Zależność cech (wersja 1.01)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zależność cech (wersja 1.01)"

Transkrypt

1 KRZYSZTOF SZYMANEK Zależność cech (wersja 1.01) 1. Wprowadzenie Często na podstawie wiedzy, że jakiś przedmiot posiada określoną cechę A możemy wnioskować, że z całą pewnością posiada on też pewną inną cechę B - albo że cechy tej nie posiada. Na przykład z faktu, że X posiada cechę bycia inżynierem możemy wnioskować, że X ma wyższe wykształcenie; z tego zaś, że X jest kawalerem wnioskujemy, że X nie jest żonaty. Wnioskowania powyższe zawdzięczają swoją pewność temu, że zbiór inżynierów zawiera się w zbiorze osób wykształconych, zaś zbiór kawalerów jest rozłączny ze zbiorem żonatych. Zapytajmy teraz, czy stwierdzony fakt, że X jest dorosłym Polakiem pozwala na wyciągnięcie wniosku, że X zna język polski? Wnioskowanie takie robi wrażenie rozsądnego, jednakże musimy zauważyć, że nie jest ono całkowicie pewne. Zbiór dorosłych Polaków nie zawiera się bowiem w zbiorze osób znających język polski. Pewna niewielka część osób dorosłych narodowości polskiej nie zna języka polskiego. Jest to część tak drobna, że wnioskowanie, o którym mowa, jest w zwykłych warunkach rozsądne, choć nieco ryzykowne. Jeszcze bardziej ryzykowne jest na podstawie tego, że X jest kawalerem wnioskowanie, że X ma mniej niż 30 lat. Bardzo często związek między cechami nie pozwala wprawdzie na rozsądne wnioskowanie o jednej na podstawie drugiej, lecz mimo to posiadanie jednej z nich zwiększa lub zmniejsza prawdopodobieństwo posiadania drugiej. Mówimy wtedy o statystycznej zależności cech. Zależność zachodzi np. między byciem głodnym i byciem biednym, byciem ptakiem i byciem zwierzęciem fruwającym. Mówimy o zależności pozytywnej (zbieżność) albo negatywnej (rozbieżność). Negatywna zależność zachodzi np. między byciem miłośnikiem piłki nożnej i byciem kobietą, albo między byciem substancją smaczną i byciem lekarstwem.

2 2 w w w. s z y m a n e k. o r g A B A B rys. 1 rys. 2 Zależność może być słabsza, lub silniejsza. Najsilniejsza jest wtedy, gdy jedna z cech wynika z drugiej (por. rys. 1) lub cechy się wykluczają (por. rys. 2). Na ogół cechy wchodzą w związek ilustrowany rysunkiem 3. A B rys. 3 w tym wypadku pewne przedmioty mają cechy A i B, niektóre inne mają cechę A a nie mają cechy B, niektóre przedmioty mające cechę B nie mają cechy A. 2. Definicje Populacją nazywamy rozważany przez nas zbiór elementów mogących mieć cechy A oraz B. Populacją może być np. zbiór wszystkich Polaków, zbiór drzew na jakimś terenie, zbiór możliwych wyników jakiegoś doświadczenia. Jeśli element nie posiada cechy A, to posiada cechę nie-a, którą notujemy A. Podobnie B oznacza nieposiadanie cechy B. Cechy identyfikować będziemy ze zbiorami elementów. Np. cecha bycia Polakiem to dla nas zbiór Polaków. Cecha bycia nie-polakiem to zbiór wszystkich elementów populacji nie będących Polakami. Przypuśćmy, że populacja liczy N elementów, z których każdy może posiadać cechę A lub cechę B. Dane o liczbie elementów posiadających te cechy przedstawia tabelka:

