Konspekt do lekcji matematyki dn w klasie II d w Gimnazjum nr 7 w Zamościu.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Konspekt do lekcji matematyki dn w klasie II d w Gimnazjum nr 7 w Zamościu."

Transkrypt

1 Monika Łokaj Matematyka III (licencjat) Konspekt do lekcji matematyki dn w klasie II d w Gimnazjum nr 7 w Zamościu. Nauczyciel: Prowadząca: Monika Łokaj Temat lekcji: Geometria kartki papieru własności wielokątów foremnych. Czas trwania: 45 minut Cele: - uczeń wie jakie wielokąty nazywamy wielokątami foremnymi; - uczeń umie z papierowej kartki papieru składać wielokąty foremne; - uczeń zna własności wielokątów foremnych; - uczeń zna pojęcie środka i osi symetrii; - uczeń potrafi wskazywać środek i osie symetrii w wielokątach foremnych; Cele wychowawcze: - kształcenie i pobudzanie aktywności umysłowej; - rozwijanie zdolności poznawczych; - rozwijanie uczuć estetycznych; - wyrabianie spostrzegawczości i umiejętności obserwacji; Metody: - metoda podająca; - metody aktywizujące: a. burza mózgów; b. ćwiczenia praktyczne. Formy pracy: - praca z całą klasą; - samodzielna praca ucznia ukierunkowana i kontrolowana przez nauczyciela; Środki dydaktyczne: - zeszyty przedmiotowe; - przygotowane przez uczniów kartki papieru w kształcie kwadratu, prostokąta i cienkich pasków; Literatura: 1. M. Bury, A. KałuŜa, Trening przed zawodami matematycznymi, WSiP, Warszawa Z. Bobiński i inni, Miniatury matematyczne, wyd. Aksjomat, Toruń 1995.

2 Przebieg lekcji: Czas Czynności nauczyciela Czynności uczniów 3 min 2 min Czynności organizacyjne: -przywitanie z uczniami; -sprawdzenie obecności: prowadząca prosi dyŝurnych o podanie nazwisk nieobecnych osób (o ile takie są); Prowadząca podaje temat lekcji: Uczniowie witają się z prowadzącą; DyŜurni podają nazwiska nieobecnych osób. Geometria kartki papieru własności wielokątów Uczniowie zapisują temat w foremnych. zeszytach. 2 min Prowadząca zaczyna lekcję pogadanką, mówi: W historii wielu narodów moŝna zauwaŝyć jak wielką rolę przywiązywano w pewnych etapach Uczniowie słuchają prowadzącej. ich kultury do tak prozaicznych czynności, jak składanie papieru. Chińczycy i Japończycy podnieśli składanie kartki papieru do rangi sztuki. W Japonii sztuka ta nazywa się origami. Doszło do tego, Ŝe w pewnym momencie Japonkę uwaŝano za niewykształconą, gdy nie znała ona sztuki origami. Dzisiaj będziemy razem składać karki papieru. Do najprostszych zadań moŝna zaliczyć składanie papieru tak, by otrzymać róŝne wielokąty. Przy pomocy tej umiejętności odkryjemy wiele własności tych wielokątów. 9 min I. Kwadrat. Prowadząca pyta się uczniów czy wiedzą jak wykonać z kartki papieru kwadrat. Jeśli uczniom nie wychodzi, prowadząca pokazuje i wtedy uczniowie składają razem z prowadzącą. Zaginamy kartkę papieru wzdłuŝ linii l tak, aby wierzchołek A znalazł się na boku DC. Otrzymamy następującą figurę: KaŜdy podaje swoją propozycję (burza mózgów) i uczniowie wspólnie składają kwadrat. Wystarczy teraz zagiąć kartkę wzdłuŝ linii EA 1 I odgiąć wzdłuŝ linii ED. A B Otrzymaną figurą jest kwadrat C D Uczniowie sprawdzają własności

