Metoda Elementów Skończonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda Elementów Skończonych"

Transkrypt

1 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Metoda Elementów Skończonych PROJEKT COMSOL Multiphysics 3.4 Prowadzący: dr hab. Tomasz Stręk Wykonawca: Paweł Wysk Andrzej Chojnacki Kierunek: MiBM Grupa dziekańska: IME Poznań,

2 Spis treści 1 Zasada działania strzały wystrzelonej z kuszy pneumatycznej 1.1 Wstęp 1.2 Strzała z grotem 1.3 Obliczenia dot. strzały w programie COMSOL Multiphysics Wnioski 2 Termosprężystość patelni żeliwnej do steków 2.1 Wstęp 2.2 Termosprężystość 2.3 Przeprowadzenie symulacji 2.4 Wnioski 3 Zginanie belki 3D 3.1 Opis i zastosowanie modelu 3.2 Przeprowadzona analiza 3.3 Wyniki i wnioski 4 Załączniki Spis Treści 1

3 1. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 1.1 Wstęp Kusza, to podstawowe wyposażenie podwodnego łowcy. Podwodni łowcy używają różnych kusz - pneumatyczne, gumowe (z jednym, dwoma lub trzema naciągami), hydropneumatyczne i sprężynowe. Najbardziej popularne są gumówki oraz pneumatyki i właśnie takie są produkowane przez największych (Picasso, Beuchat, Mares, Cressi, OMER, Sporasub, Spetton, Imerson, Technisub, itd.) i uznanych producentów sprzętu dla łowiectwa podwodnego. Produkują oni różne modele i każdy model w kilku różnych długościach. Za naszą wschodnią granicą jest wiele zakładów przemysłowych (kusze to ich uboczna produkcja) i malutkich warsztatów rzemieślniczych produkujących kusze (Skat, Miron, Zielinka, Aquatech, Neptun itp.) na wewnętrzny rynek, idealne dla warunków panujących w wodach śródlądowych umiarkowanej strefy klimatycznej. W większości są to konstrukcje bardzo udane (służą swoim właścicielom po 20 i więcej lat) i dużo tańsze od zachodnioeuropejskich. Niestety, w Polsce są niedostępne. Wybór modelu zależy od indywidualnych upodobań i możliwości finansowych kupującego. Natomiast wybór rodzaju (gumówka czy pneumatyk?) i długości powinien być zależny od warunków panujących w danym zbiorniku wodnym. Droższe pneumatyki mają regulację siły wystrzału. Jest to bardzo przydatne urządzenie. Np. płynąc z mocno nabitą kuszą i z pięciozębem na strzale po redukcji ciśnienia można strzelać do mniejszych ryb bez obawy że zostaną przerąbane na dwie części. Podwodni łowcy którzy polują w różnych wodach (morza, rzeki i jeziora) i w różnej przezroczystości muszą mieć nie małą kolekcję kusz. Krótkie pneumatyki (pistolety od 30 do 45cm) niezbędne są do polowań w gąszczu podwodnej roślinności, w trzcinach, zatopionych drzewach i wodzie o małej przezroczystości. W takich warunkach dłuższą kuszę ciężko jest odpowiednio szybko nakierować na cel pojawiający się z boku. Średnie pneumatyki (50 75cm) i krótkie gumówki (45 70cm) są najbardziej uniwersalnymi kuszami w naszych wodach (oczywiście, oprócz gęstych zarośli). Są idealne w wodzie o widoczności od 2 do 4 metrów. Nawet w niezbyt gęstej roślinności można z nimi z powodzeniem polować na wszystkie gatunki ryb. Średnie gumówki (70 110cm) i długie pneumatyki (75-110cm) pozwolą oddać skuteczny strzał z większej odległości do celu w wodzie o widoczności pow. 4m. Przy czym, ja osobiście w czystej wodzie nie użyłbym długiego pneumatyka. Skomplikowane nabijanie i nieporęczna armata. Długie gumówki ( cm) z dwoma (lub więcej) naciągami, to jedyny rozsądny wybór na wody o dużej (powyżej 10m) przezroczystości. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 2

4 1.2 Strzała z grotem Kusze na CO 2 o bardzo dużym zasięgu, potężnej sile strzału około barów i dużej precyzji. Zasięg pistoletu to 3-4 metry, a w wersji N i GL to 6-7 metrów. Nabój 12gr w pistolecie to jeden strzał, natomiast w wersjach N i GL mamy pojemnik z CO 2 o pojemności 0,5 litra, który pozwala oddać od 12 do 15 strzałów, przy stałym ciśnieniu. Rys 1.1 Grand Large 85 długość lufy 85 cm, strzała 90/100cm, pojemnik CO 2 0.5l Rys 1.2 Strzała o długości 90 cm i średnicy 7 mm zakończona grotem pojedynczym i poczwórnym. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 3

5 1.3 Obliczenia dot. strzały w programie COMSOL Multiphysics 3.4 Przedmiotem analizy będzie harpun wystrzelony z kuszy pneumatycznej Grand Large 85 z grotem pojedynczym oraz poczwórnym. Badany bedzie przepływ cieczy, w tym wypadku wody morskiej, pomiedzy poszczególnymi grotami Obliczenia zostały wykonane w module: COMSOL Multiphysics/Fluid Dynamics/Incompressible Navier-Stokes/Transient analysis. Dane wejściowe: Długość harpuna: 90 cm Średnica: 7 mm Siła strzału: 300 barów Gęstość wody morskiej: 1025 kg/m 3 Lepkość wody: 98 * 10-5 Utworzenie pola obliczeniowego stanowi przestrzeń 2m x 1m Rys 1.3 Pole obliczeniowe dla strzały z jednym grotem. Wprowadzenie stałych obliczeniowych w opcji Subdomain Settings: Rys 1.4 Stałe obliczeniowe dla strzały z jednym grotem. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 4

