Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne."

Transkrypt

1 Metody statystyczne kontroli jakości i niezawodności Lekcja II: Karty kontrolne. Wydział Matematyki Politechniki Wrocławskiej

2 Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę. Może to być np. długość produkowanych prętów, grubość wytwarzanych płyt wiórowych, itp. Technik dokonuje pomiarów i zbiera dane w bazie danych.

3 Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę. Może to być np. długość produkowanych prętów, grubość wytwarzanych płyt wiórowych, itp. Technik dokonuje pomiarów i zbiera dane w bazie danych. Na typowej karcie kontrolnej widnieją trzy linie:

4 Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę. Może to być np. długość produkowanych prętów, grubość wytwarzanych płyt wiórowych, itp. Technik dokonuje pomiarów i zbiera dane w bazie danych. Na typowej karcie kontrolnej widnieją trzy linie: Górna Linia Kontrolna (Upper Control Limit UCL)

5 Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę. Może to być np. długość produkowanych prętów, grubość wytwarzanych płyt wiórowych, itp. Technik dokonuje pomiarów i zbiera dane w bazie danych. Na typowej karcie kontrolnej widnieją trzy linie: Górna Linia Kontrolna (Upper Control Limit UCL) Linia Centralne (Central Line CL)

6 Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę. Może to być np. długość produkowanych prętów, grubość wytwarzanych płyt wiórowych, itp. Technik dokonuje pomiarów i zbiera dane w bazie danych. Na typowej karcie kontrolnej widnieją trzy linie: Górna Linia Kontrolna (Upper Control Limit UCL) Linia Centralne (Central Line CL) Dolna Linia Kontrolna (Lower Control Limit LCL)

7 Karty kontroli jakości: przypomnienie Załóżmy, że chcemy mierzyć pewną charakterystykę. Może to być np. długość produkowanych prętów, grubość wytwarzanych płyt wiórowych, itp. Technik dokonuje pomiarów i zbiera dane w bazie danych. Na typowej karcie kontrolnej widnieją trzy linie: Górna Linia Kontrolna (Upper Control Limit UCL) Linia Centralne (Central Line CL) Dolna Linia Kontrolna (Lower Control Limit LCL)

8 Poznane karty kontrolne: x-karta Cel: Chcemy kontrolować średnią wartość procesu, np. chcemy kontrolować średnią długość ciętych prętów stalowych.

9 Poznane karty kontrolne: x-karta Cel: Chcemy kontrolować średnią wartość procesu, np. chcemy kontrolować średnią długość ciętych prętów stalowych. Po wykonaniu pierwszych cięć wybieramy losowo n próbek: x 1, x 2,..., x n i liczymy ich średnią: x 1 = 1 n x k. n k=1

10 Poznane karty kontrolne: x-karta Cel: Chcemy kontrolować średnią wartość procesu, np. chcemy kontrolować średnią długość ciętych prętów stalowych. Po wykonaniu pierwszych cięć wybieramy losowo n próbek: x 1, x 2,..., x n i liczymy ich średnią: x 1 = 1 n x k. n Powtarzamy schemat m-krotnie, tzn. po każdym cięciu po raz kolejny wybieramy próbki i liczymy średnią. W konsekwencji dostajemy m wartości średnich: x 1, x 2,..., x m. k=1

11 Poznane karty kontrolne: x-karta Cel: Chcemy kontrolować średnią wartość procesu, np. chcemy kontrolować średnią długość ciętych prętów stalowych. Po wykonaniu pierwszych cięć wybieramy losowo n próbek: x 1, x 2,..., x n i liczymy ich średnią: x 1 = 1 n x k. n Powtarzamy schemat m-krotnie, tzn. po każdym cięciu po raz kolejny wybieramy próbki i liczymy średnią. W konsekwencji dostajemy m wartości średnich: x 1, x 2,..., x m.liczymy średnią ze średnich: x = 1 m k=1 m x k. k=1

12 Poznane karty kontrolne: x-karta Cel: Chcemy kontrolować średnią wartość procesu, np. chcemy kontrolować średnią długość ciętych prętów stalowych. Po wykonaniu pierwszych cięć wybieramy losowo n próbek: x 1, x 2,..., x n i liczymy ich średnią: x 1 = 1 n x k. n Powtarzamy schemat m-krotnie, tzn. po każdym cięciu po raz kolejny wybieramy próbki i liczymy średnią. W konsekwencji dostajemy m wartości średnich: x 1, x 2,..., x m.liczymy średnią ze średnich: x = 1 m k=1 m x k. k=1 Ta wartość będzie stanowiła linię centralną.