3 9 min Prowadząca prosi aby uczniowie sprawdzili za pomocą sztuki origami czy przekątne są równe, pod jakim kątem się przecinają i czy dzielą się na połowy. II. Trójkąt równoboczny: a) kwadratu i zapisują do zeszytu: 1. Przekątne są równe. 2. Przekątne przecinają się pod kątem prostym. 3. Przekątne dzielą się na połowy. 4. Kwadrat ma 4 osie symetrii. 5. Ma środek symetrii. Uczniowie z kwadratowej kartki składają trójkąt równoboczny. Zaginamy kwadrat tak, aby wierzchołki A i D oraz B i C pokryły się. W ten sposób, po odgięciu kartki, otrzymujemy linię l. b) 9 min Zaginamy kartkę tak, aby punkt A znalazł się na linii l a B nie zmienił połoŝenia. Analogicznie punkt D znalazł się na linii l, C nie zmienił połoŝenia. Otrzymujemy punkty E, F, O. c) Pozostałe części kartki zaginamy tak, aby pozostał jedynie wyznaczony trójkąt BOC, który jest trójkątem równobocznym. III. Sześciokąt: Korzystając z wcześniejszego punktu składamy kartkę tak, aby otrzymać trójkąt równoboczny. Uczniowie zastanawiają się nad własnościami trójkąta i zapisują do zeszytów: 1. Wysokości trójkąta równobocznego przecinają się w jednym punkcie; 2. Wysokości dzielą się w stosunku 1:2; 3. Trójkąt równoboczny ma 3 osie symetrii; 4. Nie ma środka symetrii.

4 Następnie zaginamy go tak, aby wyznaczyć jego wysokość, punkt przecięcia wysokości oznaczamy przez O. Uczniowie składają sześciokąt. 9 min Następnie zaginamy wszystkie wierzchołki trójkąta do wyznaczonego punktu O. Otrzymaliśmy w ten sposób sześciokąt foremny o boku równym 3 1 długości boku kwadratu. IV. Ośmiokąt Uczniowie wypisują własności sześciokąta: 1. Sześciokąt składa się z 6 trójkątów równobocznych; 2. Ma 6 osi symetrii; 3. Ma środek symetrii; Długość boku ośmiokąta jest równa róŝnicy długości przekątnej kwadratu i jego boku. Opis składania: a) Zaginamy kwadrat na połowę wzdłuŝ przekątnej BC. b) Przykładamy bok kwadratu do linii zagięcia i

5 powstaje punkt E. Przez zagięcie kartki wzdłuŝ odcinka EF zaznaczamy punkt podziału i odginamy. Zaginając wierzchołek C tak, aby pokrył się z punktem F otrzymujemy krawędź ośmiokąta. W ten sam sposób zaginamy pozostałe wierzchołki kwadratu i otrzymujemy ośmiokąt: Uczniowie odkrywają i zapisują własności ośmiokąta do zeszytu: 1. Ma 8 osi symetrii; 2. Ma środek symetrii; 2 min Prowadząca podsumowuje lekcję. Mówi, Ŝe geometria papieru okazała się interesującym zajęciem, dającym niespodziewane efekty i pobudzającym naszą fantazję. Prowadząca proponuje i zachęca wszystkich uczniów do spróbowania złoŝenia pięciokąta foremnego w domu. Jeśli się komuś to zadanie uda zostanie nagrodzony. Uwagi i spostrzeŝenia:

Konspekt lekcji matematyki w klasie 1 gimnazjum

Konspekt lekcji matematyki w klasie 1 gimnazjum Opracowała Agnieszka Siatkowska ZSO nr 22 w Katowicach ul. Hetmańska 8 40-560 Katowice tel. 2527885 Konspekt lekcji matematyki w klasie 1 gimnazjum TEMAT LEKCJI: Rodzaje czworokątów i ich własności. CELE

Bardziej szczegółowo

Konspekt do lekcji matematyki w klasie II gimnazjum

Konspekt do lekcji matematyki w klasie II gimnazjum Agnieszka Raczkiewicz Konspekt do lekcji matematyki w klasie II gimnazjum Temat lekcji: Wielokąty foremne - konstrukcje i zadania. Temat poprzedniej lekcji: Wielokąt opisany na okręgu. Czas realizacji

Bardziej szczegółowo

Powtórzenie wiadomości o figurach na płaszczyźnie

Powtórzenie wiadomości o figurach na płaszczyźnie Literka.pl Powtórzenie wiadomości o figurach na płaszczyźnie Data dodania: 2009-06-13 16:49:26 Autor: Sylwia Tillack Konspekt opracowany na podstawie podręcznika i ćwiczeń Matematyka z Plusem wydawnictwa

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie I gimnazjum wg programu Matematyka 2001

Scenariusz lekcji matematyki w klasie I gimnazjum wg programu Matematyka 2001 Scenariusz lekcji matematyki w klasie I gimnazjum wg programu Matematyka 2001 TEMAT: Podział czworokątów CEL GŁÓWNY: rozwiązywanie problemów w sposób twórczy, we współpracy z kolegami, skuteczne komunikowanie

Bardziej szczegółowo

Temat: Pole równoległoboku.