6 Wprowadzenie warunków brzegowych dla wszystkich ścian w opcji Boundary Settings: Rys 1.5 Warunek brzegowy dla ściany nr 1 jeden grot. Rys 1.6 Warunek brzegowy dla ścian nr 2-8 jeden grot. Rys 1.7 Warunek brzegowy dla ściany nr 9 jeden grot. Wprowadzenie parametrów w opcji: Solve/Solver Parameters Rys 1.8 Solver Parameters czasy obliczeniowe jeden grot. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 5

7 Wygenerowanie siatki obliczeniowej: Mesh Initialize Rys 1.9 Mesh Initialize jeden grot. Rys 1.10 Mesh Initialize cztery groty. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 6

8 Solve/Update Model Rys 1.11 Update Model jeden grot. Wyniki obliczeń strzały z jednym grotem Rys 1.12 Rozkład prędkości w widoku Contour Plot jeden grot. Wyniki obliczeń strzały z czterema grotami Rys 1.13 Rozkład prędkości w widoku Contour Plot cztery groty. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 7

9 1.4 Wnioski Na podstawie przeprowadzonej analizy wyników można zauważyć, że maksymalna prędkość przy symulacji strzały z jednym grotem jest większa o około 0,7 m/s od pomiarów strzały z czterema grotami. W pierwszym przypadku dzięki temu, że pojedynczy grot stanowi mniejsze pole natarcia, niż cztery groty, występuje mniejsza powierzchnia stanowiąca opór niż w przypadku drugim. Jest to ukazane poprzez linie tworzące kontury prędkości. Strzała mająca większą ilość grotów i jednocześnie większą powierzchnię czoła stawia większy opór przez co szybko traci prędkość. Dlatego też wykorzystywane są one do połowów dużych ryb, które są mniej zwinne, od swoich mniejszych odpowiedników. Zasada działania strzały wystrzelonej z kuszy pneumatycznej 8

10 2. Termosprężystość patelni żeliwnej do steków. 2.1 Wstęp Patelnia do steków żeliwna z rączką ze stali nierdzewnej pasuje do wszystkich rodzajów kuchni: elektrycznych (również indukcyjnych) i gazowych, można również używać w piekarnikach i piecach. Wyroby żeliwne posiadają czarną powierzchnię uzyskaną dzięki unikatowemu procesowi wypalania żeliwa w oleju roślinnym w bardzo wysokiej temperaturze. Naczynia żeliwne można używać do bezpośredniego podawania na stół przygotowanych potraw. Należy pamiętać aby naczynia żeliwne przed użyciem spłukać i wysuszyć, po użyciu jeszcze ciepłe, umyć najlepiej płynem do mycia naczyń używając szczotki, zawsze po osuszeniu natłuścić olejem roślinnym. Nie wolno w wyrobach żeliwnych przyrządzać potraw o odczynie kwaśnym oraz przechowywać żywność. 2.2 Termosprężystość Analiza swobodnego przepływu ciepła metodą rozwiązań podstawowych Prawo Furiera dotyczące przewodzenia ciepła Przewodnictwo cieplne bazuje na prawie Furiera oraz na prawie zachowania energii. Energia cieplna jest transportowana w ciele stałym dzięki przewodnictwu cieplnemu. Przypuśćmy, że temperatura nie jest jednakowa w ciele stałym, wtedy energia cieplna jest transportowana wewnątrz ciała do momentu, aż temperatura ta będzie jednakowa w każdym punkcie ciała. Jeżeli nie występuje transport masy, a jedynie transport ciała, to zjawisko jest nazywane przewodnictwem ciepła. Stosunek transportu do jednostki powierzchni nazywany jest strumieniem. Związek pomiędzy strumieniem ciepła a gradientem temperatury nazywany jest prawem Frieriera, którego forma to: Równanie rządzące przepływem ciepła. Warunki brzegowe. Na podstawie wzoru: Jest to równanie dla swobodnego przepływu rozkładu temperatury przy udziale źródeł Termosprężystość patelni żeliwnej do steków 9

11 ciepła. Gdy współczynnik przewodnictwa jest stały, otrzymujemy: Jeżeli mamy do czynienia z brakiem wytworzenia energii wewnętrznej (jest ona równa 0), to równanie rządzące staje się równaniem Laplace a (2D): Równanie rządzące jest uzupełniane warunkami brzegowymi: Warunek brzegowy Dirichleta znana temperatura T(x,y) na części brzegu Γ1: T(x,y) = Tb(x,y) Warunek brzegowy Neumana znany strumień ciepła q(x,y) na części brzegu Γ2: n wektor normalny jednostkowy skierowany na zewnątrz od brzegu Γ2 Warunek brzegowy Robina znana liniowa kombinacja strumienia ciepła i temperatury na części brzegu Γ2: T α temperatura otoczenia h konwekcja ciepła 2.3 Przeprowadzenie symulacji Przedmiotem analizy jest patelnia żeliwna do steków stosowana do smażenia steków. Temperatura wewnątrz steku średnio dopieczonego powinna wynosić około C, osiąga się to smażąc około 10 minut. Temperatura jaką ogrzewamy patelnię wynosi 800 o C. Parametry techniczne patelni: Średnica: 280 mm Wysokość: 40 mm Długość: 555 mm Symulacja zostanie przeprowadzona w programie COMSOL Multiphysics 3.4. W panelu Model Navigator ustawiamy Space dimension na 3D następnie wybieramy kolejno: Structural Mechanics Module/Thermal-Structural Interaction/Solid, Stress-Strain with Thermal Expansion/Transient analysis. Termosprężystość patelni żeliwnej do steków 10