3 3 w w w. s z y m a n e k. o r g A A B a b B c d TABELKA 1 Z tabelki tej odczytujemy, że: (i) a elementów posiada obie cechy A i B (ii) b elementów posiada cechę B, ale nie A (iii) c elementów posiada cechę A, ale nie B (iv) d elementów nie posiada ani cechy A, ani B Oczywiście a+b+c+d = N Odnotujmy też, że: (*) b = 0 wtedy i tylko wtedy, gdy B A (**) c =0 wtedy i tylko wtedy, gdy A B (***) a =0 wtedy i tylko wtedy, gdy A)(B (****) d = 0 wtedy i tylko wtedy, gdy A B (B A) Wygodne jest stosowanie tabelki, w której w dodatkowej kolumnie i dodatkowym wierszu (oznaczone przez RAZEM) wpisane są wartości łączne: A A RAZEM B a b a+b B c d c+d RAZEM a+c b+d N TABELKA 2 Wszystkich elementów posiadających cechę B jest a + b, wszystkich elementów nie posiadających cechy B jest c + d. Wszystkich elementów posiadających cechę A jest a + c, wszystkich elementów nie posiadających cechy A jest b + d.

4 4 w w w. s z y m a n e k. o r g Przykład Zbadano zarobki oraz wykształcenie 150 pracowników pewnej firmy (ta grupa stanowi więc populację). Wszystkich podzielono według kryterium osiągania zarobków wyższych niż średnia krajowa (S) i posiadania wyższego wykształcenia (W). Wyniki zestawiono w następującej tabelce: S S RAZEM W W RAZEM TABELKA 3 Z powyższych danych wynika, że osób zarabiających powyżej średniej krajowej jest w całej populacji 30/160 czyli ok. 19%. Jednak w grupie osób posiadających wyższe wykształcenie (40 osób) zarabia powyżej średniej krajowej 10 osób, czyli 25%. Jeśli o jakiejś osobie wiemy tylko tyle, że pracuje w badanej firmie, to szansę, że zarabia ona powyżej średniej krajowej ocenimy na ok. 19%. Jeśli jednak wiemy dodatkowo, że osoba ta posiada ona wyższe wykształcenie, to szansa ta rośnie do 25%. Dlatego właśnie uznajemy cechy W i S za cechy statystycznie zależne. Ogólnie, mając tabelkę: powiemy, że: A A RAZEM B a b a+b B c d c+d RAZEM a+c b+d N TABELKA 4 (i) cechy A i B są zbieżne, gdy zachodzi: (*) (ii) cechy A i B są rozbieżne, gdy zachodzi:

5 5 w w w. s z y m a n e k. o r g (**) (iii) cechy A i B są niezależne, gdy: (***) Mniej formalnie, cechy A i B są zbieżne (rozbieżne) gdy pośród elementów posiadających cechę A jest większy (mniejszy) procent elementów posiadających cechę B niż w całości populacji. Cechy A i B są niezależne, jeśli odpowiednie odsetki są równe. Zależność statystyczną można też wyrazić w następujący sposób. Cecha A jest zbieżna z B, gdy pośród elementów mających cechę A jest większy procent elementów mających cechę B niż pośród elementów nie mających cechy B. W istocie warunek (*) można zastąpić przez warunek równoważny: Warunek (**) można zastąpić przez: a warunek (***) przez: Przykłady Można się spodziewać, że w populacji obywateli Polski następujące cechy są zbieżne: (a) posiadania wyższego wykształcenia i znajomości języka angielskiego (b) bycia sławnym aktorem i bycia osobą wielokrotnie rozwiedzioną (c) bycia bogatym i bycia po czterdziestce Można się spodziewać, że w populacji obywateli Polski następujące cechy są rozbieżne: (a) głosowanie na partię rolników i bycie mieszkańcem dużego miasta (b) bycie chorym i bycie szczęśliwym (c) bycie księdzem i popieranie prawa do eutanazji