Temat: Pole równoległoboku. Scenariusz lekcji matematyki w klasie V Temat: Pole równoległoboku. Ogólne cele edukacyjne - rozwijanie umiejętności posługiwania się językiem matematycznym - rozwijanie wyobraźni i inwencji twórczej -

Bardziej szczegółowo

Definiowanie procedur z parametrami w Logo Komeniuszu.

Definiowanie procedur z parametrami w Logo Komeniuszu. 1 Scenariusze trzech lekcji z informatyki w gimnazjum. Definiowanie procedur z parametrami w Logo Komeniuszu. Dział programu: Programowanie czynności powtarzalnych. Dotychczasowa wiedza ucznia: Uczeń potrafi

Bardziej szczegółowo

mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku

mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Wybrane scenariusze lekcji matematyki aktywizujące uczniów. mgr Agnieszka Łukasiak Zasadnicza Szkoła Zawodowa przy Zespole Szkół nr 3 we Włocławku Scenariusz 1- wykorzystanie metody problemowej i czynnościowej.

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Własności i konstrukcje wielokątów foremnych scenariusz lekcji

Własności i konstrukcje wielokątów foremnych scenariusz lekcji Własności i konstrukcje wielokątów foremnych scenariusz lekcji Cele lekcji: - kształtowanie pojęcia wielokąta foremnego - doskonalenie umiejętności obliczania miary kąta wewnętrznego wielokąta foremnego,

Bardziej szczegółowo

Wielokąty i Okręgi- zagadnienia

Wielokąty i Okręgi- zagadnienia Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ Opracowała : Dorota Kochańska 1 WSTĘP Indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych

Bardziej szczegółowo

Wielokąty z papieru i ciągi

Wielokąty z papieru i ciągi Wielokąty z papieru i ciągi Aneta Wyrębkowska kl. II B Paulina Wyrębkowska kl. II B Gimnazjum 37 w Krakowie Pod opieką mgr Teresy Sklepek Okazuje się, że można ułożyć wielokąty foremne zaginając odpowiednio

Bardziej szczegółowo

Konspekt lekcji powtórzeniowej z matematyki w klasie V

Konspekt lekcji powtórzeniowej z matematyki w klasie V Maria Kożuch Konspekt lekcji powtórzeniowej z matematyki w klasie V Temat: Klasyfikacja czworokątów. Cele: Uczeń: - umierozróżniać czworokąty - potrafi nazwać czworokąty - umie wskazać na rysunku poszczególne

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV

SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV SCENARIUSZ LEKCJI MATEMATYKI W KLASIE IV Opracowała: Hanna Nowakowska Szkoła Podstawowa im. Jana Pawła II w Żydowie TEMAT : ŻEGNAMY FIGURY PŁASKIE Cel ogólny: Utrwalenie wiadomości o figurach płaskich

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Figury płaskie. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 21.01.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają

Bardziej szczegółowo

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. V.

Scenariusz lekcji matematyki w kl. V. Scenariusz lekcji matematyki w kl. V. T em a t : Powtórzenie wiadomości o czworokątach. C z a s z a jęć: 1 jednostka lekcyjna (45 minut). C e l e o g ó l n e : utrwalenie wiadomości o figurach geometrycznych

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

PRACA KONKURSOWA LEKCJA Z PLUSEM KATEGORIA: IV KLASA SP

PRACA KONKURSOWA LEKCJA Z PLUSEM KATEGORIA: IV KLASA SP Jolanta Fornal Ul. Paszowska 36c/3 30-713 KRAKÓW tel. (012)296-04-32 Nauczyciel matematyki SP47 w Krakowie PRACA KONKURSOWA LEKCJA Z PLUSEM KATEGORIA: IV KLASA SP Temat: Obwody prostokątów i kwadratów.