12 Utworzenie 3D pola obliczeniowego wg. parametrów technicznych patelni. Rys 2.1 Pole obliczeniowe patelni żeliwnej. Wprowadzenie stałych obliczeniowych w opcji Subdomain Settings: Dla żeliwa: E=2,0*10 11 Pa Dla rączki patelni E=2,2*10 11 Pa v=0,33 Stal nierdzewna: v=0,33 α=1,2*10-5 1/K α=0 1/K ρ=1500 kg/m 3 ρ=1000 kg/m 3 Tempref: 293 K Tempref: 293 K Rys 2.2 Stałe obliczeniowe dla patlni żeliwnej. Termosprężystość patelni żeliwnej do steków 11

13 Wprowadzenie warunków brzegowych dla wszystkich ścian w opcji Boundary Settings: Rys 2.3 Warunek brzegowy w opcji Boundary Settings Wprowadzenie parametrów w opcji: Solve/Solver Parameters Rys 2.4 Solver Parameters czasy obliczeniowe. Wygenerowanie siatki obliczeniowej: Mesh Initialize Rys 2.5 Mesh Initialize Termosprężystość patelni żeliwnej do steków 12

14 Solve/Update Model Rys 2.6 Update Model Wyniki obliczeń patelni żeliwnej poddanej temperaturze 800 o C, w czasie 600 sekund. Rys 2.7 Graficzne przedstawienie wyników oddziaływania temperatury dla t=600s. Rys 2.8 Graficzne przedstawienie wyników oddziaływania temperatury dla t=600s Termosprężystość patelni żeliwnej do steków 13

15 Rys 2.8 Graficzne przedstawienie wyników oddziaływania temperatury dla t=600s Boundary Plot 2.4 Wnioski Celem obliczeń było przedstawienie naprężeń oraz odkształceń występujących w patelni żeliwnej podczas smażenia. Z powyższych rysunków wynika, że wysoka temperatura (1073 K), której jest poddawana patelnia nie wpływa znacząco na formę i gabaryty patelni. Odkształcenia są niewidoczne, a powstające naprężenia nie mają większego znaczenia na żywotność i funkcjonalność badanego obiektu. Termosprężystość patelni żeliwnej do steków 14

16 3. Zginanie belki 3D 3.1 Opis i zastosowanie modelu Przedmiotem badań jest belka dwuteowa pokazanej na rys. 1, o przekroju według normy PN-91/H Rys. 3.1 Model belki wykonany w programie SolidWorks Rys. 3.2 Wymiary i właściwości dwuteownika według PN-91/H Zginanie belki 3D 15

17 Zastosowanie: Dwuteowniki są to zasadnicze kształtowniki używane w projektowaniu belek. Pracują one dobrze na zginanie. Zastosowanie dwuteowników walcowanych zmniejsza pracochłonność wykonania i koszt konstrukcji. 3.2 Przeprowadzona analiza Celem przeprowadzenia analizy było pokazanie wartości naprężeń występujących w belce, pod wpływem takiego samego obciążenia, lecz działającego w różnych kierunkach ( X i Y). Analizę dokonano przy pomocy modułu Structural Mechanics Solid Stress-Strain, programu Comsol Multiphysics. Wartość obciążenia: 30 kn Użyte równanie: Przypadek 1 Rys. 3.3 Siatka wygenerowana przez program złożona z elementów kierunek działania obciążenia: Oś Y odległość działania obciążenia: 1,5 m warunek: belka jednostronnie utwierdzona Zginanie belki 3D 16

18 Rys.3. 4 Rozkład naprężeń w belce pod wpływem działającego obciążenia w kierunku osi Y Przypadek 2 kierunek działania obciążenia: Oś X odległość działania obciążenia: 1,5 m warunek: belka jednostronnie utwierdzona Rys.3.5 Rozkład naprężeń w belce pod wpływem działającego obciążenia w kierunku osi X Zginanie belki 3D 17

19 3.3 Wyniki i wnioski przypadek 1: 1,789*10 6 Pa = 1,789 MPa przypadek 2: 1,035*10 7 Pa = 10,35 MPa Przeprowadzona analiza pokazuje, jak znaczna różnica w naprężeniach maksymalnych, występuje tylko przy zmianie kierunku działania siły. Ma to duży wpływ przy doborze odpowiedniego wskaźnika wytrzymałości podczas dobierania belki podczas konstrukcji. Dodatkowo, program generując obraz graficzny przemieszczeń i rozkładu naprężeń, umożliwia zwrócenie szczególnej uwagi konstruktora na współpracę elementów, jak również miejsca prawdopodobnych uszkodzeń. 4. Załączniki Płyta CD wraz z plikami przeprowadzonych symulacji. Zginanie belki 3D 18