13 x-karta Z każdej próbki oprócz średniej wartości x k, k = 1,..., m, wybieramy także wartości największą i najmniejszą i liczymy ich rozstęp: R 1 = x (1) max x (1) min.

14 x-karta Z każdej próbki oprócz średniej wartości x k, k = 1,..., m, wybieramy także wartości największą i najmniejszą i liczymy ich rozstęp: R 1 = x (1) max x (1) min. W ten sposób dostajemy m wartości rozstępów dla każdej z próbek: R 1,..., R m.

15 x-karta Z każdej próbki oprócz średniej wartości x k, k = 1,..., m, wybieramy także wartości największą i najmniejszą i liczymy ich rozstęp: R 1 = x (1) max x (1) min. W ten sposób dostajemy m wartości rozstępów dla każdej z próbek: R 1,..., R m.liczymy średni rozstęp: R = 1 m m R k. k=1

16 x-karta Ustalamy linie kontrolne: UCL = x + A 2 R, LCL = x A 2 R, gdzie A 2 = 3 d 2 n jest pewną stałą zależną od rozmiaru próby. Jest ona podana w specjalnych tablicach. Niemniej jednak dla prób n > 25 można ją uzyskać wprowadzając pojęcie relatywnej rangi: W = R σ. Wtedy okazuje się, że zachodzi zależność d 2 = R, gdzie s jest s odchyleniem standardowym z próby.

17 R-karta Wraz z kartą do średniej używana jest równolegle karta do kontroli rozstępu. Linię centralną stanowi tam wartość R.

18 R-karta Wraz z kartą do średniej używana jest równolegle karta do kontroli rozstępu. Linię centralną stanowi tam wartość R. W przypadku poszczególnych linii kontrolnych dostajemy: UCL = D 4 R, LCL = D 3 R, gdzie D 4, D 3 są stałymi podanymi w tablicach.

19 R-karta Wraz z kartą do średniej używana jest równolegle karta do kontroli rozstępu. Linię centralną stanowi tam wartość R. W przypadku poszczególnych linii kontrolnych dostajemy: UCL = D 4 R, LCL = D 3 R, gdzie D 4, D 3 są stałymi podanymi w tablicach. Powyższą zależność można też zapisać jako UCL = R + 3 d 3 d 2 R, LCL = R 3 d 3 d 2 R, gdzie d 2 jest stałą jak poprzednio, zaś d 3 uzyskuje się poprzez policzenie odchylenia standardowego z rozstępu: d 3 = s R d 2. R Zwróćmy uwagę, że karta dla badania rozstępu nie jest symetryczna!

20 Projektowanie kart kontrolnych dla odchylenia standardowego s Pomimo, że x-karty i R-karty są powszechnie stosowane, czasami lepiej jest zamiast rozstępu kontrolować odchylenie standardowe z próby.

21 Projektowanie kart kontrolnych dla odchylenia standardowego s Pomimo, że x-karty i R-karty są powszechnie stosowane, czasami lepiej jest zamiast rozstępu kontrolować odchylenie standardowe z próby. Przypomnijmy: wariancją z proby nazywamy wielkość s 2 = 1 n 1 n (x k x) 2, (1) k=1 gdzie x jest wcześniej wyznaczoną średnią z próby. Odchyleniem standardowym z próby nazywamy wielkość s = s 2. (2)

22 Projektowanie kart kontrolnych dla odchylenia standardowego s Karty kontroli dla odchylanie standardowego są preferowane w przypadkach gdy:

23 Projektowanie kart kontrolnych dla odchylenia standardowego s Karty kontroli dla odchylanie standardowego są preferowane w przypadkach gdy: Rozmiar próby jest duży. Liczenie rozstępu w takich przypadkach, aby wyznaczać wariancję traci wtedy znaczenie statystyczne.

24 Projektowanie kart kontrolnych dla odchylenia standardowego s Karty kontroli dla odchylanie standardowego są preferowane w przypadkach gdy: Rozmiar próby jest duży. Liczenie rozstępu w takich przypadkach, aby wyznaczać wariancję traci wtedy znaczenie statystyczne. Rozmiar próby n jest zmienny.

25 Projektowanie kart kontrolnych dla odchylenia standardowego s Karty kontroli dla odchylanie standardowego są preferowane w przypadkach gdy: Rozmiar próby jest duży. Liczenie rozstępu w takich przypadkach, aby wyznaczać wariancję traci wtedy znaczenie statystyczne. Rozmiar próby n jest zmienny. W takich wypadkach proces kontroluje się wykorzystując x-kartę oraz kartę odchylenia standardowego: s-kartę.