Bardziej szczegółowo

ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ

ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ ARKUSZ HOSPITACJI DIAGNOZUJĄCEJ Nauczyciel: Małgorzata Drejka Gimnazjum nr 4 w Legionowie, klasa I F, zajęcia edukacyjne: matematyka Data: 12.06.2006. Cel główny: Obserwacja osiągniętego poziomu sprawności

Bardziej szczegółowo

SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum

SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum SCENARIUSZ LEKCJI OTWARTEJ Z MATEMATYKI W KL.II gimnazjum HASŁO PROGRAMU: Ostrosłupy TEMAT LEKCJI: Rodzaje ostrosłupów. CZAS TRWANIA: 45 minut CELE LEKCJI: a) szczegółowe: przypomnienie i utrwalenie wiadomości

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

SZTUKA ORIGAMI PRAKTYKA CZYNI MISTRZA!

SZTUKA ORIGAMI PRAKTYKA CZYNI MISTRZA! SZTUKA ORIGAMI PRAKTYKA CZYNI MISTRZA! Co to jest origami? Origami - (jap. 折 り 紙 ) sztuka składania papieru, pochodząca z Chin, rozwinięta w Japonii i dlatego uważa się ją za tradycyjną sztukę japońską.

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Scenariusz lekcji matematyki w pierwszej klasie gimnazjum przebiegającej z wykorzystaniem technologii komputerowej

Scenariusz lekcji matematyki w pierwszej klasie gimnazjum przebiegającej z wykorzystaniem technologii komputerowej Wiesława Przewuska wprzewuska@wp.pl nauczycielka matematyki w Zespole Szkół nr1 w Sulejówku Scenariusz lekcji matematyki w pierwszej klasie gimnazjum przebiegającej z wykorzystaniem technologii komputerowej

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

PESEL. 1. Rozwiązania wszystkich zadań zapisuj na kartach odpowiedzi, pamiętając o podaniu numeru zadania.

PESEL. 1. Rozwiązania wszystkich zadań zapisuj na kartach odpowiedzi, pamiętając o podaniu numeru zadania. Układ graficzny CKE 20 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Scenariusz lekcji matematyki w kl. IV

Scenariusz lekcji matematyki w kl. IV Scenariusz lekcji matematyki w kl. IV TEMAT LEKCJI: Okrąg i koło. Treści nauczania z podstawy programowej : Wielokąty, koła, okręgi. Uczeń wskazuje na rysunku, a także rysuje cięciwę, średnicę, promień

Bardziej szczegółowo

KONSTRUKCJE I PRZEKSZTAŁCENIA GEOMETRYCZNE WERSJA A

KONSTRUKCJE I PRZEKSZTAŁCENIA GEOMETRYCZNE WERSJA A Test sprawdzający wiadomości ucznia po dziale Konstrukcje i przekształcenia geometryczne w klasie II gimnazjum. Nauka odbywa się wg programu Matematyka dla przyszłości. Opracowała nauczycielka Gimnazjum

Bardziej szczegółowo

O zeszycie ćwiczeń. Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności

O zeszycie ćwiczeń. Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności O zeszycie ćwiczeń Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności Tytuł modułu odpowiada tytułowi z podręcznika Każdą lekcję

Bardziej szczegółowo

Metryczka Justyna Płonka Szkoła Podstawowa nr 1 z Oddziałami Integracyjnymi im. Jana III Sobieskiego w Kozach

Metryczka Justyna Płonka Szkoła Podstawowa nr 1 z Oddziałami Integracyjnymi im. Jana III Sobieskiego w Kozach Metryczka Justyna Płonka Szkoła Podstawowa nr 1 z Oddziałami Integracyjnymi im. Jana III Sobieskiego w Kozach Temat: Dzielenie z resztą Dział: Liczby i działania Klasa: IV szkoły podstawowej Czas realizacji:

Bardziej szczegółowo

WYKRESY FUNKCJI LINIOWEJ

WYKRESY FUNKCJI LINIOWEJ GIMNAZJUM NR 2 W KAMIENNEJ GÓRZE WYKRESY FUNKCJI LINIOWEJ Oprcowała Wiesława Kurnyta Kamienna Góra, 2006 Oto wypisy z Podstawy programowej o nauczaniu matematyki w gimnazjum Cele edukacyjne 1. E Przyswajanie