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Kierunek: Mechanika i Budowa Maszyn Studia stacjonarne I stopnia PROJEKT ZALICZENIOWY METODA ELEMENTÓW SKOŃCZONYCH Krystian Gralak Jarosław Więckowski

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃOCZNYCH Projekt

METODA ELEMENTÓW SKOŃOCZNYCH Projekt METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania. Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4 Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Projekt: Metoda Elementów Skończonych Program: COMSOL Multiphysics 3.4 Prowadzący: prof. nadzw. Tomasz Stręk Spis treści: 1.Analiza przepływu

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Wykonali: Kucal Karol (TPM) Muszyński Dawid (KMU) Radowiecki Karol (TPM) Prowadzący: Dr hab. Tomasz Stręk Rok akademicki: 2012/2013 Semestr: VII 1 Spis treści: 1.Analiza

Bardziej szczegółowo

Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4

Projekt Metoda Elementów Skończonych. COMSOL Multiphysics 3.4 Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dawid Trawiński Wojciech Sochalski Wydział: BMiZ Kierunek: MiBM Semestr: V Rok: 2015/2016 Prowadzący: dr hab. inż. Tomasz

Bardziej szczegółowo

Politechnika Poznańska Metoda elementów skończonych. Projekt

Politechnika Poznańska Metoda elementów skończonych. Projekt Politechnika Poznańska Metoda elementów skończonych Projekt Prowadzący: dr hab. Tomasz Stręk Autorzy: Bartosz Walda Łukasz Adach Wydział: Budowy Maszyn i Zarządzania Kierunek: Mechanika i Budowa Maszyn

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA

POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH LABORATORIA Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonanie: Magdalena Winiarska Wojciech Białek Wydział Budowy Maszyn i Zarządzania Mechanika

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA. Metoda Elementów Skończonych

POLITECHNIKA POZNAŃSKA. Metoda Elementów Skończonych POLITECHNIKA POZNAŃSKA Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Łukasz Żurowski Michał Dolata Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn

Bardziej szczegółowo

PROJEKT MES COMSOL MULTIPHYSICS 3.4

PROJEKT MES COMSOL MULTIPHYSICS 3.4 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA PROJEKT MES COMSOL MULTIPHYSICS 3.4 Prowadzący: dr hab. Tomasz Stręk, prof. nadz. Wykonali: Dawid Weremiuk Dawid Prusiewicz Kierunek: Mechanika

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Metoda Elementów Skończonych PROJEKT COMSOL Multiphysics 3.4 Prowadzący: dr hab. inż. Tomasz Stręk prof. PP Wykonali: Maciej Bogusławski Mateusz

Bardziej szczegółowo

Projekt z przedmiotu Metoda Elementów Skończonych

Projekt z przedmiotu Metoda Elementów Skończonych Projekt z przedmiotu Metoda Elementów Skończonych Prowadzący: dr hab. inż., prof. nadzw. Tomasz Stręk Autorzy: Marcel Pilarski Krzysztof Rosiński IME, MiBM, WBMiZ semestr VII, rok akademicki 2013/2014

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Dziamski Dawid Krajcarz Jan BMiZ, MiBM, TPM, VII, 2012-2013 Prowadzący: dr hab. inż. Tomasz Stręk Spis treści 1. Analiza

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M3 Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonał: Miłek Mateusz 1 2 Spis

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH INŻYNIERIA MECHANICZNA MECHANIKA I BUDOWA MASZYN WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH Projekt Wykonawca: Jakub Spychała Nr indeksu 96052 Prowadzący: prof.

Bardziej szczegółowo

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH Projekt z wykorzystaniem programu COMSOL Multiphysics Prowadzący: dr hab. Tomasz Stręk, prof. PP Wykonali: Aleksandra Oźminkowska, Marta Woźniak Wydział: Elektryczny

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Maria Kubacka Paweł Jakim Patryk Mójta 1 Spis treści: 1. Symulacja

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Poznań. 05.01.2012r Politechnika Poznańska Projekt ukazujący możliwości zastosowania programu COMSOL Multiphysics Wydział Budowy Maszyn i Zarządzania Kierunek Mechanika i Budowa Maszyn Specjalizacji Konstrukcja

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: Dr hab. Tomasz Stręk Wykonali: Kubala Michał Pomorski Damian Grupa: KMiU Rok akademicki: 2011/2012 Semestr: VII Spis treści: 1.Analiza ugięcia belki...3

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Projekt Metoda Elementów Skończonych w programie COMSOL Multiphysics 3.4 Wykonali: Helak Bartłomiej Kruszewski Jacek Wydział, kierunek, specjalizacja, semestr, rok: BMiZ, MiBM, KMU, VII, 2011-2012 Prowadzący:

Bardziej szczegółowo

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4.