6 6 w w w. s z y m a n e k. o r g Przykładowe cechy niezależne (bliskie niezależności - por. następny rozdział) to: (a) bycie mężczyzną i bycie urodzonym w środę (b) posiadanie rodzeństwa i bycie kobietą (c) bycie inteligentnym i mieszkanie w pobliżu jeziora 3. Siła związku między cechami Jest intuicyjnie jasne, że cechy mogą związane silniej albo słabiej. Cechy bycia kierowcą zawodowym i bycia mężczyzną na pewno są niewątpliwie silniej zbieżne niż cechy bycia palaczem tytoniu i bycia mężczyzną. Odsetek mężczyzn pośród kierowców zawodowych jest bliski 100% podczas gdy wśród palaczy jest to ok. 70%. Zwróćmy też uwagę na to, że gdyby wykonać odpowiednie obliczenia, to cechy bycia mężczyzną i bycia urodzonym w środę okazałyby się nie tyle niezależne, co prawie niezależne. Trudno bowiem oczekiwać, by obliczone wielkości oraz były równe co do piątego miejsca po przecinku. Poniżej wprowadzimy miarę siły związku pomiędzy cechami. Rozpatrzmy znowu tabelkę: A A RAZEM B a b a+b B c d c+d RAZEM a+c b+d N TABELKA 5 O związku między cechami A i B decydują wielkości oraz. Im bardziej jedna przewyższa drugą, tym silniejszy związek między cechami. Wygodnie jest zastosowanie ilorazu tych liczb jako miary, o którą chodzi. = Wprowadzamy współczynnik szans (odds ratio) OR(A, B) za pomocą wzoru:

7 7 w w w. s z y m a n e k. o r g OR(A, B) = rozpatrujemy wyłącznie przypadki, gdy ad 0 lub bc 0. Jeśli bc = 0, to przyjmujemy OR(A, B) =. Współczynnik szans ma następujące własności: (OR1) 0 OR(A, B) (OR2) jeśli OR(A, B) < 1 to cechy A i B są rozbieżne (OR3) jeśli OR(A, B) > 1 to cechy A i B są zbieżne (OR4) jeśli OR(A, B) = 1 to cechy A i B są niezależne (OR5) jeśli OR(A, B) = 0 to B A lub ( B) A (OR6) jeśli OR(A, B) = to A B lub B A (OR7) OR(A, B) = OR(A, B ) = Ćwiczenie 1 Podać wzór na OR(B, A), OR(A, B), OR(A, B ), OR(A, B ) Ćwiczenie 2 Zaobserwować, że OR(A, B) = OR(B, A). Ćwiczenie 3 Na podstawie uzyskanych w poprzednich ćwiczeniach wzorów zauważyć, że: (i) jeśli A jest zbieżne z B, to B jest zbieżne z A (ii) jeśli A jest rozbieżne z B, to B jest rozbieżne z A (iii) jeśli A jest niezależne od B, to B jest niezależne od A (iv) jeśli A jest zbieżne z B, to A jest rozbieżne z B (v) związek między A i B jest zawsze ten sam, co między A oraz B

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

KOMUNIKATzBADAŃ. Preferencje partyjne w sierpniu NR 106/2017 ISSN

KOMUNIKATzBADAŃ. Preferencje partyjne w sierpniu NR 106/2017 ISSN KOMUNKATzBADAŃ NR 106/ SSN 2353-5822 Preferencje partyjne w sierpniu Przedruk i rozpowszechnianie tej publikacji w całości dozwolone wyłącznie za zgodą CBOS. Wykorzystanie fragmentów oraz danych empirycznych

Bardziej szczegółowo

RACHUNEK ZBIORÓW 5 RELACJE

RACHUNEK ZBIORÓW 5 RELACJE RELACJE Niech X i Y są dowolnymi zbiorami. Układ ich elementów, oznaczony symbolem x,y (lub też (x,y) ), gdzie x X i y Y, nazywamy parą uporządkowaną o poprzedniku x i następniku y. a,b b,a b,a b,a,a (o