Bardziej szczegółowo

Konspekt lekcji informatyki/zajęć komputerowych

Konspekt lekcji informatyki/zajęć komputerowych Konspekt lekcji informatyki/zajęć komputerowych 1. Data Przedmiot 2. Miejsce odbywania zajęć: Szkoła Podstawowa 3. Temat jednostki metodycznej Praca z Internetem 4. Temat jednostki lekcyjnej Internet jako

Bardziej szczegółowo

Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1

Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1 Scenariusz zajęć z matematyki dla klasy I gimnazjum z wykorzystaniem programu edurom Matematyka G1 Rozdział V: Równania i nierówności I stopnia z jedną niewiadomą Temat: Ćwiczenia utrwalające przekształcanie

Bardziej szczegółowo

KONSPEKT LEKCJI. matematyka VI Symetria w geometrii, przyrodzie, architekturze i sztuce oraz w Ŝyciu codziennym i technice.

KONSPEKT LEKCJI. matematyka VI Symetria w geometrii, przyrodzie, architekturze i sztuce oraz w Ŝyciu codziennym i technice. KONSPEKT LEKCJI Przedmiot: Klasa: Temat: matematyka VI Symetria w geometrii, przyrodzie, architekturze i sztuce oraz w Ŝyciu codziennym i technice. Prezentacja efektów pracy uczniów metodą projektu. Cele:

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa.

SCENARIUSZ LEKCJI. 4.Integracja: Wewnątrzprzedmiotowa. 1. Informacje wstępne: Publiczne Gimnazjum Nr 6 w Opolu Data:17.04.2013 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska SCENARIUSZ LEKCJI 2.Program

Bardziej szczegółowo

Temat: Wielokąty foremne- pola i obwody wielokątów foremnych.

Temat: Wielokąty foremne- pola i obwody wielokątów foremnych. Spotkanie 4 Temat: Wielokąty foremne- pola i obwody wielokątów foremnych. Potrzebne pomoce: linijka, cyrkiel i nożyczki Plan zajęć 1. Definicja wielokąta foremnego. Regularny kształt, boki jednakowej długości,

Bardziej szczegółowo

Temat: Zapisywanie i odczytywanie liczb w systemie rzymskim

Temat: Zapisywanie i odczytywanie liczb w systemie rzymskim Temat: Zapisywanie i odczytywanie liczb w systemie rzymskim Cele lekcji: Uczeń: - odczytuje znaki rzymskie: I, V, X, L, C, D, M, - zapisuje liczby naturalne dodatnie w systemie rzymskim, - odczytuje liczby

Bardziej szczegółowo

Scenariusz lekcji fizyki Temat: OD CZEGO ZALEŻY SIŁA TARCIA?

Scenariusz lekcji fizyki Temat: OD CZEGO ZALEŻY SIŁA TARCIA? Scenariusz lekcji fizyki Temat: OD CZEGO ZALEŻY SIŁA TARCIA? I KLASA- Gimnazjum Towarzystwa Salezjańskiego Studenci Uniwersytetu Szczecińskiego prowadzący lekcje fizyki: Sylwia Tillack, Ewelina Świerczewska

Bardziej szczegółowo

Przeanalizujemy przykład pozwalający ustalić zależność między bokami prostokąta, którego pole wynosi 12 cm 2.

Przeanalizujemy przykład pozwalający ustalić zależność między bokami prostokąta, którego pole wynosi 12 cm 2. SCENARIUSZ LEKCJI MATEMATYKI W KLASIE I GIMNAZJUM Temat: Wielkości odwrotnie proporcjonalne. Cele ogólne: -Rozwijanie umiejętności logicznego myślenia, współpracy i współodpowiedzialności. Cele operacyjne:

Bardziej szczegółowo

MATEMATYKA ROZPOZNAWANIE FIGUR PRZESTRZENNYCH

MATEMATYKA ROZPOZNAWANIE FIGUR PRZESTRZENNYCH SCENARIUSZ LEKCJI PRZEDMIOT: MATEMATYKA TEMAT: ROZPOZNAWANIE FIGUR PRZESTRZENNYCH AUTOR SCENARIUSZA : mgr Elżbieta Szmytkowska OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Rozpoznawanie

Bardziej szczegółowo

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.

Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22. Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie

Bardziej szczegółowo

Konspekt do lekcji matematyki w klasie I

Konspekt do lekcji matematyki w klasie I Konspekt do lekcji matematyki w klasie I Prowadzący: Edyta Pikor Miejsce: Publiczne Gimnazjum w Jacie Temat lekcji: O ile procent więcej, o ile procent mniej. Punkty procentowe. Cel główny: Poznanie podstawowych

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

ORIGAMI Z opornym papierem zmierz się i TY!

ORIGAMI Z opornym papierem zmierz się i TY! Najłatwiej przemawia do nas to co możemy zobaczyć, dotknąć, spróbować samodzielnie wykonać. Każdy sukces cieszy bardziej jak można się nim pochwalić. ORIGAMI Z opornym papierem zmierz się i TY! 1 Co to

Bardziej szczegółowo

Scenariusz lekcji: Przyczyny powstawania wypadków w ruchu drogowym powstające z winy dzieci (część 1)

Scenariusz lekcji: Przyczyny powstawania wypadków w ruchu drogowym powstające z winy dzieci (część 1) Scenariusz lekcji: Przyczyny powstawania wypadków w ruchu drogowym powstające z winy dzieci (część 1) 1. Cele lekcji a) Wiadomości Uczeń zna: pojęcia: wypadek drogowy, kolizja drogowa, rodzaje wypadków

Bardziej szczegółowo

Scenariusz zajęć do programu kształcenia Myślę-działam-idę w świat

Scenariusz zajęć do programu kształcenia Myślę-działam-idę w świat Scenariusz zajęć do programu kształcenia Myślę-działam-idę w świat Autor: Małgorzata Urbańska Klasa III Edukacja: matematyczna, przyrodnicza, plastyczna, Cel/cele zajęć: - rozwijanie twórczego i logicznego

Bardziej szczegółowo

KLASA I (A) zna; (B) rozumie; (C) umie zastosować wiadomości w sytuacjach typowych; (D) umie zastosować wiadomości w sytuacjach problemowych;

KLASA I (A) zna; (B) rozumie; (C) umie zastosować wiadomości w sytuacjach typowych; (D) umie zastosować wiadomości w sytuacjach problemowych; KLASA I (A) zna; (B) rozumie; (C) umie zastosować wiadomości w sytuacjach typowych; (D) umie zastosować wiadomości w sytuacjach problemowych; 1. Liczby wymierne wie co to jest liczba ujemna. Zaznacza na

Bardziej szczegółowo

PAPIEROWE ZABAWY GEOMETRYCZNE

PAPIEROWE ZABAWY GEOMETRYCZNE ZUZANNA CYUNEL MAREK ŁOBAZIEWICZ z klasy 4a PAPIEROWE ZABAWY GEOMETRYCZNE ODWZOROWANIE FIGUR GEOMETRYCZNYCH BEZ UŻYCIA PRZYRZĄDÓW praca wykonana pod kierunkiem mgr Piotra Dylewskiego Szkoła Podstawowa

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Scenariusz zajęć z matematyki dla klasy VI szkoły podstawowej z wykorzystaniem programu edurom Matematyka P6

Scenariusz zajęć z matematyki dla klasy VI szkoły podstawowej z wykorzystaniem programu edurom Matematyka P6 Scenariusz zajęć z matematyki dla klasy VI szkoły podstawowej z wykorzystaniem programu edurom Matematyka P6 Rozdział V: Figury na płaszczyźnie Lekcja 29: Dwusieczna kąta Temat: Konstrukcja dwusiecznej

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie

Bardziej szczegółowo

WYKORZYSTANIE KOMPUTERA NA LEKCJI MATEMATYKI W I KLASIE GIMNAZJUM.