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4. Politechnika Poznańska Metoda Elementów Skończonych Projekt: COMSOL Multiphysics 3.4. Prowadzący: dr hab. Tomasz Stręk Wykonali: Widerowski Karol Wysocki Jacek Wydział: Budowa Maszyn i Zarządzania Kierunek:

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA METODA ELEMENTÓW SKOŃCZONYCH PROJEKT ZALICZENIOWY COMSOL 4.3

POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA METODA ELEMENTÓW SKOŃCZONYCH PROJEKT ZALICZENIOWY COMSOL 4.3 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA METODA ELEMENTÓW SKOŃCZONYCH PROJEKT ZALICZENIOWY COMSOL 4.3 Prowadzący: dr hab. Tomasz Stręk, prof. nadz. Wykonały: Agnieszka Superczyńska Martyna

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Poznań, 19.01.2013 Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Semestr 7 METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: dr

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska Metoda Elementów Skończonych Mechanika i Budowa Maszyn Gr. M-5 Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Damian Woźniak Michał Walerczyk 1 Spis treści 1.Analiza zjawiska

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Metoda Elementów Skończonych Projekt zaliczeniowy: Prowadzący: dr. hab. T. Stręk prof. nadz. Wykonał: Łukasz Dłużak

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska PROJEKT: Metoda Elementów Skończonych Prowadzący: Dr hab. Tomasz Stręk Autorzy: Rafał Wesoły Daniel Trojanowicz Wydział: WBMiZ Kierunek: MiBM Specjalność: IMe Spis treści: 1. Zagadnienie

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: Dr hab. Tomasz Stręk Wykonali: Anna Markowska Michał Marczyk Grupa: IM Rok akademicki: 2011/2012 Semestr: VII Spis treści: 1.Analiza ugięcia sedesu...3

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH PROJEKT METODA ELEMENTÓW SKOŃCZONYCH z wykorzystaniem programu COMSOL Multiphysics 3.4 Prowadzący: Dr hab. prof. Tomasz Stręk Wykonali: Nieścioruk Maciej Piszczygłowa Mateusz MiBM IME rok IV sem.7 Spis

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: Dr hab. Tomasz Stręk Wykonali: Radosław Kozłowski Jarosław Kóska Grupa: Rok akademicki: 2011/2012 Semestr: VII Spis treści: 1.Analiza ugięcia krzesła...3

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej. Metoda Elementów Skończonych Lab. Wykonali: Marta Majcher. Mateusz Manikowski.

Politechnika Poznańska. Zakład Mechaniki Technicznej. Metoda Elementów Skończonych Lab. Wykonali: Marta Majcher. Mateusz Manikowski. Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Wykonali: Marta Majcher Mateusz Manikowski MiBM KMU 2012 / 2013 Ocena.. str. 0 Spis treści Projekt 1. Analiza porównawcza

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metody Elementów Skończonych Prowadzący: dr hab. inż. Tomasz Stręk Wykonanie: Arkadiusz Dąbek Michał Małecki Wydział: WBMiZ Kierunek: MiBM Specjalizacja: TPM 2 Spis Treści 1. Odkształcenia

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Projekt: Metoda elementów skończonych Prowadzący: dr hab. Tomasz STRĘK prof. nadzw. Autorzy: Krystian Machalski Andrzej

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Metoda Elementów Skończonych Projekt opracowany za pomocą programu COMSOL Multiphysics 3.4. Wykonali: Michał Mach Piotr Mańczak Prowadzący: dr hab. Tomasz Stręk Wydział: Budowa Maszyn i Zarządzanie Kierunek:

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M2 Semestr V Metoda Elementów Skończonych prowadzący: dr hab. T. Stręk, prof. nadzw. wykonawcy: Grzegorz Geisler

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: Dr hab. Tomasz Stręk Wykonali: Hubert Bilski Piotr Hoffman Grupa: Rok akademicki: 2011/2012 Semestr: VII Spis treści: 1.Analiza ugięcia sanek...3 2.Analiza

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk Wykonali: Oguttu Alvin Wojciechowska Klaudia MiBM /semestr VII / IMe Poznań 2013 Projekt MES Strona 1 SPIS TREŚCI 1. Ogrzewanie laserowe....3

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej

Politechnika Poznańska. Zakład Mechaniki Technicznej Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Temat: Analiza ugięcia kształtownika stalowego o przekroju ceowym. Ocena: Czerwiec 2010 1 Spis treści: 1. Wstęp...

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Metoda Elementów Skończonych 2013/2014 Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Rok III, Semestr V, Grupa M-3 Michał Kąkalec Hubert Pucała Dominik Kurczewski Prowadzący: prof. dr hab.

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH POLITECHNIKA POZNAŃSKA PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: dr hab. Tomasz Stręk Wykonali: Kajetan Wilczyński Maciej Zybała Gabriel Pihan Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonały: Górna Daria Krawiec Daria Łabęda Katarzyna Spis treści: 1. Analiza statyczna rozkładu ciepła

Bardziej szczegółowo

Podczas wykonywania analizy w programie COMSOL, wykorzystywane jest poniższe równanie: 1.2. Dane wejściowe.

