomierzy Moc czynna układu trójfazowego jest sumą mocy czynnej wszystkich jego faz. W zależności

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

MODELE ELEMENTÓW SEE DO OBLICZEŃ ZWARCIOWYCH

MODELE ELEMENTÓW SEE DO OBLICZEŃ ZWARCIOWYCH MODELE ELEMENTÓW SEE DO OBLICEŃ WARCIOWYCH Omawiamy tu modele elementów SEE do obliczania początkowego prądu zwarcia oraz jego rozpływu w sieci, czyli prądów zwarciowych w elementach SEE. GENERATORY SYNCHRONICNE

Bardziej szczegółowo

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA

ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC. Informatyka w elektrotechnice ZADANIA DO WYKONANIA ĆWICZENIE 1 JEDNOFAZOWE OBWODY RLC Celem ćwiczenia jest poznanie zasad symulacji prostych obwodów jednofazowych składających się z elementów RLC. I. Zamodelować jednofazowy szeregowy układ RLC (rys.1a)

Bardziej szczegółowo

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne

Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Opracowała: mgr inż. Katarzyna Łabno Rozkład materiału z przedmiotu: Urządzenia elektryczne i elektroniczne Dla klasy 2 technik mechatronik Klasa 2 38 tyg. x 4 godz. = 152 godz. Szczegółowy rozkład materiału:

Bardziej szczegółowo

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

= (prędkość. n 490 obr. I 1 =(1-j8) A. I 2 =(3+j5) A L R. silnika indukcyjnego pierścieniowego o danych. 1. Obliczyć poślizg znamionowy S

= (prędkość. n 490 obr. I 1 =(1-j8) A. I 2 =(3+j5) A L R. silnika indukcyjnego pierścieniowego o danych. 1. Obliczyć poślizg znamionowy S 1. Obliczyć poślizg znamionowy S n silnika indukcyjnego pierścieniowego o danych znamionowych: znamionowa wirowania wirnika): a) 0,02 b) 0,04 c) 0,05 d) 0,06 2. Przedstawiony na rysunku łącznik to: a)

Bardziej szczegółowo

W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia:

W3 Identyfikacja parametrów maszyny synchronicznej. Program ćwiczenia: W3 Identyfikacja parametrów maszyny synchronicznej Program ćwiczenia: I. Część pomiarowa 1. Rejestracja przebiegów prądów i napięć generatora synchronicznego przy jego trójfazowym, symetrycznym zwarciu

Bardziej szczegółowo

Przewody elektroenergetyczne samonośne o żyłach aluminiowych i izolacji. polietylen usieciowany, odporny na rozprzestrzenianie płomienia

Przewody elektroenergetyczne samonośne o żyłach aluminiowych i izolacji. polietylen usieciowany, odporny na rozprzestrzenianie płomienia Przewód AsXSn 0,6/1kV Przewody elektroenergetyczne samonośne o żyłach aluminiowych i izolacji z polietylenu usieciowanego odpornego na rozprzestrzenianie płomienia. Jedno i wielożyłowe, napięcie znamionowe:

Bardziej szczegółowo

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni

Podstawowe własności elektrostatyczne przewodników: Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni KONDENSATORY Podstawowe własności elektrostatyczne przewodników: Natężenie pola wewnątrz przewodnika E = 0 Pole E na zewnątrz przewodnika jest prostopadłe do jego powierzchni Potencjał elektryczny wewnątrz

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektroniki na zawody I stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016. Zadania z elektroniki na zawody I stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2015/2016 Zadania z elektroniki na zawody I stopnia Instrukcja dla zdającego 1. Czas trwania zawodów: 120 minut. 2. Test

Bardziej szczegółowo

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika.

DANE: wartość skuteczna międzyprzewodowego napięcia zasilającego E S = 230 V; rezystancja odbiornika R d = 2,7 Ω; indukcyjność odbiornika. Zadanie 4. Prostownik mostkowy 6-pulsowy z tyrystorami idealnymi o komutacji natychmiastowej zasilany z sieci 3 400 V, 50 Hz pracuje z kątem opóźnienia załączenia tyrystorów α = 60º. Obciążenie prostownika

Bardziej szczegółowo

symbol miernika amperomierz woltomierz omomierz watomierz mierzona

symbol miernika amperomierz woltomierz omomierz watomierz mierzona ZADANIA ELEKTROTECHNIKA KLASA II 1. Uzupełnij tabelkę: nazwa symbol miernika amperomierz woltomierz omomierz ----------------- watomierz ----------------- wielkość mierzona jednostka - nazwa symbol jednostki

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 0 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych

Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych Pytania podstawowe dla studentów studiów II-go stopnia kierunku Elektrotechnika VI Komisji egzaminów dyplomowych 1 Podstawy metrologii 1. Co to jest pomiar? 2. Niepewność pomiaru, sposób obliczania. 3.

Bardziej szczegółowo

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia

Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Ćwiczenie 8 Temat: Pomiar i regulacja natężenia prądu stałego jednym i dwoma rezystorem nastawnym Cel ćwiczenia Właściwy dobór rezystorów nastawnych do regulacji natężenia w obwodach prądu stałego. Zapoznanie

Bardziej szczegółowo

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek

Bardziej szczegółowo

46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W]

46 POWTÓRKA 8 PRĄD STAŁY. Włodzimierz Wolczyński. Zadanie 1. Oblicz i wpisz do tabeli R 2 = 2 Ω R 4 = 2 Ω R 3 = 6 Ω. E r = 1 Ω U [V] I [A] P [W] Włodzimierz Wolczyński 46 POWTÓRKA 8 PRĄD STAŁY Zadanie 1 Oblicz i wpisz do tabeli R 1 = 4 Ω RR 22 = = 22 Ω I 2 = 1,5 A R 4 = 2 Ω R 3 = 6 Ω R 1 = 4 Ω R 2 = 2 Ω R 3 = 6 Ω R 4 = 2 Ω r = 1 Ω SEM ogniwa wynosi

Bardziej szczegółowo