WYKORZYSTANIE KOMPUTERA NA LEKCJI MATEMATYKI W I KLASIE GIMNAZJUM. WYKORZYSTANIE KOMPUTERA NA LEKCJI MATEMATYKI W I KLASIE GIMNAZJUM. Rozwój techniki komputerowej oraz oprogramowania stwarza nowe możliwości dydaktyczne dla każdego przedmiotu nauczanego w szkole. Nowoczesne

Bardziej szczegółowo

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI. 1. Pomiar osiągnięć ucznia odbywa się za pomocą następujących narzędzi:

KRYTERIA OCEN Z MATEMATYKI. 1. Pomiar osiągnięć ucznia odbywa się za pomocą następujących narzędzi: KRYTERIA OCEN Z MATEMATYKI I. Formy oceniania ucznia 1. Pomiar osiągnięć ucznia odbywa się za pomocą następujących narzędzi: a. prace klasowe podsumowujące wiadomości z danego działu (również w postaci

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

Koło matematyczne 2abc

Koło matematyczne 2abc Koło matematyczne 2abc Autor: W. Kamińska 17.09.2015. Zmieniony 08.12.2015. "TO CO MUSIAŁEŚ ODKRYĆ SAMODZIELNIE, ZOSTANIE W TWYM UMYŚLE ŚCIEŻKĄ, KTÓRĄ W RAZIE POTRZEBY MOŻESZ PÓJŚĆ RAZ JESZCZE" G. CH.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 NAUCZYCIEL: PODRĘCZNIK: mgr Marta Kamińska Liczy się matematyka wyd. WSiP Na lekcjach matematyki

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

SCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa

SCENARIUSZ LEKCJI. 3.Temat lekcji: Wyrażenia algebraiczne -powtórzenie i utrwalenie wiadomości. 4.Integracja: wewnątrzprzedmiotowa SCENARIUSZ LEKCJI.Informacje wstępne Publiczne Gimnazjum Nr 6 w Opolu Data:2.2.202 r. Klasa:.II b Czas trwania zajęć: 45 min. Nauczany przedmiot: matematyka Nauczyciel: Ewa Jakubowska 2.Program nauczania

Bardziej szczegółowo

Scenariusz lekcji otwartej matematyki w klasie II gimnazjum

Scenariusz lekcji otwartej matematyki w klasie II gimnazjum Scenariusz lekcji otwartej matematyki w klasie II gimnazjum Prowadzący: Beata Jędrys Dział: Twierdzenie Pitagorasa TEMAT: Szczególne trójkąty prostokątne Odniesienie do podstawy programowej: FIGURY PŁASKIE:

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017

Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017 Regulamin Przedmiotowy I Konkursu Matematycznego dla uczniów szkół podstawowych województwa świętokrzyskiego w roku szkolnym 2016/2017 I. Informacje ogólne 1. Niniejszy Regulamin określa szczegółowe wymagania

Bardziej szczegółowo

PRZYKŁADOWE SCENARIUSZE ZAJĘĆ

PRZYKŁADOWE SCENARIUSZE ZAJĘĆ PRZYKŁADOWE SCENARIUSZE ZAJĘĆ SCENARIUSZ NR 1 Temat zajęć: Obliczanie pól i obwodów prostokątów. Cele zajęć: Uczeń: Zna jednostki pola; Umie obliczyć pole i obwód prostokąta i kwadratu; Wykorzystuje swoje

Bardziej szczegółowo

SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki

SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki SCENARIUSZ LEKCJI Przesuwanie paraboli - wykorzystanie arkusza kalkulacyjnego na lekcjach matematyki OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń:

SCENARIUSZ LEKCJI. Podstawa programowa: Wyrażenia algebraiczne. Uczeń: SCENARIUSZ LEKCJI 1. Informacje wstępne: Szkoła : Publiczne Gimnazjum nr 6 w Opolu Data : 22.03.2013 Klasa : I A Czas trwania zajęć : 45 minut Nauczany przedmiot: matematyka 2. Program nauczania: Matematyka

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA

SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA SCENARIUSZ ZAJĘĆ SZKOLNEGO KOŁA NAUKOWEGO Z PRZEDMIOTU MATEMATYKA PROWADZONEGO W RAMACH PROJEKTU AKADEMIA UCZNIOWSKA Temat lekcji Ile istnieje parkietaży platońskich Na podstawie pracy Alicji Nimirskiej

Bardziej szczegółowo

Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie

Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA Marzena Bardzik PRZEDMIOTOWY SYSTEM OCENIANIA z matematyki w klasie IV i VI został opracowany w oparciu o: rozporządzenie MEN (z dnia 30 kwietnia 2007 roku sprawie warunków i sposobu oceniania, klasyfikowania

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE (opracowali Janina Kurek, Henryk Zarach, Katarzyna Matusz) ZASADY PSO 1. PSO ma na celu czytelne przedstawienie wymagań