Podczas wykonywania analizy w programie COMSOL, wykorzystywane jest poniższe równanie: 1.2. Dane wejściowe. Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M3 Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Marcin Rybiński Grzegorz

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH PROJEKT

METODA ELEMENTÓW SKOŃCZONYCH PROJEKT POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Wydział Budowy Maszyn, Kierunek Mechanika i Budowa Maszyn, Grupa KMU, Rok III,

Bardziej szczegółowo

Politechnika Poznańska. Projekt Metoda Elementów Skończonych

Politechnika Poznańska. Projekt Metoda Elementów Skończonych Politechnika Poznańska Projekt Metoda Elementów Skończonych Prowadzący: Dr hab. T. Stręk, prof. nadzw. Wykonali: Piotr Czajka Piotr Jabłoński Mechanika i Budowa Maszyn Profil dypl. : IiRW 2 Spis treści

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH Krzysztof Bochna Michał Sobolewski M-2 WBMiZ MiBM 2013/2014 1 SPIS TREŚCI 1. Analiza opływu wody wokół okrętu podwodnego USS Minnesota...3 1.1 Opis obiektu...3 1.2 Przebieg

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych-Projekt Prowadzący: Dr hab. Tomasz Stręk prof. nadzw. Wykonali : Grzegorz Paprzycki Grzegorz Krawiec Wydział: BMiZ Kierunek: MiBM Specjalność: KMiU Spis

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH Projekt: COMSOLMultiphysics Prowadzący: dr hab. T. Stręk Wykonały: Barbara Drozdek Agnieszka Grabowska Grupa: IM Kierunek: MiBM Wydział: BMiZ Spis treści 1. ANALIZA PRZEPŁYWU

Bardziej szczegółowo

MES Projekt zaliczeniowy.

MES Projekt zaliczeniowy. INSTYTUT MECHANIKI STOSOWANEJ WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA MES Projekt zaliczeniowy. Prowadzący Dr hab. Tomasz Stręk Wykonali: Paulina Nowacka Ryszard Plato 1 Spis treści

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Krzysztof Szwedt Karol Wenderski M-2 WBMiZ MiBM 2013/2014 1 SPIS TREŚCI 1 Analiza przepływu powietrza wokół lecącego airbusa a320...3 1.1 Opis badanego obiektu...3 1.2 Przebieg

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH POLITECHNIKA POZNAŃSKA Projekt METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: Dr hab. T. Stręk, prof. nadzw. Wykonali: Mateusz Głowacki Rafał Marek Mechanika i Budowa Maszyn Profil dypl. : TPM 2 Analiza obciążenia

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Projekt: Metoda elementów skończonych Prowadzący: dr hab. Tomasz STRĘK prof. nadzw. Autorzy: Rafał Jancy Mikołaj Malicki

Bardziej szczegółowo

Metoda Elementów Skończonych Laboratorium

Metoda Elementów Skończonych Laboratorium Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Metoda Elementów Skończonych Laboratorium Projekt COMSOL Mltiphysics 3.4 Prowadzący: dr hab. T. Stręk, prof. nadzw. Wykonali: Grajewski Maciej

Bardziej szczegółowo

1. Przepływ ciepła - 3 - Rysunek 1.1 Projekt tarczy hamulcowej z programu SOLIDWORKS

1. Przepływ ciepła - 3 - Rysunek 1.1 Projekt tarczy hamulcowej z programu SOLIDWORKS POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA METODY ELEMENTÓW SKOŃCZONYCH PROJEKT PROWADZĄCY: PROF. NADZW. TOMASZ STRĘK WYKONALI: TOMASZ IZYDORCZYK, MICHAŁ DYMEK GRUPA: TPM2 SEMESTR: VII

Bardziej szczegółowo

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie

Bardziej szczegółowo

NACZYNIA KUCHENNE. Miski, wanny i cedzaki wykorzystywane do przygotowania potraw. Profesjonalne garnki, rondle i patelnie do ich termicznej obróbki.

NACZYNIA KUCHENNE. Miski, wanny i cedzaki wykorzystywane do przygotowania potraw. Profesjonalne garnki, rondle i patelnie do ich termicznej obróbki. 02 NACZYNIA KUCHENNE Miski, wanny i cedzaki wykorzystywane do przygotowania potraw. Profesjonalne garnki, rondle i patelnie do ich termicznej obróbki. Garnki, rondle, patelnie... 43-51 Miski, wanny...

Bardziej szczegółowo

4. Analiza stanu naprężeń i odkształceń na przykładzie uchwytu do telewizora... 19

4. Analiza stanu naprężeń i odkształceń na przykładzie uchwytu do telewizora... 19 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Metoda Elementów Skończonych Projekt wykonany w programie COMSOL multiphysics 3.4 Autorzy: Adrian Cieślicki Robert Szpejnowski Mateusz Grześkowiak

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Studia: Mechanika i Budowa Maszyn Specjalność: Konstrukcja Maszyn i Urządzeń Semestr: 6 Metoda Elementów Skończonych Projekt Prowadzący: dr hab.

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Projekt: Metoda elementów skończonych Prowadzący: dr hab. Tomasz STRĘK prof. nadzw. Autorzy: Małgorzata Jóźwiak Mateusz

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Metoda Elementów Skończonych PROJEKT COMSOL Multiphysics 3.4 Prowadzący: dr hab. Tomasz Stręk Wykonawca: Kamil Jakubczak Krystian Pacyna Kierunek:

Bardziej szczegółowo

Prowadzący: dr hab. Tomasz Stręk, prof. nadz. Wykonali: Adam Wojciechowski Tomasz Pachciński Dawid Walendowski

Prowadzący: dr hab. Tomasz Stręk, prof. nadz. Wykonali: Adam Wojciechowski Tomasz Pachciński Dawid Walendowski Prowadzący: dr hab. Tomasz Stręk, prof. nadz. Wykonali: Adam Wojciechowski Tomasz Pachciński Dawid Walendowski Kierunek: Mechanika i budowa maszyn Semestr: piąty Rok: 2014/2015 Grupa: M3 Spis treści: 1.

Bardziej szczegółowo

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4.