26 Projektowanie s-karty Cel: Chcemy kontrolować wariancję procesu.

27 Projektowanie s-karty Cel: Chcemy kontrolować wariancję procesu. Przypuśćmy, że znana jest wartość odchylania standardowego każdej z próbki (a nie całego procesu!) i ma ona wartość σ. Wtedy pokazuje się, że linią centralną s karty jest wartość CL = c 4 σ gdzie c 4 jest współczynnikiem zależnym od rozmiaru proby i jest podany w tablicach.

28 Projektowanie s-karty Cel: Chcemy kontrolować wariancję procesu. Przypuśćmy, że znana jest wartość odchylania standardowego każdej z próbki (a nie całego procesu!) i ma ona wartość σ. Wtedy pokazuje się, że linią centralną s karty jest wartość CL = c 4 σ gdzie c 4 jest współczynnikiem zależnym od rozmiaru proby i jest podany w tablicach. Pozostałe linie kontrolne to UCL = c 4 σ + 3σ 1 c4 2, LCL = c 4σ 3σ 1 c4 2.

29 Projektowanie s-karty Cel: Chcemy kontrolować wariancję procesu. Przypuśćmy, że znana jest wartość odchylania standardowego każdej z próbki (a nie całego procesu!) i ma ona wartość σ. Wtedy pokazuje się, że linią centralną s karty jest wartość CL = c 4 σ gdzie c 4 jest współczynnikiem zależnym od rozmiaru proby i jest podany w tablicach. Pozostałe linie kontrolne to UCL = c 4 σ + 3σ 1 c4 2, LCL = c 4σ 3σ 1 c4 2. Oznaczmy B 5 = c c 2 4, B 6 = c c 2 4. Wtedy UCL = B 6 σ, LCL = B 5 σ.

30 Projektowanie s-karty Problem pojawia się, gdy nie znamy wartości teoretycznej wariancji lub odchylenia standardowego. Należy wtedy je estymować, czlyli przybliżyć ich nieznaną wartość.

31 Projektowanie s-karty Problem pojawia się, gdy nie znamy wartości teoretycznej wariancji lub odchylenia standardowego. Należy wtedy je estymować, czlyli przybliżyć ich nieznaną wartość. Po pobraniu losowo n próbek: x 1, x 2,..., x n liczymy ich wariancję: s 2 1.

32 Projektowanie s-karty Problem pojawia się, gdy nie znamy wartości teoretycznej wariancji lub odchylenia standardowego. Należy wtedy je estymować, czlyli przybliżyć ich nieznaną wartość. Po pobraniu losowo n próbek: x 1, x 2,..., x n liczymy ich wariancję: s 2 1. Powtarzamy schemat m-krotnie. W konsekwencji dostajemy m wartości wariancji: s 2 1, s2 2,..., s2 m. Potem liczymy odchylenia standardowe z każdej próby: s 1, s 2,..., s m

33 Projektowanie s-karty Problem pojawia się, gdy nie znamy wartości teoretycznej wariancji lub odchylenia standardowego. Należy wtedy je estymować, czlyli przybliżyć ich nieznaną wartość. Po pobraniu losowo n próbek: x 1, x 2,..., x n liczymy ich wariancję: s 2 1. Powtarzamy schemat m-krotnie. W konsekwencji dostajemy m wartości wariancji: s1 2, s2 2,..., s2 m. Potem liczymy odchylenia standardowe z każdej próby: s 1, s 2,..., s m Linią centralną karty będzie średnie odchylenie standardowe CL = s = 1 m s i. m i=1

34 Projektowanie s-karty Aby ustalić linie UCL i LCL należy wpierw policzyć, w jaki sposób wahają się odchylenia standardowe, czyli policzyć odchylenie standardowe z odchyleń standardowych. Na szczęście dobrym przybliżeniem tej wielkości jest wielkość s c 4 1 c 2 4, gdzie c 4 jest współczynnikiem zależnym od rozmiaru proby i jest podany w tablicach.