Bardziej szczegółowo

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności

Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności Miary zmienności: Miary zmienności Klasyczne Wariancja Odchylenie standardowe Odchylenie przeciętne Współczynnik zmienności Rozstęp Pozycyjne Odchylenie ćwiartkowe Współczynnik zmienności 2 Spróbujmy zastanowić

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

STATYSTYKA OPISOWA. Znaczenie podstawowych miar

STATYSTYKA OPISOWA. Znaczenie podstawowych miar STATYSTYKA OPISOWA Znaczenie podstawowych miar Pytanie wieczoru 1: Ile zarabiają dyrektorzy w działach ach sprzedaŝy? Średnia zarobków w dyrektorów w sprzedaŝy wynosi 12 161 PLN. PYTANIA: Jak obliczono

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Wyznaczenie celów. Rozdział I. - Wyznaczanie celów - Cel SMART - Przykłady dobrze i źle wyznaczonych celów

Wyznaczenie celów. Rozdział I. - Wyznaczanie celów - Cel SMART - Przykłady dobrze i źle wyznaczonych celów Wyznaczenie celów - Wyznaczanie celów - Cel SMART - Przykłady dobrze i źle wyznaczonych celów Kurs Dydaktyka zarządzania czasem. 11 Wyznaczanie celów Jeżeli dobrze się zastanowimy nad naszym działaniem,

Bardziej szczegółowo

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach.

Zadanie 2.Na III roku bankowości złożonym z 20 studentów i 10 studentek przeprowadzono test pisemny ze statystyki. Oto wyniki w obu podgrupach. Zadanie 1.Wiadomo, że dominanta wagi tuczników jest umiejscowiona w przedziale [120 kg, 130 kg] i wynosi 122,5 kg. Znane są również liczebności przedziałów poprzedzającego i następnego po przedziale dominującym:

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

KOMUNIKATzBADAŃ. Preferencje partyjne w kwietniu NR 40/2017 ISSN

KOMUNIKATzBADAŃ. Preferencje partyjne w kwietniu NR 40/2017 ISSN KOMUNKATzBADAŃ NR 40/ SSN 2353-5822 Preferencje partyjne w kwietniu Przedruk i rozpowszechnianie tej publikacji w całości dozwolone wyłącznie za zgodą CBOS. Wykorzystanie fragmentów oraz danych empirycznych

Bardziej szczegółowo

STATYSTYKA POWTÓRZENIE WIADOMOŚCI

STATYSTYKA POWTÓRZENIE WIADOMOŚCI STATYSTYKA POWTÓRZENIE WIADOMOŚCI ZADANIE Średnia arytmetyczna wszystkich liczb pierwszych należacych do przedziału, 9) A) B), C) D), ZADANIE Średnia licz,,,,9,9,, jest liczba A) B), C) D), ZADANIE Diagram

Bardziej szczegółowo

Badanie na temat mieszkalnictwa w Polsce

Badanie na temat mieszkalnictwa w Polsce Badanie na temat mieszkalnictwa w Polsce BADANIE NA REPREZENT ATYWNEJ GRUPIE POLEK/POLAKÓW Badanie realizowane w ramach projekru Społeczne Forum Polityki Mieszkaniowej współfinansowanego z Funduszy EOG

Bardziej szczegółowo

Warszawa, czerwiec 2010 BS/80/2010 OPINIE O POCZUCIU BEZPIECZEŃSTWA I ZAGROŻENIU PRZESTĘPCZOŚCIĄ

Warszawa, czerwiec 2010 BS/80/2010 OPINIE O POCZUCIU BEZPIECZEŃSTWA I ZAGROŻENIU PRZESTĘPCZOŚCIĄ Warszawa, czerwiec 2010 BS/80/2010 OPINIE O POCZUCIU BEZPIECZEŃSTWA I ZAGROŻENIU PRZESTĘPCZOŚCIĄ - 2 - Znak jakości przyznany CBOS przez Organizację Firm Badania Opinii i Rynku 4 lutego 2010 roku Fundacja