Bardziej szczegółowo

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m

Bardziej szczegółowo

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny: informatyka matematyka Rozmaitości matematyczne

Bardziej szczegółowo

Z przestrzeni na płaszczyznę

Z przestrzeni na płaszczyznę Z przestrzeni na płaszczyznę Wstęp W naszej pracy zajęłyśmy się nietypowymi parkietażami. Zwykle parkietaże związane są z wielokątami i innymi figurami płaskimi. Postanowiłyśmy zbadać jakie parkietaże

Bardziej szczegółowo

Scenariusz zajęć nr 4

Scenariusz zajęć nr 4 Autor: Maria Piotrowska Blok tematyczny: Górska wyprawa Scenariusz zajęć nr 4 Temat dnia: 9 kapeluszy. I. Czas realizacji: 2 jednostki lekcyjne. II. Czynności przed lekcyjne: przygotowanie różnego rodzaju

Bardziej szczegółowo

Renata Krzemińska. nauczyciel matematyki i informatyki

Renata Krzemińska. nauczyciel matematyki i informatyki Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska

Bardziej szczegółowo

REGULAMIN SZCZEGÓŁOWY KONKURSU MATEMATYCZNEGO SZKOLNA LIGA ZADANIOWA

REGULAMIN SZCZEGÓŁOWY KONKURSU MATEMATYCZNEGO SZKOLNA LIGA ZADANIOWA REGULAMIN SZCZEGÓŁOWY KONKURSU MATEMATYCZNEGO SZKOLNA LIGA ZADANIOWA dla uczniów szkoły podstawowej oraz klas gimnazjum w roku szkolnym 2014/2015 I. CELE KONKURSU Celem Konkursu jest pobudzanie i rozwijanie

Bardziej szczegółowo

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi: Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS I, II, III W GIMNAZJUM NR 2 W LUDŹMIERZU I. Dokumenty prawne stanowiące podstawę PSO Przedmiotowy system oceniania opracowany został po przeprowadzonej

Bardziej szczegółowo

Projekt Matematyka w SIÓDEMCE na siódemkę! Szkolenie dla nauczycieli część 2. Wybór i opracowanie: Maria Krogulec - Sobowiec

Projekt Matematyka w SIÓDEMCE na siódemkę! Szkolenie dla nauczycieli część 2. Wybór i opracowanie: Maria Krogulec - Sobowiec Projekt Matematyka w SIÓDEMCE na siódemkę! Szkolenie dla nauczycieli część 2. Wybór i opracowanie: Maria Krogulec - Sobowiec Cele projektu Przygotowanie nauczycieli edukacji wczesnoszkolnej, matematyki

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2014/2015 EGZAMIN W KLASIE TRZEIEJ GIMNAZJUM W ROKU SZKOLNYM 014/015 ZĘŚĆ. MATEMATYKA ZASADY OENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-M1X, GM-M, GM-M4, GM-M5, GM-M1L, GM-M1U KWIEIEŃ 015 Zadanie 1. (0 1) I. Wykorzystanie

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I

MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia

Bardziej szczegółowo

Unia Europejska. http://pl.wikipedia.org/wiki/plik:flag_of_europe.svg

Unia Europejska. http://pl.wikipedia.org/wiki/plik:flag_of_europe.svg Unia Europejska http://pl.wikipedia.org/wiki/plik:flag_of_europe.svg Scenariusz zajęć dla edukacji wczesnoszkolnej z elementami języka angielskiego realizowany w ramach programu własnego Jestem Polakiem

Bardziej szczegółowo

Tworzenie siatek brył bez kleju w programie GeoGebra

Tworzenie siatek brył bez kleju w programie GeoGebra Tworzenie siatek brył bez kleju w programie GeoGebra Bryłki bez kleju znam od dawna i jestem nimi oczarowana. Moi uczniowie i koleżanki też je znają. Nie jeden raz pytałam Wacka Zawadowskiego kto tworzy

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne)

Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne) Przekształcenia wykresu funkcji wykładniczej - scenariusz lekcji. ( czas realizacji: 2- wie godziny lekcyjne) Opracowała: Marlena Lisiecka Cele realizowane podczas lekcji: - znajdowanie potrzebnych informacji

Bardziej szczegółowo