35 Projektowanie s-karty Aby ustalić linie UCL i LCL należy wpierw policzyć, w jaki sposób wahają się odchylenia standardowe, czyli policzyć odchylenie standardowe z odchyleń standardowych. Na szczęście dobrym przybliżeniem tej wielkości jest wielkość s c 4 1 c 2 4, gdzie c 4 jest współczynnikiem zależnym od rozmiaru proby i jest podany w tablicach.. Dostajemy wtedy UCL = s + 3 s 1 c4 2 c, LCL = s 3 s 1 c4 2 4 c. 4

36 Projektowanie s-karty Aby ustalić linie UCL i LCL należy wpierw policzyć, w jaki sposób wahają się odchylenia standardowe, czyli policzyć odchylenie standardowe z odchyleń standardowych. Na szczęście dobrym przybliżeniem tej wielkości jest wielkość s c 4 1 c 2 4, gdzie c 4 jest współczynnikiem zależnym od rozmiaru proby i jest podany w tablicach.. Dostajemy wtedy UCL = s + 3 s 1 c4 2 c, LCL = s 3 s 1 c4 2 4 c. 4 Oznaczmy B 3 = 1 3 c 4 1 c 2 4, B 4 = c 4 1 c 2 4.

37 Projektowanie s-karty Aby ustalić linie UCL i LCL należy wpierw policzyć, w jaki sposób wahają się odchylenia standardowe, czyli policzyć odchylenie standardowe z odchyleń standardowych. Na szczęście dobrym przybliżeniem tej wielkości jest wielkość s c 4 1 c 2 4, gdzie c 4 jest współczynnikiem zależnym od rozmiaru proby i jest podany w tablicach.. Dostajemy wtedy UCL = s + 3 s 1 c4 2 c, LCL = s 3 s 1 c4 2 4 c. 4 Oznaczmy B 3 = 1 3 c 4 1 c 2 4, B 4 = c 4 1 c 2 4. Wtedy: UCL = B 4 s, LCL = B 3 s

38 Wpływ na x-kartę Po wyliczeniu linii dla s-karty, można zauważyć, że ma to wpływ na x-kartę. Można na niej wyznaczyć linie kontrolne korzystając z wyliczonego odchlenia standardowego: s s UCL = x + 3, LCL = x 3 c 4 n c 4 n

39 Wpływ na x-kartę Po wyliczeniu linii dla s-karty, można zauważyć, że ma to wpływ na x-kartę. Można na niej wyznaczyć linie kontrolne korzystając z wyliczonego odchlenia standardowego: s s UCL = x + 3, LCL = x 3 c 4 n c 4 n Oznaczmy. A 3 = 3 c 4 n

40 Wpływ na x-kartę Po wyliczeniu linii dla s-karty, można zauważyć, że ma to wpływ na x-kartę. Można na niej wyznaczyć linie kontrolne korzystając z wyliczonego odchlenia standardowego: s s UCL = x + 3, LCL = x 3 c 4 n c 4 n Oznaczmy.Wtedy: UCL = x + A 3 s, A 3 = 3 c 4 n LCL = x A 3 s

41 Właściwy dobór stałych Zauważmy, że do obliczania odchylenia standardowego wykorzystujemy wzór n i=1 s = (x i x) 2. n 1 Niektórzy wykorzystują jedank inny wzór: n i=1 s = (x i x) 2. n Powoduje to różnice w doborze stałych.

42 Właściwy dobór stałych Zauważmy, że do obliczania odchylenia standardowego wykorzystujemy wzór n i=1 s = (x i x) 2. n 1 Niektórzy wykorzystują jedank inny wzór: n i=1 s = (x i x) 2. n Powoduje to różnice w doborze stałych. Zamiast stałych c 4, B 3, B 4, A 3 bierze się z tablic odpowiednio stałe c 2, B 1, B 2, A 1.

43 Karta dla indywidualnych pomiarów W produkcji występuje wiele sytuacji, w których nie można pobrać więcej niż jednej próbki, czyli n = 1. W takich wypadkach wykorzystuje się kartę kontrolną dla indywidualnych pomiarów.

44 Ranga krocząca W konstrukcji kart dla indywidualnych pomiarów wykorzystuje się wielkość nazywaną rangą kroczącą (ang. moving range.)

45 Ranga krocząca W konstrukcji kart dla indywidualnych pomiarów wykorzystuje się wielkość nazywaną rangą kroczącą (ang. moving range.) MR i = x i x i 1. Można także skonstruować kartę dla rangi kroczącej (MR-kartę).

46 Projektowanie karty dla indywidualnych pomiarów Cel: Chcemy kontrolować średnią wartość procesu mając możliwość pobrania tylko jednej próbki w każdym podejściu.

