GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ.

Wielkość: px
Rozpocząć pokaz od strony:

Download "GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ."

Transkrypt

1 Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk GŁÓWN ROMINI KRZYWIZNY, DŁUGOŚĆ ŁUKU OŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLŻNIKA, OL OWIRZCHNI I OBJĘTOŚĆ LISOIDY OBROTOWJ rkrój połunikow irws wrtkł rkrój normln prkrój płscną wirjącą normlną o powirchni. W owolnm punkci n powirchni lipsoi głównmi prkrojmi normlnmi są: prkrój połunikow or pirws wrtkł cli prkrój prchoąc pr punkt i prostopł o prkroju połunikowgo w tm punkci. ROMIŃ KRZYWIZNY OŁUDNIKOWJ romiń krwin krwj płskij wrżonj równnim = f(p): p r p p Stosując powżs wór o lips połunikowj, or wkonując nstępując rchunki: p ctg

2 Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk p p p p p otrmujm formułę n promiń krwin połunikowj M: M ROMIŃ KRZYWIZNY W IRWSZYM WRTYKAL p = r N p łscn równolżnik punktu twor płscną pirwsgo wrtkłu kąt, tm promiń równolżnik możn wrić pomocą promini krwin w pirwsm wrtkl: r p N stą promiń krwin w pirwsm wrtkl jst równ: N IRWSZA FORMA KWADRATOWA OWIRZCHNI Mjąc ną powirchnię ną równnimi prmtrcnmi:,, ()

3 Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk, możm wrić kwrt lmntu liniowgo s jko: s () pr cm: ; ; () wstwijąc powżs wilkości o () otrmm: G F s () owżs wrżni nw się pirwsą (mtrcną) formą kwrtową powirchni. o wkonniu rchunków l lipsoi orotowj ostjm: N M s () DŁUGOŚĆ ŁUKU OŁUDNIKA Wstwijąc o () 0, poniwż włuż połunik ni m prrostu ługości gojnj ostnim: M s M s cli ługośc łuku połunik mię srokościmi, wri się nstępującą cłką: M s Cłk t jst cłką liptcną i ni j się prstwić pomocą funkcji lmntrnch, korst się więc rowinięci funkcji pocłkowj w srg: s

4 Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk o żmunch prkstłcnich i scłkowniu powżsgo wrżni ostjm: s A D F B gi: A B C 09 0 D F C DŁUGOŚĆ ŁUKU RÓWNOLŻNIKA Wstwijąc o () 0, poniwż włuż łuku równolżnik ni m prrostu srokości gojnj ostnim: s N s N cli ługośc łuku równolżnik mię ługościmi, wri się nstępującą cłką: s N N B ucikni się o pirwsj form kwrtowj or rchunku cłkowgo, wstrc wiomość, iż równolżnik jst kołm o prominiu N i skorstć finicji mir łukowj. OL OWIRZCHNI LISOIDY

5 Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk Jk już wiomo ługość niskońcni młgo łuku połunik wrż się jko: M CD AB ntomist ługość niskońcni młgo łuku równolżnik popr: N BC AD tm łącąc w powżs wor, ostnim pol figur ogrniconj wom równolżnikmi or wom połunikmi: MN AB AD MN MN gi: cłk oncon po prwj stroni równni j się prstwić jko: ln tm pol powirchni ps lipsoi ogrnicongo pr,,, jst równ: ln ol powirchni cłj lipsoi orotowj możm olicć stępując - =, or = 0 o or = 90 o i cł wnik mnożąc pr w, tm ostnim: ln OBJĘTOŚĆ LISOIDY rkstłcjąc równni lips połunikowj p o postci: f p or korstjąc różnicki ojętości: A B C D

6 Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk V p ostjm formułę n ojętość lipsoi orotowj: V 0 0 Konspkt prgotown n postwi: Rpp R., Gomtric gos prt I, 99, ostępn w intrnci Wrchłowski., Goj wżs cęść mtmtcn, WN, 9 Spunr W. Goj wżs i stronomi gojn, Tom I, WN, Wrsw, 9 Zktow. S., Goj wżs, WK, Wrsw, 99

z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z

z b leżącą na płaszczyźnie xz, otrzymujemy równanie elipsoidy obrotowej, która w myśl równania (3) będzie miała następujące równanie: z b x y z Mtrił ddktcn Godj gomtrcn Mrcin Ligs, Ktdr Gomtki, Wdił Godji Górnicj i Inżnirii Środowisk, AGH LIPSOIDA OBROTOWA, LIPSA POŁUDNIKOWA, SZROKOŚĆ GODZYJNA, SZROKOŚĆ ZRDUKOWANA, SZROKOŚĆ GOCNTRYCZNA, WSPÓŁRZĘDN