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4. Politechnika Poznańska Metoda Elementów Skończonych Projekt: COMSOL Multiphysics 3.4. Prowadzący: dr hab. Tomasz Stręk Wykonali: Piotr Figas Łukaszewski Marek Wydział: Budowa Maszyn i Zarządzania Kierunek:

Bardziej szczegółowo

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej. Metoda Elementów Skończonych Lab. Wykonali: Antoni Ratajczak. Jarosław Skowroński

Politechnika Poznańska. Zakład Mechaniki Technicznej. Metoda Elementów Skończonych Lab. Wykonali: Antoni Ratajczak. Jarosław Skowroński Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Wykonali: Antoni Ratajczak Jarosław Skowroński Ocena.. 1 Spis treści Projekt 1. Analiza ugięcia półki 1. Wstęp....

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA MECHANIKA I BUDOWA MASZYN Projekt METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonał: Maciej Moskalik IMe MiBM

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Kierunek : Mechanika i Budowa Maszyn Profil dyplomowania : Inżynieria mechaniczna Studia stacjonarne I stopnia PROJEKT ZALICZENIOWY METODA ELEMENTÓW

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 1 Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia Zadania i cel ćwiczenia. Celem

Bardziej szczegółowo

Metoda Elementów Skończonych- Laboratorium

Metoda Elementów Skończonych- Laboratorium Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Metoda Elementów Skończonych- Laboratorium Projekt COMSOL Multiphysics 3.4 Prowadzący: dr hab. T. Stręk Wykonali: Michał Bąk Mateusz Chwast Aron

Bardziej szczegółowo

Projekt. Filip Bojarski, Łukasz Paprocki. Wydział : BMiZ, Kierunek : MiBM, Rok Akademicki : 2014/2015, Semestr : V

Projekt. Filip Bojarski, Łukasz Paprocki. Wydział : BMiZ, Kierunek : MiBM, Rok Akademicki : 2014/2015, Semestr : V Projekt Prowadzący: Dr hab. Tomasz Stręk Wykonali: Adam Piątkowski, Filip Bojarski, Łukasz Paprocki Wydział : BMiZ, Kierunek : MiBM, Rok Akademicki : 2014/2015, Semestr : V 1 2 SPIS TREŚCI SPIS TREŚCI...

Bardziej szczegółowo

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA Laboratorium MES projekt Wykonali: Tomasz Donarski Prowadzący: dr hab. Tomasz Stręk Maciej Dutka Kierunek: Mechanika i budowa maszyn Specjalność:

Bardziej szczegółowo

Projekt METODA ELEMENTÓW SKOŃCZONYCH w programie COMSOL Multiphysics 3.4

Projekt METODA ELEMENTÓW SKOŃCZONYCH w programie COMSOL Multiphysics 3.4 Projekt METODA ELEMENTÓW SKOŃCZONYCH w programie COMSOL Multiphysics 3.4 Prowadzący: dr hab. T. Stręk Wykonali: Marta Piekarska Małgorzata Partyka Magdalena Michalak SPIS TREŚCI: 1. Analiza stanu naprężeń

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych Prowadzący: dr hab. T. Stręk, prof. nadzw. Wykonali: Mateusz Furman Piotr Skowroński Poznań, 22.01.2014 1 SPIS TREŚCI 1. Obliczeniowa mechanika płynów-

Bardziej szczegółowo

Miedziana patelnia (26 cm)

Miedziana patelnia (26 cm) Miedziana patelnia (26 cm) Szanowny Kliencie, dziękujemy za zakup miedzianej patelni. Prosimy o przeczytanie instrukcji i przestrzeganie podanych wskazówek i porad, aby mogli Państwo optymalnie korzystać

Bardziej szczegółowo

Politechnika Poznańska Wydział Elektryczny. Metoda Elementów Skończonych

Politechnika Poznańska Wydział Elektryczny. Metoda Elementów Skończonych Politechnika Poznańska Wydział Elektryczny Metoda Elementów Skończonych Laboratorium Prowadzący: dr hab. T. Stręk, prof. nadzw. Autor projektu: Łukasz Przybylak 1 Wstęp W niniejszej pracy pokazano zastosowania

Bardziej szczegółowo

Politechnika Poznańska. Metoda Elementów Skończonych

Politechnika Poznańska. Metoda Elementów Skończonych Politechnika Poznańska Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Michał Krowicki Małgorzata Machowina Dawid Maciejak Zadanie 1 1. Wstęp Celem zadania jest obliczenie

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych Prowadzący: dr hab. T. Stręk prof. PP Autorzy: Maciej Osowski Paweł Patkowski Kamil Różański Wydział: Wydział Budowy Maszyn i Zarządzania Kierunek: Mechanika

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Informatyzacja i Robotyzacja Wytwarzania Semestr 7 PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

Metoda Elementów Skończonych Projekt zaliczeniowy

Metoda Elementów Skończonych Projekt zaliczeniowy POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Metoda Elementów Skończonych Projekt zaliczeniowy Prowadzący: dr hab. Tomasz Stręk Wykonali: Anna DYBIZBAŃSKA Bartosz

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Projekt: Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk Wykonali: Adam Grzesiak Mateusz Szklarek Wydział: Budowy Maszyn i Zarządzania Kierunek: Mechanika i Budowa

Bardziej szczegółowo

PROJEKT LABORATORIUM MES

PROJEKT LABORATORIUM MES PROJEKT LABORATORIUM MES Wykonali: Piotr Kieruj IMe Tomasz Rogosz IMe Prowadzący: prof. nadzw. Tomasz Stręk Spis treści 1. Analiza przewodzenia ciepła w tarczy hamulcowej... 3 1.1. Opis analizowanego elementu...