47 Projektowanie karty dla indywidualnych pomiarów Cel: Chcemy kontrolować średnią wartość procesu mając możliwość pobrania tylko jednej próbki w każdym podejściu. Po wykonaniu m powtórzeń dysponujemy m próbkami: x 1, x 2,..., x m i liczymy ich średnią: x 1 = 1 m x k. m k=1

48 Projektowanie karty dla indywidualnych pomiarów Cel: Chcemy kontrolować średnią wartość procesu mając możliwość pobrania tylko jednej próbki w każdym podejściu. Po wykonaniu m powtórzeń dysponujemy m próbkami: x 1, x 2,..., x m i liczymy ich średnią: x 1 = 1 m x k. m k=1 Liczymy też rangi kroczące MR 2, MR 3,..., MR n oraz ich średnią: MR = 1 m m MR k. k=1

49 Projektowanie karty dla indywidualnych pomiarów Cel: Chcemy kontrolować średnią wartość procesu mając możliwość pobrania tylko jednej próbki w każdym podejściu. Po wykonaniu m powtórzeń dysponujemy m próbkami: x 1, x 2,..., x m i liczymy ich średnią: x 1 = 1 m x k. m k=1 Liczymy też rangi kroczące MR 2, MR 3,..., MR n oraz ich średnią: MR = 1 m m MR k. k=1 Linię centralną karty będzie stanowiła wartość CL = x.

50 Projektowanie karty dla indywidualnych pomiarów Ponieważ ranga krocząca wyliczana jest na podstawie dwóch pomiarów, więc dobieramy stałą dla n = 2. Ustalamy linie kontrolne: UCL = x + 3 d 2 MR, LCL = x 3 d 2 MR, gdzie d 2 = 1, 128.

51 Projektowanie MR-karty Linię centralną będzie tu stanowiła średnia z rang kroczących: CL = MR.

52 Projektowanie MR-karty Linię centralną będzie tu stanowiła średnia z rang kroczących: CL = MR. Dobieramy linie kontrolne: UCL = D 4 MR, LCL = D 3 MR, gdzie stałe dobieramy dla n = 2.

53 Projektowanie MR-karty Linię centralną będzie tu stanowiła średnia z rang kroczących: CL = MR. Dobieramy linie kontrolne: UCL = D 4 MR, LCL = D 3 MR, gdzie stałe dobieramy dla n = 2. Stąd D 3 = 0, D 4 = 3, 267 oraz UCL = D 4 MR, LCL = 0

54 Zmiana rozmiaru próbki Wielokrotnie w trakcie procesu produkcyjnego zdarza się, że technicy postanowili dokonać korekty pomiarów. Jedną z możliwości jest pobieranie innej ilości próbek w każdym badaniu.

55 Zmiana rozmiaru próbki Wielokrotnie w trakcie procesu produkcyjnego zdarza się, że technicy postanowili dokonać korekty pomiarów. Jedną z możliwości jest pobieranie innej ilości próbek w każdym badaniu. Jak już zauważyliśmy w tym wypadku technicy bardzie preferują x-karty i s-karty, które są jak najbardziej wskazane w takich sytuacjach.

56 Zmiana rozmiaru próbki Wielokrotnie w trakcie procesu produkcyjnego zdarza się, że technicy postanowili dokonać korekty pomiarów. Jedną z możliwości jest pobieranie innej ilości próbek w każdym badaniu. Jak już zauważyliśmy w tym wypadku technicy bardzie preferują x-karty i s-karty, które są jak najbardziej wskazane w takich sytuacjach. Załóżmy jednak, że mamy do czynienia ze stałą zmianą wywołaną np. cięciem kosztów kontroli jakości, ustabilizowaniem się procesu, zmniejszeniem podaży produktu itp.

57 Zmiana rozmiaru próbki Wprowadźmy oznaczenia: R stare - średni rozstęp dla starego rozmiaru

58 Zmiana rozmiaru próbki Wprowadźmy oznaczenia: R stare - średni rozstęp dla starego rozmiaru R nowe - średni rozstęp dla rowego rozmiaru

59 Zmiana rozmiaru próbki Wprowadźmy oznaczenia: R stare - średni rozstęp dla starego rozmiaru R nowe - średni rozstęp dla rowego rozmiaru n stare - stary rozmiar próbki

60 Zmiana rozmiaru próbki Wprowadźmy oznaczenia: R stare - średni rozstęp dla starego rozmiaru R nowe - średni rozstęp dla rowego rozmiaru n stare - stary rozmiar próbki n nowe - nowy rozmiar próbki