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

± - małe odchylenie od osi. ± - duże odchylenie od osi

± - małe odchylenie od osi. ± - duże odchylenie od osi TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń

Bardziej szczegółowo

14. Krzywe stożkowe i formy kwadratowe

14. Krzywe stożkowe i formy kwadratowe . Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33

Bardziej szczegółowo

Wiązki gaussowskie scalony Strona 1 z 9 Wiązki gaussowskie

Wiązki gaussowskie scalony Strona 1 z 9 Wiązki gaussowskie Wiąi gussowsi sclony Sron 9 Wiąi gussowsi. rdmio opisu: pol rochodi się w irunu osi, ogrnicon do oolicy osi opycnj: D y x ol lrycn możn rołożyć n słdow ( i poprcną: ). odobni dywrgncję możn rołożyć n sm

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci

Bardziej szczegółowo

ż Ł ć Ł ż Ń ż Ę Ę Ę ć ż ż ć ż ż Ę ż Ę ź Ę Ę ż ż ż ć ć ż ć Ę ż Ł Ł ż Ń ż ż ż ź Ę ć Ń ż ć ż Ł ć ż ć ż Ę Ł ż ż ć Ą ż Ł ć ż Ł ź ż Ę ż ć ć ć ć ć ć ć Ę ć ć ż ć ć ć ć ż ż ż ć ć ż ż Ę Ń ż ż Ń ż ż Ę ć ż ż Ł Ę ź

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I. RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)

Bardziej szczegółowo

Przykład 2.5. Figura z dwiema osiami symetrii

Przykład 2.5. Figura z dwiema osiami symetrii Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl

Bardziej szczegółowo

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii

Całka oznaczona i całka niewłaściwa Zastosowania rachunku całkowego w geometrii Wydził Mtemtyki Stosownej Zestw zdń nr 6 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 9 listopd 8r. Cłk oznczon i cłk niewłściw Zstosowni rchunku cłkowego w geometrii

Bardziej szczegółowo

1 Definicja całki oznaczonej

1 Definicja całki oznaczonej Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x

Bardziej szczegółowo

Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1

Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1 Errt do I i II dni skrptu Konstrukcj stlo. Prkłd oblicń dług PN-EN 99- Rodił. W osttnim kpici pkt. dodno nstępującą inormcję: Uględniono min nikjąc prodni pr PKN crcu 009 r. poprk opublikonch normch, śld

Bardziej szczegółowo

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx

Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:

Bardziej szczegółowo

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że MATEMATYKA II - Lucjn Kowlski CAŁKA NIEOZNACZONA - unkcj okrślon w przdzil E. Funkcją pirwotną unkcji w przdzil E nzwm unkcję F tką, ż F Np. unkcją pirwotną unkcji + R jst unkcj F + o F +, Zuwżm, ż unkcj

Bardziej szczegółowo

Cwiczenia do wykladu FIZYKA IIA 2003/2004 - Seria 4

Cwiczenia do wykladu FIZYKA IIA 2003/2004 - Seria 4 wici o wyklu FIZYK II / - Sri Zi Olicyc pojmosc kostor plskigo o powirchi oklk S, or olglosci miy oklkmi. Zi. Olicyc pojmosc kostor kulistgo o promiiu wwtrym i wtrym Zi Olicyc pojmosc stpc uklu wirjcgo

Bardziej szczegółowo

Sprawdzian całoroczny kl. III

Sprawdzian całoroczny kl. III Sprwdzin cłoroczny kl. III Gr. A 1. Podne liczby zpisz w kolejności rosnącej: 7 ; b,5 ; c 6 ; d,5(). Oblicz i zpisz wynik w notcji wykłdniczej 0 8 6, 10 5 10. Wskż równość nieprwdziwą: A) 5 9 B) 6 C) 0

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna 1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,

Bardziej szczegółowo

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci

Tensor liniowa jednorodna funkcja: wektor wektor b=f(a) a ( ˆ) [ˆ ( ˆ) ˆ ( ˆ) ˆ. Równanie b=f(a) można więc zapisać w postaci ensor f liniow jenoron funkj: wektor wektor =f f f f W nm ukłie współręnh i,j,k - tensor jko mier f ˆ ˆ i j kˆ f ˆ i f ˆ j f kˆ le f iˆ [ˆ if ˆ i ˆjf ˆ i kf ˆ ˆ] i ˆ [ˆ ˆ ˆ ˆ ˆ f j if j jf j kf ˆ] j f

Bardziej szczegółowo

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2) Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co

Bardziej szczegółowo

Całki oznaczone. wykład z MATEMATYKI

Całki oznaczone. wykład z MATEMATYKI Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną

Bardziej szczegółowo

( ) MECHANIKA BUDOWLI WZORY

( ) MECHANIKA BUDOWLI WZORY CHNIK BUDOLI ZORY Uwgi: zor ujęt w rmki powinn bć opnown pmięciowo (więkzość z nich wmg jni zrozumini b j zpmiętć )! Pozotł wzor, jżi bęą potrzbn w trkci kookwium bęą pon rzm z trścią zni; jnk nż zwrócić

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.