Bardziej szczegółowo

Metoda Elementów skończonych PROJEKT. COMSOL Multiphysics 3.4

Metoda Elementów skończonych PROJEKT. COMSOL Multiphysics 3.4 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA MECHANIKA I BUDOWA MASZYN KONSTRUCJA MASZYN I URZĄDZEŃ Rok akademicki 2013/14, sem VII Metoda Elementów skończonych PROJEKT COMSOL Multiphysics

Bardziej szczegółowo

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Spis treści Wstęp... 2 Opis problemu... 3 Metoda... 3 Opis modelu... 4 Warunki brzegowe... 5 Wyniki symulacji...

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe 1. Wstęp Klimatyzacja hali basenu wymaga odpowiedniej wymiany i dystrybucji powietrza, która jest kształtowana przez nawiew oraz wywiew.

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: Dr hab. Tomasz Stręk Wykonali: Bartosz Ciechanowicz Paweł Gliński Adam Michna IRW, MiBM,WBMiZ Poznań 2014 1 Spis treści: 1.Analiza ugięcia haka...3 2.Analiza

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej

Politechnika Poznańska. Zakład Mechaniki Technicznej Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Temat: Analiza rozkładu temperatur na przykładzie cylindra wytłaczarki jednoślimakowej. Ocena: Czerwiec 2010 1 Spis

Bardziej szczegółowo

Miedziane garnki z patelnią (5 częściowy zestaw)

Miedziane garnki z patelnią (5 częściowy zestaw) Miedziane garnki z patelnią (5 częściowy zestaw) Szanowny Kliencie, dziękujemy za zakup zestawu miedzianych garnków. Prosimy o przeczytanie instrukcji i przestrzeganie podanych wskazówek i porad, aby mogli

Bardziej szczegółowo

Metoda Elementów Skończonych

Metoda Elementów Skończonych Metoda Elementów Skończonych Projekt Prowadzący: Dr hab. T. Stręk, prof. PP Autorzy: Mikołaj Ratajczak Marcin Brzeziński BMiZ, MiBM, sem. V, M1. Analiza porównawcza naprężeń i odkształceń w profilu aluminiowym

Bardziej szczegółowo

Metoda elementów skończonych-projekt

Metoda elementów skończonych-projekt Metoda elementów skończonych-projekt Ziarniak Marcin Nawrocki Maciej Mrówczyński Jakub M6/MiBM 1. Analiza odkształcenia kierownicy pod wpływem obciążenia W pierwszym zadaniu przedmiotem naszych badań będzie

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Prowadzący: dr hab. Tomasz Stręk Autorzy: Tomasz Bartkowiak Tomasz Hermann Wydział: Kierunek: Budowy Maszyn i Zarządzania Mechanika i Budowa

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Grupa M3 Metoda Elementów Skończonych Prowadzący: dr hab. Tomasz Stręk, prof. nadzw. Wykonali: Gawroński Tomasz Słomczyński

Bardziej szczegółowo

Projekt zaliczeniowy laboratorium MES z wykorzystaniem oprogramowania COMSOL Multiphysics 3.4

Projekt zaliczeniowy laboratorium MES z wykorzystaniem oprogramowania COMSOL Multiphysics 3.4 Projekt zaliczeniowy laboratorium MES z wykorzystaniem oprogramowania COMSOL Multiphysics 3.4 POLITECHNIKA POZNAŃSKA Wydział: BUDOWY MASZYN I ZARZĄDZANIA Kierunek: MECHANIKA I BUDOWA MASZYN Profil dyplomowania:

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej

Politechnika Poznańska. Zakład Mechaniki Technicznej Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Temat: Analiza przepływu stopionego tworzywa sztucznego przez sitko filtra tworzywa. Ocena: Czerwiec 2010 1 Spis treści:

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA MECHANIKA I BUDOWA MASZYN SPECJALNOŚĆ: KONSTRUKCJA MASZYN I URZĄDZEŃ METODA ELEMENTÓW SKOŃCZONYCH PROJEKT ŁUKASZEWSKI Grzegorz WOJCIECHOWSKI Jakub

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

Nasyp przyrost osiadania w czasie (konsolidacja)

Nasyp przyrost osiadania w czasie (konsolidacja) Nasyp przyrost osiadania w czasie (konsolidacja) Poradnik Inżyniera Nr 37 Aktualizacja: 10/2017 Program: Plik powiązany: MES Konsolidacja Demo_manual_37.gmk Wprowadzenie Niniejszy przykład ilustruje zastosowanie

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH Projekt Prowadzący: prof. nadzw. Tomasz Stręk Wykonali: 1. Kornelia Matusiak 2. Paweł Łuszczewski Grupa: KMiU Semestr: VII Rok akademicki 2013/2014 Spis treści I. Przewodzenie

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Metoda Elementów Skończonych Prowadzący: dr hab. T.Stręk, prof. nadzw. Wykonały: Stepnowska Anna Stepnowska Małgorzata Spis treści 1. Analiza wymiany ciepła w lampie halogenowej...

Bardziej szczegółowo