61 Zmiana rozmiaru próbki Wprowadźmy oznaczenia: R stare - średni rozstęp dla starego rozmiaru R nowe - średni rozstęp dla rowego rozmiaru n stare - stary rozmiar próbki n nowe - nowy rozmiar próbki d 2 (stare) - współczynnik d 2 dla starego rozmiaru

62 Zmiana rozmiaru próbki Wprowadźmy oznaczenia: R stare - średni rozstęp dla starego rozmiaru R nowe - średni rozstęp dla rowego rozmiaru n stare - stary rozmiar próbki n nowe - nowy rozmiar próbki d 2 (stare) - współczynnik d 2 dla starego rozmiaru d 2 (nowe) - współczynnik d 2 dla nowego rozmiaru.

63 Zmiana rozmiaru próbki Dla x-karty nowe linie kontrolne mają wtedy postać: UCL = x + A 2 d 2 (nowe) d 2 (stare) R stare, LCL = x A 2 d 2 (nowe) d 2 (stare) R stare, linia centralna się nie zmienia, a stała A 2 brana jest dla nowego rozmiaru próbki.

64 Zmiana rozmiaru próbki Dla x-karty nowe linie kontrolne mają wtedy postać: UCL = x + A 2 d 2 (nowe) d 2 (stare) R stare, LCL = x A 2 d 2 (nowe) d 2 (stare) R stare, linia centralna się nie zmienia, a stała A 2 brana jest dla nowego rozmiaru próbki. Dla R-karty nowe linie kontrolne mają wtedy postać: UCL = D 4 d 2 (nowe) d 2 (stare) R stare, LCL = max{0, D 3 d 2 (nowe) d 2 (stare) R stare}, gdzie D 4, D 3 są brane dla nowego rozmiaru próbki, zaś linia centralna również jest zmieniana na. CL = R nowe = d 2(nowe) d 2 (stare) R stare

65 Zmianny rozmiar próbek dla x-karty i s-karty x-karta i s-karta są relatywnie łatwe w użyciu w przypadku, gdy rozmiary próbki są zmienne w sposób dynamiczny.

66 Zmianny rozmiar próbek dla x-karty i s-karty x-karta i s-karta są relatywnie łatwe w użyciu w przypadku, gdy rozmiary próbki są zmienne w sposób dynamiczny. W takim wypadku używa się średniej ważonej przy liczeniu x oraz s.

67 Zmianny rozmiar próbek dla x-karty i s-karty x-karta i s-karta są relatywnie łatwe w użyciu w przypadku, gdy rozmiary próbki są zmienne w sposób dynamiczny. W takim wypadku używa się średniej ważonej przy liczeniu x oraz s. Niech n i będzie liczbą obserwacji w i-tej próbce. Wtedy:

68 Zmianny rozmiar próbek dla x-karty i s-karty x-karta i s-karta są relatywnie łatwe w użyciu w przypadku, gdy rozmiary próbki są zmienne w sposób dynamiczny. W takim wypadku używa się średniej ważonej przy liczeniu x oraz s. Niech n i będzie liczbą obserwacji w i-tej próbce. Wtedy: m i=1 x = n ix i m i=1 n i

69 Zmianny rozmiar próbek dla x-karty i s-karty x-karta i s-karta są relatywnie łatwe w użyciu w przypadku, gdy rozmiary próbki są zmienne w sposób dynamiczny. W takim wypadku używa się średniej ważonej przy liczeniu x oraz s. Niech n i będzie liczbą obserwacji w i-tej próbce. Wtedy: m i=1 x = n ix i m i=1 n i s 2 = m i=1 (n i 1)s 2 i m i=1 n i m.

70 Zmianny rozmiar próbek dla x-karty i s-karty x-karta i s-karta są relatywnie łatwe w użyciu w przypadku, gdy rozmiary próbki są zmienne w sposób dynamiczny. W takim wypadku używa się średniej ważonej przy liczeniu x oraz s. Niech n i będzie liczbą obserwacji w i-tej próbce. Wtedy: m i=1 x = n ix i m i=1 n i s 2 = m i=1 (n i 1)s 2 i m i=1 n i m. Tych wartości używa się jako linii centralnych na odpowiednich kartach.