Bardziej szczegółowo

12. CZWÓRNIKI PARAMETRY ROBOCZE I FALOWE CZWÓRNIK U

12. CZWÓRNIKI PARAMETRY ROBOCZE I FALOWE CZWÓRNIK U OBWODY SYGNAŁY Wykłd : Czwórniki prmtry robocz i flow. CWÓRN PARAMETRY ROBOCE FALOWE.. PARAMETRY ROBOCE Jżli do jdnych wrót czwórnik dołączono źródło wymuszń, ntomist drui wrot iążono dwójnikim bzźródłowym,

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

Sposób opisu symetrii figur lub brył skończonych

Sposób opisu symetrii figur lub brył skończonych Wkłd drugi - smetri Smetri (gr. συμμετρια podobn mir) dl figur lub brł - istnienie nietrwilnego prekstłceni, które odworowuje obiekt w smego siebie minie mogą ulegć współrędne prestrenne, cs, kolor itp.

Bardziej szczegółowo

VI. Rachunek całkowy. 1. Całka nieoznaczona

VI. Rachunek całkowy. 1. Całka nieoznaczona VI. Rchunek cłkowy. Cłk nieoznczon Niech F : I R i f : I R będą funkcjmi określonymi n pewnym przedzile I R. Definicj. Funkcję F nzywmy funkcją pierwotną funkcji f n przedzile I, gdy F (x) = f(x) dl x

Bardziej szczegółowo

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016

Bardziej szczegółowo

Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia

Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e

Bardziej szczegółowo

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

sin b) Wyznaczyć taką funkcję pierwotną do funkcji sin ( =, która przechodzi przez punkt (0,0)

sin b) Wyznaczyć taką funkcję pierwotną do funkcji sin ( =, która przechodzi przez punkt (0,0) Kolokwium z mmki 7.. Tm A godz.. Imię i nzwisko Nr indksu Zdni Wznczć cłkę d cos sin Wznczć ką unkcję pirwoną do unkcji cos sin kór przchodzi przz punk Odp. c cos cos F Zdni Nrsowć wrswic unkcji ln odpowidjąc

Bardziej szczegółowo

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu

Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu 9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE HAMILTONA w grfh kierownh Dl grfu kierownego D = ( V, A ) rogą wierhołk 0 V o V nwm iąg (npremienn) wierhołków i łuków grfu: ( 0,,,,...,,, ), pełniją wrunek i = ( i, i ) l i =,..., rogę nwm

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

LICZBY RZECZYWISTE a) 3n, n N ; b) 3n 2, n N. 6. a) 0; b) 590; c) a) 1 ; b) a) 7; b) 27; c) 3; d) 2.

LICZBY RZECZYWISTE a) 3n, n N ; b) 3n 2, n N. 6. a) 0; b) 590; c) a) 1 ; b) a) 7; b) 27; c) 3; d) 2. LICZB RZECZWISTE b) NWD( 0, 900) 0, NWW ( 0, 900) 600; c) NWD( 6, 58), NWW ( 6, 58) 654 0 4 a) n, n N ; b) n, n N 5 a) 0a b, a {,,, 9 }, b { 0,,, 9 }; b) 0a b ; c) b, b {,,, 9 } 6 a) 0; b) 590; c) 7 9

Bardziej szczegółowo

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu

10. PROSTE ZGINANIE Stan naprężenia i odkształcenia przy prostym zginaniu . Wrwł Wkłd mechniki mteriłów 0. ROT ZGINNI 0.. tn nprężeni i odkstłceni pr prostm ginniu Zginnie proste (jednokierunkowe) wstępuje wówcs gd obciążenie ewnętrne redukuje się do wektor momentu ginjącego

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki

Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Mechanika kwantowa IV

Mechanika kwantowa IV Mcik kwtow IV Opcowi: Bb Pc Piot Ptl Atom wodou W ukłdi śodk ms ówi Scödig dl tomu wodou i joów wodoopodobc m postć: V [W..] µ E gdi: Z Vˆ [W..] - opto Lplc dfiiow wom [W..7] Sfci smtc potcjł w ówiu [W..]