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Preferencje partyjne we wrześniu

Preferencje partyjne we wrześniu KOMUNKAT Z BADAŃ SSN 2353 5822 Nr 119/ Preferencje partyjne we wrześniu Wrzesień Przedruk i rozpowszechnianie tej publikacji w całości dozwolone wyłącznie za zgodą CBOS. Wykorzystanie fragmentów oraz danych

Bardziej szczegółowo

KOMUNIKATzBADAŃ. Preferencje partyjne w marcu NR 28/2017 ISSN

KOMUNIKATzBADAŃ. Preferencje partyjne w marcu NR 28/2017 ISSN KOMUNKATzBADAŃ NR 28/ SSN 2353-5822 Preferencje partyjne w marcu Przedruk i rozpowszechnianie tej publikacji w całości dozwolone wyłącznie za zgodą CBOS. Wykorzystanie fragmentów oraz danych empirycznych

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

KOMUNIKATzBADAŃ. Zadowolenie z życia NR 3/2017 ISSN

KOMUNIKATzBADAŃ. Zadowolenie z życia NR 3/2017 ISSN KOMUNIKATzBADAŃ NR 3/2017 ISSN 2353-5822 Zadowolenie z życia Przedruk i rozpowszechnianie tej publikacji w całości dozwolone wyłącznie za zgodą CBOS. Wykorzystanie fragmentów oraz danych empirycznych wymaga

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Warszawa, wrzesień 2013 BS/127/2013 POLACY O ZAROBKACH RÓŻNYCH GRUP ZAWODOWYCH

Warszawa, wrzesień 2013 BS/127/2013 POLACY O ZAROBKACH RÓŻNYCH GRUP ZAWODOWYCH Warszawa, wrzesień 2013 BS/127/2013 POLACY O ZAROBKACH RÓŻNYCH GRUP ZAWODOWYCH Znak jakości przyznany CBOS przez Organizację Firm Badania Opinii i Rynku 11 stycznia 2013 roku Fundacja Centrum Badania Opinii

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 5 Analiza współzależności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 5 Analiza współzależności ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 W analizie współzależności a) badamy

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny: Podstawowe definicje Definicja ciągu Ciągiem nazywamy funkcję na zbiorze liczb naturalnych, tzn. przyporządkowanie każdej liczbie naturalnej jakiejś liczby rzeczywistej. (Mówimy wtedy o ciągu o wyrazach

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

Wynagrodzenia w sektorze publicznym w 2011 roku

Wynagrodzenia w sektorze publicznym w 2011 roku Wynagrodzenia w sektorze publicznym w 2011 roku Już po raz dziewiąty mamy przyjemność przedstawić Państwu podsumowanie Ogólnopolskiego Badania Wynagrodzeń (OBW). W 2011 roku uczestniczyło w nim ponad sto

Bardziej szczegółowo

CENTRUM BADANIA OPINII SPOŁECZNEJ

CENTRUM BADANIA OPINII SPOŁECZNEJ CENTRUM BADANIA OPINII SPOŁECZNEJ SEKRETARIAT OŚRODEK INFORMACJI 629 - - 69, 628-3 - 04 693-46 - 92, 625-6 - 23 UL. ŻURAWIA 4A, SKR. PT.24 00-503 W A R S Z A W A TELEFAX 629 - - 89 INTERNET http://www.cbos.pl

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Warszawa, marzec 2013 BS/34/2013 KOBIETY W ŻYCIU PUBLICZNYM

Warszawa, marzec 2013 BS/34/2013 KOBIETY W ŻYCIU PUBLICZNYM Warszawa, marzec 2013 BS/34/2013 KOBIETY W ŻYCIU PUBLICZNYM Znak jakości przyznany CBOS przez Organizację Firm Badania Opinii i Rynku 11 stycznia 2013 roku Fundacja Centrum Badania Opinii Społecznej ul.

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010

STATYSTYKA MATEMATYCZNA WYKŁAD stycznia 2010 STATYSTYKA MATEMATYCZNA WYKŁAD 14 18 stycznia 2010 Model statystyczny ROZKŁAD DWUMIANOWY ( ) {0, 1,, n}, {P θ, θ (0, 1)}, n ustalone P θ {K = k} = ( ) n θ k (1 θ) n k, k k = 0, 1,, n Geneza: Rozkład Bernoulliego

Bardziej szczegółowo

Joanna Konieczna Repetytorium ze statystyki opisowej (materiał roboczy)

Joanna Konieczna Repetytorium ze statystyki opisowej (materiał roboczy) 1. Dana jest niekompletna macierz danych surowych zawierająca informację o zmiennych X i Y oraz rozkłady zmiennych X i Y. Uzupełnij macierz tak, aby zmienne X i Y miały w tej populacji taki rozkład, jak

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Warszawa, kwiecień 2013 BS/45/2013 CZY POLACY SKORZYSTAJĄ Z ODPISU PODATKOWEGO NA KOŚCIÓŁ?

Warszawa, kwiecień 2013 BS/45/2013 CZY POLACY SKORZYSTAJĄ Z ODPISU PODATKOWEGO NA KOŚCIÓŁ? Warszawa, kwiecień 2013 BS/45/2013 CZY POLACY SKORZYSTAJĄ Z ODPISU PODATKOWEGO NA KOŚCIÓŁ? Znak jakości przyznany CBOS przez Organizację Firm Badania Opinii i Rynku 11 stycznia 2013 roku Fundacja Centrum

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP

STATYSTYKA OPISOWA. Dr Alina Gleska. 12 listopada Instytut Matematyki WE PP STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 12 listopada 2017 1 Analiza współzależności dwóch cech 2 Jednostka zbiorowości - para (X,Y ). Przy badaniu korelacji nie ma znaczenia, która

Bardziej szczegółowo

Wartość danej Liczebność

Wartość danej Liczebność ZADANIE 1 (5 PKT) Średnia wieku w pewnej grupie studentów jest równa 23 lata. Średnia wieku tych studentów i ich opiekuna jest równa 24 lata. Opiekun ma 39 lat. Oblicz, ilu studentów jest w tej grupie.

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

CBOS CENTRUM BADANIA OPINII SPOŁECZNEJ WIEDZA O PRAWACH PACJENTA BS/70/2001 KOMUNIKAT Z BADAŃ WARSZAWA, CZERWIEC 2001

CBOS CENTRUM BADANIA OPINII SPOŁECZNEJ WIEDZA O PRAWACH PACJENTA BS/70/2001 KOMUNIKAT Z BADAŃ WARSZAWA, CZERWIEC 2001 CBOS CENTRUM BADANIA OPINII SPOŁECZNEJ SEKRETARIAT OŚRODEK INFORMACJI 629-35 - 69, 628-37 - 04 693-58 - 95, 625-76 - 23 UL. ŻURAWIA 4A, SKR. PT.24 00-503 W A R S Z A W A TELEFAX 629-40 - 89 INTERNET http://www.cbos.pl

Bardziej szczegółowo

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku.

Liczby pierwsze. Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczby pierwsze Kacper Żurek, uczeń w Gimnazjum nr 1 im. Jana Pawła II w Giżycku. Liczbą pierwszą nazywany każdą taką liczbę naturalną, która posiada dokładnie dwa dzielniki naturalne, czyli jest podzielna

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

JAKIE ZNAMY JĘZYKI OBCE?

JAKIE ZNAMY JĘZYKI OBCE? JAKIE ZNAMY JĘZYKI OBCE? Warszawa, październik 2000! Większość, niecałe trzy piąte (57%), Polaków twierdzi, że zna jakiś język obcy. Do braku umiejętności porozumienia się w innym języku niż ojczysty przyznaje

Bardziej szczegółowo

Wiek a aktywność społeczna: osoby 50+ w Polsce

Wiek a aktywność społeczna: osoby 50+ w Polsce Wiek a aktywność społeczna: osoby 50+ w Polsce Anna Nicińska Karol Osłowski Uniwersytet Warszawski Wyrównywanie szans na rynku pracy dla osób 50+ Solidarność pokoleń Lublin, 8 listopada 2012 Plan prezentacji

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Nawroty w uzależnieniach - zmiany w kontaktach z alkoholem po zakończeniu terapii

Nawroty w uzależnieniach - zmiany w kontaktach z alkoholem po zakończeniu terapii Sabina Nikodemska Rok: 1998 Czasopismo: Świat Problemów Numer: 6 (68) Celem niniejszego opracowania jest próba przyjrzenia się populacji tych pacjentów, którzy zgłaszają się do ambulatoryjnych placówek

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

raport z badania przeprowadzonego na zlecenie firmy Danone i Forum Odpowiedzialnego Biznesu

raport z badania przeprowadzonego na zlecenie firmy Danone i Forum Odpowiedzialnego Biznesu Odpowiedzialny biznes to przede wszystkim uczciwe postępowanie raport z badania przeprowadzonego na zlecenie firmy Danone i Forum Odpowiedzialnego Biznesu Współcześnie coraz więcej mówi się na świecie

Bardziej szczegółowo

Młode kobiety i matki na rynku pracy

Młode kobiety i matki na rynku pracy OTTO POLSKA Młode kobiety i matki na rynku pracy Raport z badania OTTO Polska 2013-03-01 OTTO Polska przy wsparciu merytorycznym stowarzyszenia Aktywność Kobiet na Dolnym Śląsku przeprowadziła badanie

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Stosunek młodych Polaków do projektu podwyższenia wieku emerytalnego. Raport badawczy

Stosunek młodych Polaków do projektu podwyższenia wieku emerytalnego. Raport badawczy Stosunek młodych Polaków do projektu podwyższenia wieku emerytalnego Raport badawczy Warszawa, 19 kwietnia 2012 Nota metodologiczna Głównym celem badania było poznanie wiedzy i opinii młodych Polaków na

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Życzliwość Polaków wobec siebie

Życzliwość Polaków wobec siebie Informacja o badaniu Czy Polacy postrzegają ludzi jako życzliwych, obojętnych, czy nieżyczliwych? Jakie aspekty życia dzielą Polaków najbardziej: praca, miejsce zamieszkania, wykształcenie, a może pieniądze?

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

Systemy Agentowe główne cechy. Mariusz.Matuszek WETI PG

Systemy Agentowe główne cechy. Mariusz.Matuszek WETI PG Systemy Agentowe główne cechy Mariusz.Matuszek WETI PG Definicja agenta Wiele definicji, w zależności od rozpatrywanego zakresu zastosowań. Popularna definicja: Jednostka obliczeniowa (program, robot),

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

VIII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek

Bardziej szczegółowo

Statystyczny portret Mazowsza - jak zmieniliśmy się przez ostatnich 10 lat

Statystyczny portret Mazowsza - jak zmieniliśmy się przez ostatnich 10 lat WOJEWODA MAZOWIECKI URZĄD STATYSTYCZNY W WARSZAWIE INFORMACJA PRASOWA, 25 września 2013 r. Statystyczny portret Mazowsza - jak zmieniliśmy się przez ostatnich 10 lat Mniejsze bezrobocie i krótszy czas

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

, , INTERNET: STOSUNEK DO RZĄDU PAŹDZIERNIK 94

, , INTERNET:    STOSUNEK DO RZĄDU PAŹDZIERNIK 94 CENTRUM BADANIA OPINII SPOŁECZNEJ SEKRETARIAT ZESPÓŁ REALIZACJI BADAŃ 629-35 - 69, 628-37 - 04 UL. ŻURAWIA 4A, SKR. PT.24 00-503 W A R S Z A W A TELEFAX 629-40 - 89 621-07 - 57, 628-90 - 17 INTERNET: http://www.korpo.pol.pl/cbos

Bardziej szczegółowo

Małżeństwa i rozwody. Materiały dydaktyczne Zakład Demografii i Gerontologii Społecznej UŁ

Małżeństwa i rozwody. Materiały dydaktyczne Zakład Demografii i Gerontologii Społecznej UŁ Małżeństwa i rozwody Materiały dydaktyczne Zakład Demografii i Gerontologii Społecznej UŁ Małżeństwa podstawowe pojęcia Zawarcie małżeństwa akt zawarcia związku między dwiema osobami płci odmiennej, pociągającego

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki

Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 0 1 Ćwiczenia do rozdziału 2, zestaw A: z książki Alfreda Tarskiego Wprowadzenie do logiki 2. W następujących dwóch prawach wyróżnić wyrażenia specyficznie matematyczne i wyrażenia z zakresu logiki (do

Bardziej szczegółowo

SUBIEKTYWNEJ JAKOŚCI ŻYCIA TOM II SZCZEGÓŁOWE WYNIKI BADAŃ WEDŁUG DZIEDZIN

SUBIEKTYWNEJ JAKOŚCI ŻYCIA TOM II SZCZEGÓŁOWE WYNIKI BADAŃ WEDŁUG DZIEDZIN RAPORT Z BADAŃ SUBIEKTYWNEJ JAKOŚCI ŻYCIA TOM II SZCZEGÓŁOWE WYNIKI BADAŃ WEDŁUG DZIEDZIN Lider projektu: Uniwersytet Ekonomiczny we Wrocławiu Partner projektu: Uniwersytet Techniczny w Dreźnie Projekt:

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Metody statystyczne.

Metody statystyczne. #1 gkrol@wz.uw.edu.pl 1 Podsumowanie Sprawy formalne Statystyka i statystyka Badania korelacyjne Badania eksperymentalne Por. badań eksperymentalnych i korelacyjnych Przykłady badań Zarzuty pod adresem

Bardziej szczegółowo

Młodzi na rynku pracy - fakty i mity. Przemyśl, 15 maja 2017 dr Barbara Worek Instytut Socjologii UJ

Młodzi na rynku pracy - fakty i mity. Przemyśl, 15 maja 2017 dr Barbara Worek Instytut Socjologii UJ Młodzi na rynku pracy - fakty i mity Przemyśl, 15 maja 2017 dr Barbara Worek Instytut Socjologii UJ Plan prezentacji, czyli kilka mitów na temat pracy dla młodych Lepiej skończyć zawodówkę, uczelnie produkują

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Warszawa, styczeń 2015 ISSN 2353-5822 NR 3/2015 ZADOWOLENIE Z ŻYCIA

Warszawa, styczeń 2015 ISSN 2353-5822 NR 3/2015 ZADOWOLENIE Z ŻYCIA Warszawa, styczeń 2015 ISSN 2353-5822 NR 3/2015 ZADOWOLENIE Z ŻYCIA Znak jakości przyznany CBOS przez Organizację Firm Badania Opinii i Rynku 14 stycznia 2014 roku Fundacja Centrum Badania Opinii Społecznej

Bardziej szczegółowo

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym.

REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. REGRESJA (postać liniowa funkcji) - ROZWIĄZANIA Komentarze kursywą, rozwiązania oraz treści zadań pismem prostym. Zadanie 1 W celu ustalenia zależności między liczbą braków a wielkością produkcji części

Bardziej szczegółowo

7. CIĄGI. WYKŁAD 5. Przykłady :

7. CIĄGI. WYKŁAD 5. Przykłady : WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na

Bardziej szczegółowo