71 Zmianny rozmiar próbek dla x-karty i s-karty x-karta i s-karta są relatywnie łatwe w użyciu w przypadku, gdy rozmiary próbki są zmienne w sposób dynamiczny. W takim wypadku używa się średniej ważonej przy liczeniu x oraz s. Niech n i będzie liczbą obserwacji w i-tej próbce. Wtedy: m i=1 x = n ix i m i=1 n i s 2 = m i=1 (n i 1)s 2 i m i=1 n i m. Tych wartości używa się jako linii centralnych na odpowiednich kartach. Do wyliczania UCL i LCL używamy odpowiednich stałych podanych wcześniej, ale dobranych dla rozmiaru każdej grupy z osobna.

72 Literatura Douglas C. Montgomery, Introduction to Statistical Quality Control, John Willey & Sons Inc., 6th edition, W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski, Rachunek prawdopodobieństwa i statystyka matematyczna w zadaniach, cz. II, PWN, wyd. VIII, 2010.

73 Podziękowania Dziękuję za uwagę

Metody statystyczne kontroli jakości i niezawodności Lekcja I: Wprowadzenie

Metody statystyczne kontroli jakości i niezawodności Lekcja I: Wprowadzenie Metody statystyczne kontroli jakości i niezawodności Lekcja I: Wprowadzenie Wydział Matematyki Politechniki Wrocławskiej Czym jest jakość? Na to pytanie nie ma jednoznacznej odpowiedzi. Można rozumieć

Bardziej szczegółowo

Statystyczne sterowanie procesem

Statystyczne sterowanie procesem Statystyczne sterowanie procesem SPC (ang. Statistical Process Control) Trzy filary SPC: 1. sporządzenie dokładnego diagramu procesu produkcji; 2. pobieranie losowych próbek (w regularnych odstępach czasu

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Testy post-hoc. Wrocław, 6 czerwca 2016

Testy post-hoc. Wrocław, 6 czerwca 2016 Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference

Bardziej szczegółowo

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek

I jest narzędziem służącym do porównywania rozproszenia dwóch zmiennych. Używamy go tylko, gdy pomiędzy zmiennymi istnieje logiczny związek ZADANIA statystyka opisowa i CTG 1. Dokonano pomiaru stężenia jonów azotanowych w wodzie μg/ml 1 0.51 0.51 0.51 0.50 0.51 0.49 0.52 0.53 0.50 0.47 0.51 0.52 0.53 0.48 0.59 0.50 0.52 0.49 0.49 0.50 0.49

Bardziej szczegółowo

STATYSTYCZNE STEROWANIE PROCESAMI

STATYSTYCZNE STEROWANIE PROCESAMI STATYSTYCZNE STEROWANIE PROCESAMI ARTUR MACIASZCZYK COPYRIGHTS 2002 Artur Maciaszczyk, tel. 0602 375 325 amacia@zie.pg.gda.pl 1! STATYSTYCZNE MONITOROWANIE JAKOŚCI Bogu ufamy. Wszyscy pozostali niech przedstawią

Bardziej szczegółowo

Zarządzanie procesami

Zarządzanie procesami Metody pomiaru stosowane w organizacjach Zarządzanie procesami Zakres Rodzaje pomiaru metod pomiaru Klasyczne metody pomiaru organizacji Pomiar całej organizacji Tradycyjny rachunek kosztów (np. ROI) Rachunek

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności.

Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności. Metody statystyczne kontroli jakości i niezawodności Lekcja II: Niezawodność systemów. Charakterystyki niezawodności. Wydział Matematyki Politechniki Wrocławskiej Wprowadzenie Czym jest niezawodność? (ang.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych

Statystyka opisowa. Wykład VI. Analiza danych jakośiowych Statystyka opisowa. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści Rangowanie 1 Rangowanie 3 Rangowanie Badaniu statystycznemu czasami podlegają cechy niemierzalne jakościowe), np. kolor włosów, stopień

Bardziej szczegółowo

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy)

Próbkowanie. Wykład 4 Próbkowanie i rozkłady próbkowe. Populacja a próba. Błędy w póbkowaniu, cd, Przykład 1 (Ochotnicy) Wykład 4 Próbkowanie i rozkłady próbkowe µ = średnia w populacji, µ=ey, wartość oczekiwana zmiennej Y σ= odchylenie standardowe w populacji, σ =(Var Y) 1/2, pierwiastek kwadratowy wariancji zmiennej Y,

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 11 Anna Skowrońska-Szmer lato 2016/2017 Powtórzenie materiału 2 Zadanie 1 Wykład 1 Eksperyment polega na pojedynczym rzucie symetryczną kostką. Przestrzeń zdarzeń

Bardziej szczegółowo

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18 Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