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

Zadania. I. Podzielność liczb całkowitych

Zadania. I. Podzielność liczb całkowitych Zdni I. Podzielność liczb cłkowitych. Pewn liczb sześciocyfrow kończy się cyfrą 5. Jeśli tę cyfrę przestwimy n miejsce pierwsze ze strony lewej to otrzymmy nową liczbę cztery rzy większą od poprzedniej.

Bardziej szczegółowo

JANOWSCY. Wielkości geometryczne i statyczne figur płaskich. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski

JANOWSCY. Wielkości geometryczne i statyczne figur płaskich. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski anowsc s.c. ul. Krzwa /5, 8-500 Sanok NIP:687-1--79 www.janowsc.com ANOSCY projktowani w budownictwi ilkości gomtrczn i statczn figur płaskich ZESPÓŁ REDAKCYNY: Dorota Szafran akub anowski incnt anowski

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

Równania róniczkowe liniowe. = 2. dx x. dy dy. dx y. y dx. dy y. dy 2

Równania róniczkowe liniowe. = 2. dx x. dy dy. dx y. y dx. dy y. dy 2 Równni róniczkow liniow Równni róniczkow, kór mon zpis w posci + p( q(, gdzi p ( i q ( s funkcjmi cigłmi, nzwm równnim liniowm pirwszgo rzdu Jli q (, o równni nzwm liniowm nijdnorodnm W przciwnm przpdku

Bardziej szczegółowo

( ) gdzie: σ z naprężenie pionowe w gruncie, σ z = γz, [kpa] K a współczynnik parcia czynnego

( ) gdzie: σ z naprężenie pionowe w gruncie, σ z = γz, [kpa] K a współczynnik parcia czynnego PARCI CZYNN I BIRN GRUNTU Prci gruntu jst jgo oddiływnim n konstrukcję odirjącą (ściny i mury oorow, ścinki scln, it). Znjomość wrtości tgo oddiływni jst konicn ry rojktowniu tych konstrukcji. Podn oniżj

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

Kombinowanie o nieskończoności. 4. Jak zmierzyć? Kombinownie o nieskończoności.. Jk zmierzyć? Projekt Mtemtyk dl ciekwych świt spisł: Michł Korch 9 kwietni 08 Trochę rzeczy z wykłdu Prezentcj multimediln do wykłdu. Nieskończone sumy Będzie nm się zdrzć

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1) Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S i R D Z P I 2 7 1 0 3 62 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A Z a p e w n i e n i e z a s i l a n i ea n e r g e t y c z ne g o

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11)

Zadanie 0 Obliczyć całki. Wyniki sprawdzić obliczając pochodne otrzymanych funkcji pierwotnych. x 4. x x. x x 1 , 11) PR DOMOW ŁK NIEOZNZON / Zadanie Oblicć całki Wniki prawdić oblicając pochodne ormanch funkcji pierwonch ) d ) d ) d ) d Zadanie Oblicć całki nieonacone całkując pre cęści ) ln d ) co d ) ln d ) d ) arcg

Bardziej szczegółowo

GRANIASTOSŁUPY

GRANIASTOSŁUPY .. GRANIASTOSŁUPY. Grnistosłupy H Postwy grnistosłup - w równoległe i przystjąe wielokąty Śin ozn - równoległook Grnistosłup prosty grnistosłup, w którym wszystkie krwęzie ozne są prostopłe o postw. W

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

I 06 B. Arbeitsanweisung. Berechnung von Linsenradien. Instrukcja. Wyliczanie promienia soczewek

I 06 B. Arbeitsanweisung. Berechnung von Linsenradien. Instrukcja. Wyliczanie promienia soczewek I 6 B Abeitsnweisung Beecnung von Linsenien Instukcj Wlicnie pomieni socewek Äneungsbestätigung von Abeitsnweisung / Potwieenie min instukcji Äneung / Zmin 1 3 5 6 Seitenumme / Nume ston tum / t Untescift

Bardziej szczegółowo

Mechanika i wytrzymałość materiałów

Mechanika i wytrzymałość materiałów 1 k trmłość mtrłó Wkłd Nr 9 rktrstk gomtr fgur płsk momt stt, środk ężkoś fgur jgo, momt błdoś, głó trl os błdoś, głó trl momt błdoś, prom błdoś, trd Str Wdł Iżr j Robotk Ktdr Wtrmłoś, Zmę trłó Kostrukj

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 19 MARCA 2016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 54 3 24 2 18

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE M. DSTY STTYKI N ŁSZZYŹNIE. DSTY STTYKI N ŁSZZYŹNIE.. Zsdy dynmiki Newton Siłą nzywmy wektorową wielkość, któr jest mirą mechnicznego oddziływni n ciło ze strony innych cił. dlszej części ędziemy rozptrywć

Bardziej szczegółowo

h a V. GEOMETRIA PŁASKA TRÓJKĄT :

h a V. GEOMETRIA PŁASKA TRÓJKĄT : pitgos..pl V. GEOMETRIA PŁASKA TRÓJKĄT : Wunek utwozeni tójkąt: sum ługośi wó kótszy oków musi yć większ o ługośi njłuższego oku. Śoek okęgu opisnego wyznzją symetlne oków. Śoek okęgu wpisnego wyznzją

Bardziej szczegółowo

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dl uczniów gimnzjów orz oddziłów gimnzjlnych województw mzowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schemty punktowni Z kżde poprwne i pełne rozwiąznie, inne niż przewidzine

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1 Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -

Bardziej szczegółowo

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych

Bardziej szczegółowo

Ż Ę Ą Ą Ż ć Ź Ż ń ń Ó Ó Ą Ę ń ń Ż ń Ę ń ż Ę ć Ę Ż ń ć ż ć ń ż Ż ż ć Ż ć ż ń ć Ź ć ć ć ń Ć Ą ż ć ź ż ż ć ć ż Ż Ż ż ń ć ć Ż ć Ó ń ć Ś Ż ć ć ć ń ć ż ń ć ć ć ć ć ż ć Ś ć ć ć ć Ż Ó ńą ć Ż Ż ż ż ć ż Ż ć ż ń

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów. Zapisanie dziedziny funkcji f:,.. Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY Numer zadania Etapy rozwiązania zadania Liczba punktów Zapisanie dziedziny funkcji f:, Podanie miejsc zerowych funkcji: Naszkicowanie wykresu funkcji

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 187857 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dane sa dwie

Bardziej szczegółowo

Odbicie lustrzane, oś symetrii

Odbicie lustrzane, oś symetrii Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych Spis tresci 1 Spis tresci 1 W wielu zgdnienich prktycznych brdzo wżne jest znjdownie optymlnego (czyli njlepszego z jkiegoś punktu widzeni) rozwiązni dnego problemu. Dl przykłdu, gdybyśmy chcieli podróżowć

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i .. Iloczyn ektoroy. Definicj. Niech i, j orz k. Iloczynem ektoroym ektoró = i j k orz = i j k nzymy ektor i j k.= ( )i ( )j ( )k Skrótoo możn iloczyn ektoroy zpisć postci yzncznik: i j k. Poniżej podno

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p

I n f o r m a c j e n a t e m a t p o d m i o t u k t ó r e m u z a m a w i a j» c y p o w i e r z y łk p o w i e r z y l i p r o w a d z e p o s t p A d r e s s t r o n y i n t e r n e t o w e j, n a k t ó r e j z a m i e s z c z o n a b d z i e s p e c y f i k a c j a i s t o t n y c h w a r u n k ó w z a m ó w i e n i a ( j e e ld io t y c z y )

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

Matematyka dla biologów Zajęcia nr 7.

Matematyka dla biologów Zajęcia nr 7. Mtemtyk dl biologów Zjęci nr 7. Driusz Wrzosek 21 listopd 2018 Mtemtyk dl biologów Zjęci 7. 21 listopd 2018 1 / 20 Przypomnienie: funkcj pierwotn Niech F : D, gdzie D to odcinek otwrty lub cł prost ).

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1

Zestaw 0. 1 sin 2 x ; k) (arctg x) 0 = 1 ; l) (arcctg x) x 2 m) (arcsin x) 0 = p 1 Podstawowe wzor rachunku ró zniczkowego Zestaw. Rachunek ró zniczkow i ca kow a) (f () g ()) = f () g () + f () g () b) f (g ()) = f (g ()) g () f() c) g() = f ()g() f()g () d) ( n ) = n n g () e) (log

Bardziej szczegółowo

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D.

3. Odległość Ziemi od Słońca jest równa km. Odległość tą można zapisać w postaci iloczynu: C. ( 2) 2 C D. Sprwdzin Potęgi i pierwistki. Piąt potęg liczby jest równ: A. 0 B. C. D. 4. Iloczyn jest równy: A. B. C. D.. Odległość Ziemi od Słońc jest równ 0 000 000 km. Odległość tą możn zpisć w postci iloczynu:

Bardziej szczegółowo