Test t-studenta dla jednej średniej

Test t-studenta dla jednej średniej Test t-studenta dla jednej średniej Hipoteza zerowa: Średnia wartość zmiennej w populacji jest równa określonej wartości a 0 (a = a 0 ). Hipoteza alternatywna 1.: Średnia wartość zmiennej w populacji jest

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15

IV WYKŁAD STATYSTYKA. 26/03/2014 B8 sala 0.10B Godz. 15:15 IV WYKŁAD STATYSTYKA 26/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 4 Populacja generalna, próba, losowanie próby, estymatory Statystyka (populacja generalna, populacja próbna, próbka mała, próbka duża, reprezentatywność,

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny

Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny Zmienne losowe dyskretne i Zmienne losowe ciągłe Rozkład Normalny 1. Wyprodukowanie określonej liczby wyrobów przez jednego pracownika w ciągu godziny jest zmienną losową o następującym rozkładzie prawdopodobieństwa:

Bardziej szczegółowo

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW

ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW ESTYMACJA PRZEDZIAŁOWA WYBRANYCH PARAMETRÓW POPULACJI Szkic wykładu Wprowadzenie 1 Wprowadzenie 2 3 4 Przypomnienie dotychczasowych rozważań Przedziałem ufności nazywamy przedział losowy, o którym przypuszczamy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 8 Temat: Statystyczna kontrola procesu SPC przy pomocy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: przedmiot obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997 PN-ISO 3951:1997 METODY STATYSTYCZNEJ KONTROI JAKOŚCI WG OCENY ICZBOWEJ ciągła seria partii wyrobów sztukowych dla jednej procedury analizowana jest tylko jedna wartość, która musi być mierzalna w skali

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n)

Na A (n) rozważamy rozkład P (n) , który na zbiorach postaci A 1... A n określa się jako P (n) (X n, A (n), P (n) MODELE STATYSTYCZNE Punktem wyjścia w rozumowaniu statystycznym jest zmienna losowa (cecha) X i jej obserwacje opisujące wyniki doświadczeń bądź pomiarów. Zbiór wartości zmiennej losowej X (zbiór wartości

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Analiza składników podstawowych - wprowadzenie (Principal Components Analysis

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

4) zmienność procesu w czasie wymaga od zespołu jednoczesnego monitorowania dokładności

4) zmienność procesu w czasie wymaga od zespołu jednoczesnego monitorowania dokładności 6. Jeśli dąży się do porównania dwóch wykresów należy pamiętać, aby ich skale były sobie równe. Jeśli jest to niemożliwe ze względu na porównanie wartości bezwzględnych (np. 15 szt. i 150 szt.), trzeba

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski

Sterowanie procesem i jego zdolność. Zbigniew Wiśniewski Sterowanie procesem i jego zdolność Zbigniew Wiśniewski Wybór cech do kart kontrolnych Zaleca się aby w pierwszej kolejności były brane pod uwagę cechy dotyczące funkcjonowania wyrobu lub świadczenia usługi

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

ANALIZA SYSTEMU POMIAROWEGO (MSA)

ANALIZA SYSTEMU POMIAROWEGO (MSA) StatSoft Polska, tel. 1 484300, 601 414151, info@statsoft.pl, www.statsoft.pl ANALIZA SYSTEMU POMIAROWEGO (MSA) dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU

PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU PRZYKŁAD WDROŻENIA KART KONTROLNYCH KROK PO KROKU Tomasz Demski, StatSoft Polska Sp. z o.o. Przykład przedstawia tworzenie karty kontrolnej p dla nowego procesu, określanie wartości granic kontrolnych

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych; - badanie skuteczności nowego leku; - badanie stopnia zanieczyszczenia gleb metalami

Bardziej szczegółowo

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ

Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Ćwiczenia 3 ROZKŁAD ZMIENNEJ LOSOWEJ JEDNOWYMIAROWEJ Zadanie 1. Zmienna losowa przyjmuje wartości -1, 0, 1 z prawdopodobieństwami równymi odpowiednio: ¼, ½, ¼. Należy: a. Wyznaczyć rozkład prawdopodobieństwa

Bardziej szczegółowo

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013

Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 0,KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka stosowana w geomatyce Nazwa modułu w języku angielskim Applied Mathematics in Geomatics Obowiązuje od roku akademickiego 2012/2013 A.

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr Temat: Karty kontrolne przy alternatywnej ocenie właściwości.

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul Jana Pawła II 24 60-965 POZNAŃ budynek Centrum Mechatroniki, iomechaniki i Nanoinżynierii) wwwzmispmtputpoznanpl tel +48

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo