Przedmiotowe zasady oceniania z matematyki w klasach I-III Gimnazjum w Rychlikach. od roku 2015/2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przedmiotowe zasady oceniania z matematyki w klasach I-III Gimnazjum w Rychlikach. od roku 2015/2016"

Transkrypt

1 Przedmiotowe zasady oceniania z matematyki w klasach I-III Gimnazjum w Rychlikach I. Ogólne zasady oceniania uczniów od roku 2015/ Ocenianie osiągnięć edukacyjnych ucznia polega na rozpoznawaniu przez nauczyciela postępów w opanowaniu przez ucznia wiadomości i umiejętności oraz jego poziomu w stosunku do wymagań edukacyjnych wynikających z podstawy programowej i realizowanych w szkole programów nauczania, opracowanych zgodnie z nią. 2. Nauczyciel: informuje ucznia o poziomie jego osiągnięć edukacyjnych oraz o postępach w tym zakresie; udziela uczniowi pomocy w samodzielnym planowaniu swojego rozwoju; motywuje ucznia do dalszych postępów w nauce; dostarcza rodzicom informacji o postępach, trudnościach w nauce oraz specjalnych uzdolnieniach ucznia. 3. Oceny są jawne dla ucznia i jego rodziców. 4. Na wniosek ucznia lub jego rodziców nauczyciel uzasadnia ustaloną ocenę w sposób określony w statucie szkoły. 5. Na wniosek ucznia lub jego rodziców sprawdzone i ocenione pisemne prace kontrolne są udostępniane do wglądu uczniowi lub jego rodzicom. 6. Szczegółowe warunki i sposób oceniania wewnątrzszkolnego określa statut szkoły. II. Kryteria oceniania poszczególnych form aktywności Ocenie podlegają: prace klasowe, sprawdziany, odpowiedzi ustne, prace domowe, ćwiczenia praktyczne, praca ucznia na lekcji, prace dodatkowe oraz szczególne osiągnięcia. 1. Prace klasowe przeprowadza się w formie pisemnej, a ich celem jest sprawdzenie wiadomości i umiejętności ucznia z zakresu danego działu. Prace klasowe planuje się na zakończenie każdego działu. Uczeń jest informowany o planowanej pracy klasowej z co najmniej tygodniowym wyprzedzeniem. Przed każdą pracą klasową nauczyciel podaje jej zakres programowy. Każdą pracę klasową poprzedza lekcja (lub dwie lekcje) powtórzeniowa, podczas której nauczyciel zwraca uwagę uczniów na najważniejsze zagadnienia z danego działu. Praca klasowa umożliwia sprawdzenie wiadomości i umiejętności na wszystkich poziomach wymagań edukacyjnych od koniecznego do wykraczającego. Zadania z pracy klasowej są przez nauczyciela omawiane i poprawiane po oddaniu prac. 2. Sprawdziany (kartkówki) przeprowadza się w formie pisemnej, a ich celem jest sprawdzenie wiadomości i umiejętności ucznia z zakresu programowego 2, 3 ostatnich jednostek lekcyjnych. Nauczyciel nie ma obowiązku uprzedzania uczniów o terminie i zakresie programowym sprawdzianu. 1

2 Sprawdzian jest tak skonstruowany, by uczeń mógł wykonać wszystkie polecenia w czasie nie dłuższym niż 15 minut. Sprawdzian jest oceniany w skali punktowej, a liczba punktów jest przeliczana na ocenę zgodnie z zasadami WSO.. 3. Odpowiedź ustna obejmuje zakres programowy aktualnie realizowanego działu. Oceniając odpowiedź ustną, nauczyciel bierze pod uwagę: zgodność wypowiedzi z postawionym pytaniem, prawidłowe posługiwanie się pojęciami, zawartość merytoryczną wypowiedzi, sposób formułowania wypowiedzi. 4. Praca domowa jest pisemną lub ustną formą ćwiczenia umiejętności i utrwalania wiadomości zdobytych przez ucznia podczas lekcji. Pisemną pracę domową uczeń wykonuje w zeszycie, w zeszycie ćwiczeń lub w formie zleconej przez nauczyciela. Uczeń może trzy razy w semestrze nie mieć odrobionej pracy domowej bez konsekwencji, za każdy następny brak otrzymuje ocenę niedostateczną. Błędnie wykonana praca domowa jest sygnałem dla nauczyciela, mówiącym o konieczności wprowadzenia dodatkowych ćwiczeń utrwalających umiejętności i nie może być oceniona negatywnie. Przy wystawianiu oceny za pracę domową nauczyciel bierze pod uwagę samodzielność, poprawność i estetykę wykonania. 5. Aktywność i praca ucznia na lekcji Ocenę pozytywną uczeń może uzyskać m.in. za samodzielne wykonanie krótkiej pracy na lekcji, krótką prawidłową odpowiedź ustną, aktywną pracę w grupie, pomoc koleżeńską na lekcji przy rozwiązaniu problemu, przygotowanie do lekcji. Ocenę niedostateczna uczeń może uzyskać m.in. za brak przygotowania do lekcji (np. brak przyrządów, zeszytu, zeszytu ćwiczeń), brak zaangażowania na lekcji.. 6. Ćwiczenia praktyczne obejmują zadania praktyczne, które uczeń wykonuje podczas lekcji. Oceniając je, nauczyciel bierze pod uwagę: wartość merytoryczną, dokładność wykonania polecenia, staranność i estetykę, w wypadku pracy w grupie stopień zaangażowania w wykonanie ćwiczenia. 7. Prace dodatkowe obejmują dodatkowe zadania dla zainteresowanych uczniów, prace projektowe wykonane indywidualnie lub zespołowo, przygotowanie gazetki ściennej, wykonanie pomocy naukowych, prezentacji. Oceniając ten rodzaj pracy, nauczyciel bierze pod uwagę m.in.: wartość merytoryczną pracy, estetykę wykonania, wkład pracy ucznia, sposób prezentacji, oryginalność i pomysłowość pracy. 8. Szczególne osiągnięcia uczniów, w tym udział w konkursach przedmiotowych, szkolnych i międzyszkolnych oceniane są dodatkowo oceną pozytywną ( db, bdb, cel) zależnie od uzyskanego wyniku. III. Kryteria wystawiania oceny po I semestrze oraz na koniec roku szkolnego 2

3 1. Klasyfikacja semestralna i roczna polega na podsumowaniu osiągnięć edukacyjnych ucznia oraz ustaleniu oceny klasyfikacyjnej. 2. Zgodnie z zapisami WSO nauczyciele i wychowawcy na początku każdego roku szkolnego informują uczniów oraz ich rodziców o: wymaganiach edukacyjnych niezbędnych do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, sposobach sprawdzania osiągnięć edukacyjnych uczniów, warunkach i trybie uzyskania wyższej niż przewidywana oceny klasyfikacyjnej, trybie odwoływania od wystawionej oceny klasyfikacyjnej. 3. Przy wystawianiu oceny śródrocznej lub rocznej nauczyciel bierze pod uwagę stopień opanowania poszczególnych działów tematycznych, oceniany na podstawie wymienionych w punkcie II różnych form sprawdzania wiadomości i umiejętności. Sposób wystawiania oceny semestralnej: oceny z prac klasowych mają wagę 10 oceny z kartkówek mają wagę 5 oceny z prac domowych, odpowiedzi przy tablicy, aktywność na lekcjach, za pracę w grupach mają wagę 2 uczeń może otrzymać ocenę za udział w konkursach z wagą 10, jeżeli uzyskał wysoki wynik w konkursie lub wagą 5 jeżeli wynik jest dobry. Obliczamy średnią ważoną.( w dzienniku elektronicznym wyświetlana w ostatniej kolumnie w ocenach ucznia) Ocena Średnia ważona niedostateczna Poniżej 1,6 Dopuszczająca Od 1.7 do 2,6 Dostateczna Od 2,7 do 3,6 Dobra Od 3,7 do 4,6 Bardzo dobra Od 4,7 do 5,3 Celującą Powyżej 5,4 Wystawiając ocenę roczną bierze się pod uwagę również ocenę na pierwszy semestr. W szczególnych sytuacjach ostateczną decyzję o ocenie podejmuje nauczyciel. 3

4 IV. Zasady uzupełniania braków i poprawiania ocen 1. Oceny ze sprawdzianów poprawiane są na sprawdzianach poprawkowych lub ustnie w terminie dwóch tygodni po omówieniu sprawdzianu i wystawieniu ocen. 2. Oceny z kartkówek może uczeń poprawić w ciągu tygodnia od wystawienia oceny. 3. Uczeń może uzupełnić braki w wiedzy i umiejętnościach, biorąc udział w zajęciach wyrównawczych lub drogą indywidualnych konsultacji z nauczycielem. 4. Sposób poprawiania klasyfikacyjnej oceny niedostatecznej semestralnej lub rocznej regulują przepisy WSO i rozporządzenia MEN. V. Zasady badania wyników nauczania 1. Badanie wyników nauczania ma na celu diagnozowanie efektów kształcenia. 2. Badanie to odbywa się w trzech etapach: diagnozy wstępnej, diagnozy na zakończenie I semestru nauki, diagnozy na koniec roku szkolnego. Szczegółowe wymagania na poszczególne oceny z matematyki : KLASA I Stopień dopuszczający otrzymuje uczeń, który potrafi: Zapisać liczbę w postaci potęgi o wykładniku naturalnym Obliczyć procent z liczby Oszacować lub obliczyć długość boku kwadratu, gdy dane jest jego pole Oszacować lub obliczyć długość krawędzi sześcianu, gdy dana jest jego objętość Podać współrzędne punktu zaznaczonego w układzie współrzędnych Obliczyć pole wielokąta Odczytać informację z diagramu Opisać sytuację przedstawioną na wykresie punktowym lub liniowym Obliczyć wartość wyrażenia algebraicznego Wskazać liczbę, która podstawiona w miejsce niewiadomej da po wykonaniu działań równość prawdziwą Wskazać kolejność wykonywania działań w wyrażeniach Narysować figurę symetryczną do danej względem danej osi układu współrzędnych Narysować figurę symetryczną w symetrii środkowej 4

5 Obliczyć wartość potęgi o wykładniku naturalnym Stopień dostateczny otrzymuje uczeń, który spełnia wymagania na stopień dopuszczający oraz: Zamienić ułamek zwykły na dziesiętny Narysować siatkę graniastosłupa czworokątnego i zbudować z niej model tego graniastosłupa Porównać dwie liczby przedstawione w postaci potęg o tych samych podstawach Obliczyć pole powierzchni graniastosłupa prostego Obliczyć objętość graniastosłupa prostego Porównać dwie liczby przedstawione w postaci potęg o tych samych wykładnikach Uporządkować liczby podane w postaci potęgi o takich samych podstawach i różnych wykładnikach naturalnych Zapisać w postaci jednej potęgi iloczyn potęg o tych samych podstawach i wykładnikach naturalnych Zapisać w postaci jednej potęgi iloraz potęg o tych samych podstawach i naturalnych wykładnikach Oszacować wynik działania i za pomocą rachunku sprawdzić poprawność swoich przewidywać Powiedzieć, jakie może być wzajemne położenie dwóch okręgów Podać współrzędne wierzchołków wielokąta narysowanego w układzie współrzędnych Porównać informacje podane na dwóch diagramach Sporządzić diagram słupkowy na podstawie podanych informacji Odczytać dane na diagramie kołowym Opisać obwód narysowanej figury za pomocą wyrażenia algebraicznego Narysować figurę, której obwód będzie interpretacją wyrażenia algebraicznego Opisać pole figury za pomocą wyrażenia algebraicznego Przeprowadzić redukcję wyrazów podobnych w wyrażeniu algebraicznym Posłużyć się interpretacją wagi do rozwiązania równania typu ax + b = cx + d Do obu stron równania dodać lub od obu stron równania odjąć taką samą liczbę lub wyrażenie 5

6 Obie strony równania pomnożyć lub podzielić przez tę samą liczbę różną od zera Sprawdzić rozwiązanie równania Sprawdzić zgodność rozwiązania zadania z jego treścią Mając dane dwie figury symetryczne, wskazać symetrię Stopień dobry otrzymuje uczeń, który spełnia wymagania na stopień dostateczny oraz: Sprawdzić, czy zależność między dwoma wielkościami jest proporcjonalnością prostą Rozwiązać zadania tekstowe, dotyczące wielkości wprost proporcjonalnych Narysować siatki graniastosłupów prostych o podanych podstawach Naszkicować graniastosłup prosty o danej podstawie Rozwiązywać zadania z treścią metodami arytmetycznymi, algebraicznymi oraz za pomocą rysunku Zapisać w postaci jednej potęgi wyrażenia arytmetyczne, zawierające iloczyny i ilorazy potęg o tych samych podstawach i naturalnych wykładnikach Podać współrzędne czwartego wierzchołka prostokąta, gdy dane są pozostałe Wyznaczyć współrzędne czwartego wierzchołka równoległoboku, rombu lub deltoidu, gdy dane są pozostałe Zaznaczyć w układzie współrzędnych punkty, spełniające podany warunek za pomocą równania Przedstawić dane na diagramie kołowym Obliczyć długość wysokości trapezu, gdy dane są długości jego podstaw i pole Przedstawić daną sytuację za pomocą wykresu punktowego lub liniowego Obliczyć długość jednej z podstaw trapezu, gdy dane są długości drugiej podstawy, wysokości i pola Przenieść niewiadome na jedną, a wiadome na drugą stronę równania, zmieniając przy przenoszeniu znak przed wyrażeniem na przeciwny Rozpoznać równania równoważne Rozwiązywać równania metodą równań równoważnych 6

7 Opisać za pomocą nierówności przedstawiony na osi liczbowej przedział Zapisać treść zadania za pomocą równania Znaleźć obraz figury w symetrii osiowej, środkowej, obrocie, przesunięciu równoległym. Stopień bardzo dobry otrzymuje uczeń, który spełnia wymagania na stopień dobry oraz: Przedstawić liczbę w postaci potęgi o wykładniku ujemnym Opracować wyniki badania ankietowego i przedstawić je na diagramie słupkowym Uzupełnić tabelkę zgodnie z zasadami działania maszynki podanymi za pomocą rysunku lub wzoru Zna cechy przystawania trójkątów. Rozwiązuje zadania dotyczące procentów. Sprawnie wykonać konstrukcje przekształceń geometrycznych. Wykorzystać równania i nierówności do rozwiązywania zadań z treścią. Posługuje się intuicyjnie pojęciem prawdopodobieństwa. Stopień celujący otrzymuje uczeń, który spełnia wymagania na stopień bardzo dobry oraz: Rozwiązywać problemy i łamigłówki matematyczne, dotyczące poznawanych zagadnień Zaplanować realizację tematu pracy długoterminowej, zgromadzić odpowiednie materiały do jego wykonania i podzielić się rezultatami z kolegami Korzystać z matematycznych książek popularnonaukowych Wykorzystywać Internet do zdobycia potrzebnych informacji Korzystać z obudowy internetowej podręcznika dla klasy 1 Matematyka 2001 Wyszukać w różnych źródłach dane przedstawione w postaci potęg i porównać je Zaznaczyć w układzie współrzędnych punkty, spełniające podany warunek za pomocą nierówności Przygotować ankietę na dany temat 7

8 Wykonać obliczenia z wartością bezwzględną. Ocenić szanse zdarzenia losowego. Posiada wiedzę i umiejętności znacznie wykraczające poza poziom programu nauczania w klasie I Samodzielnie i twórczo rozwija własne uzdolnienia Biegle posługuje się zdobytymi wiadomościami Proponuje nietypowe rozwiązania Osiąga sukcesy w konkursach matematycznych na szczeblu pozaszkolnym. KLASA II Stopień dopuszczający otrzymuje uczeń, który potrafi: odczytać informacje z tabeli odczytać informacje z diagramu przedstawić iloczyn potęg o tych samych podstawach w postaci potęgi jednej liczby przedstawić iloraz potęg o tych samych podstawach w postaci potęgi jednej liczby przedstawić potęgę potęgi w postaci potęgi jednej liczby wyznaczyć iloczyn potęg o takim samym wykładniku wyznaczyć iloraz potęg o takim samym wykładniku rozpoznać kąty środkowe i kąty wpisane wskazać kąty wpisane i kąty środkowe oparte na tym samym łuku rozpoznać kąty środkowe i kąty wpisane rozpoznać wielokąty wpisane w okrąg rozpoznać na rysunku styczne i sieczne rozpoznać wielokąty opisane na okręgu określić zależność pomiędzy obwodem koła a jego promieniem zredukować wyrazy podobne w sumie algebraicznej obliczyć pole kwadratu zbudowanego na jednym z boków trójkąta prostokątnego 8

9 wskazać liczbę taką, że po podniesieniu jej do kwadratu, otrzymamy daną liczbę wskazać liczbę taką, że po podniesieniu jej do sześcianu otrzymamy daną liczbę podnosić pierwiastek do potęgi równej stopniowi pierwiastka obliczać wartości kwadratów i pierwiastków kwadratowych zaznaczać punkty o podanych współrzędnych w układzie współrzędnych wyznaczać punkty symetryczne względem osi w układzie współrzędnych wyznaczać punkty symetryczne względem początku układu współrzędnych rozpoznawać i rysować wykresy proporcjonalności prostych rysować wykresy funkcji liniowych sprawdzać, czy punkt należy do wykresu sprawdzać, czy dana para liczb spełnia układ równań graficznie rozwiązywać układy równań sprawdzać, czy podana para liczb jest rozwiązaniem układu równań rozpoznawać wśród danych brył graniastosłupy i ostrosłupy rysować ostrosłupy obliczać objętości ostrosłupów stosować twierdzenie Pitagorasa przewidywać wyniki doświadczenia losowego poszukiwać i porządkować informacje Stopień dostateczny otrzymuje uczeń, który spełnia wymagania na stopień dopuszczający oraz potrafi: obliczyć średnią arytmetyczną wyznaczyć modę danych wyników sporządzić diagram słupkowy na podstawie tabeli uprościć wyrażenie korzystając ze wzorów na iloczyn i iloraz potęg o tych samych podstawach oraz potęgę potęgi obliczyć wartość wyrażenia stosując wzory dotyczące działań na potęgach obliczyć potęgę danej liczby także o wykładniku ujemnym obliczyć miary kątów środkowych i wpisanych korzystając z twierdzenia o kącie wpisanym i środkowym wskazać środek okręgu opisanego na trójkącie 9

10 opisać okrąg na trójkącie wskazać środek okręgu opisanego na czworokącie opisać okrąg na czworokącie wskazać środek okręgu wpisanego w trójkąt wyznaczyć środek okręgu wpisanego w trójkąt wyznaczyć środek okręgu wpisanego w czworokąt obliczyć pole koła obliczyć długość okręgu pomnożyć dwie sumy algebraiczne sprawdzić, czy trójkąt jest prostokątny zamieniać iloczyn pierwiastków na pierwiastek iloczynu zamieniać iloraz pierwiastków na pierwiastek ilorazu stosować reguły kolejności wykonywania działań zastosować twierdzenie Pitagorasa do obliczania długości boków trójkąta prostokątnego rozstrzygać na podstawie twierdzenia odwrotnego do twierdzenia Pitagorasa, czy trójkąt o podanych długościach boków jest trójkątem prostokątnym stosować twierdzenie Pitagorasa do rozwiązywania zadań obliczać długości przekątnej prostokąta obliczać odległość punktu o podanych współrzędnych od początku układu rozstrzygać na podstawie podanych współrzędnych punktów, czy punkty są symetryczne względem osi OX, OY, początku układu współrzędnych rysować figury symetryczne względem osi układu współrzędnych lub względem początku układu współrzędnych przedstawiać przyporządkowania na różne sposoby określać dziedzinę i przeciwdziedzinę przyporządkowania określać dziedzinę, przeciwdziedzinę i zbiór wartości prostych funkcji rozpoznawać, które przyporządkować jest, a które nie jest funkcją odczytywać z wykresu funkcji wartości funkcji dla 10

11 danego argumentu i odwrotnie, znajdywać argumenty dla danej wartości funkcji Sprawdzać, czy para liczb spełnia równanie stopnia pierwszego z dwiema niewiadomymi rozwiązywać graficzne równania stopnia pierwszego z dwiema niewiadomymi,przedstawiać wykresy równań w układzie współrzędnych rozwiązywać układy równań metodą podstawiania rysować siatki ostrosłupów obliczać pola powierzchni ostrosłupów wskazywać trójkąty prostokątne w przekrojach graniastosłupów i ostrosłupów stosować twierdzenie odwrotne do twierdzenia Pitagorasa przedstawiać na schematach przebieg doświadczenia losowego określać szanse w typowych grach i doświadczeniach losowych obliczać należne odsetki po roku oszczędzania 11

12 Stopień dobry otrzymuje uczeń, który spełnia wymagania na ocenę dostateczną oraz potrafi: zapisać związki pomiędzy jednostkami metrycznymi wykorzystując potęgi stosować działania na potęgach o wykładniku dodatnim do przekształcania wyrażeń arytmetycznych przedstawić liczbę w postaci potęgi. skorzystać z poznanych wzorów dotyczących potęg skorzystać z własności wielokątów wpisanych w okrąg skorzystać z własności stycznych i siecznych w różnych sytuacjach skorzystać z własności wielokątów opisanych na okręgu obliczyć i oszacować z zadaną dokładnością długość okręgu, gdy dany jest jego promień. obliczyć z zadaną dokładnością długość promienia, gdy dana jest długość okręgu obliczyć z zadaną dokładnością pole koła, gdy dany jest jego promień wyznaczyć określoną wielkość z podanego wzoru obliczać wartości pierwiastków drugiego i trzeciego stopnia wyłączać czynnik przed znak pierwiastka stosować wzór na długość przekątnej kwadratu stosować wzór na długość wysokości trójkąta równobocznego obliczać pola danych trójkątów i czworokątów korzystać z twierdzenia Pitagorasa i twierdzenia odwrotnego korzystać z poznanych wzorów przy wyliczaniu długości odcinka wyznaczać długość odcinka o podanych współrzędnych jego końców określać zależności między współrzędnymi punktów symetrycznych względem osi układu współrzędnych i względem początku układu współrzędnych opisywać przyporządkowania na podstawie rysunków, grafów tabelek, wykresów 12

13 rozpoznawać, czy dany wykres jest wykresem funkcji wyznaczać wzory proporcjonalności prostych wyznaczać ilości ścian, krawędzi, wierzchołków, wielokąta będącego podstawą ostrosłupa na podstawie podanej własności ostrosłupa wykorzystywać wzory na pole i objętości ostrosłupów Stopień bardzo dobry otrzymuje uczeń, który spełnia wymagania na ocenę dobry oraz potrafi: odczytać z diagramu słupkowego modę wyników stosować działania na potęgach o wykładniku dodatnim do przekształcania wyrażeń algebraicznych zapisać związki pomiędzy jednostkami metrycznymi wykorzystując potęgi o wykładnikach ujemnych zapisać liczby dziesiętne wykorzystując potęgi o wykładnikach ujemnych skonstruować sześciokąt foremny wpisany w okrąg skonstruować styczna do okręgu przechodząca przez dany punkt obliczyć pole wycinka kołowego obliczyć pole pierścienia kołowego pomnożyć przez siebie więcej niż dwie sumy algebraiczne udowodnić twierdzenie Pitagorasa włączać czynnik pod znak pierwiastka rysować odcinki o długościach wyrażonych pierwiastkiem kwadratowym z liczby naturalnej sprawdzać, czy trójkąty o podanych współrzędnych wierzchołków są prostokątne wyznaczać obraz punktu o podanych współrzędnych w obrocie o kąt prosty wokół początku układu współrzędnych określać położenie wykresu proporcjonalności prostych w zależności od współczynnika proporcjonalności rozpoznawać i nazywać typy układów równań porównywać i analizować dane przedstawione w różny sposób planować i stosować obliczenia na kalkulatorze Stopień celujący otrzymuje uczeń który spełnia wymagania na stopień bardzo dobry oraz potrafi: 13

14 KLASA III uzasadniać prawa działań na potęgach uzasadnić poprawność konstrukcji stycznej do okręgu wyprowadzić wzór na pole trójkąta o danym obwodzie opisanego na okręgu o danym promieniu rozpoznać odcinki kołowe obliczyć pole odcinka kołowego, na przykład gdy dany jest promień i kąt 30, 45, 60, 90 stopni. przekształcić sumę algebraiczną na iloczyn uprościć wyrażenia, w których występuje sześcian sumy dwóch wyrażeń uprościć wyrażenia, w których występuje sześcian różnicy dwóch wyrażeń przekształcić wyrażenie algebraiczne wykorzystując wzór na różnicę sześcianów dwóch wyrażeń algebraicznych zbudować twierdzenie odwrotne do danego sformułować i udowodnić twierdzenia analogiczne do twierdzenia Pitagorasa dla innych figur niż kwadraty zbudowanych na jego bokach usuwać niewymierność z mianownika ułamka wyznaczyć wzór na pole trójkąta równobocznego o dowolnej długości boku rysować wykres funkcji na podstawie jej różnych opisów opisywać sytuację za pomocą równania stopnia pierwszego z dwiema niewiadomymi zapisywać układy równań na podstawie ilustracji w układzie współrzędnych korzystać z wzoru Eulera dla ostrosłupów tworzyć modele probabilistyczne dla typowych doświadczeń losowych oraz osiąga sukcesy w konkursach matematycznych na szczeblu pozaszkolnym, samodzielnie i twórczo rozwija swoje własne uzdolnienia. Stopień dopuszczający otrzymuje uczeń, który potrafi: odczytać dane przedstawione na diagramach i w tabelach 14

15 sprawdzać, czy podana para liczb jest rozwiązaniem układu równań przekształcić układy równań na równoważne układy równań rozwiązać układy równań metodą podstawiania rozwiązać proste zadania tekstowe za pomocą równania lub układów równań rozpoznać wielkości wprost i odwrotnie proporcjonalne podać przykłady przyporządkowania podać przykłady funkcji z życia codziennego odczytać podstawowe własności funkcji sprawdzić czy dane liczby tworzą proporcje wskazać wyrazy skrajne i środkowe proporcji wyznaczyć skale podobieństw rysować figury podobne rozpoznawać trójkąty podobne w oparciu o cechy podobieństwa trójkątów stosować związki miarowe w trójkątach prostokątnych w prostych zadaniach szkicować bryły obrotowe obliczać pole i objętość walca, stożka i kuli zamieniać jednostki pól powierzchni rozpoznawać bryły podobne zgodnie z podanymi zasadami obliczać wymiary brył podobnych do danych obliczać pola powierzchni i objętości brył podobnych do danych wyznaczać skale podobieństw brył podobnych Stopień dostateczny otrzymuje uczeń, który spełnia wymagania na stopień dopuszczający oraz potrafi: interpretować dane przedstawione na diagramach i w tabelach czytać dane zilustrowane piramidą ludności 15

16 rozpoznawać układy równań oznaczonych, nieoznaczonych i sprzecznych rozwiązywać układy równań liniowych metodą przeciwnych współczynników określać liczby rozwiązań układów równań na podstawie interpretacji graficznej zapisywać zależności występujące w zadaniach opisywać proste przyporządkowania za pomocą wzorów określać dziedziny i zbiory wartości przykładowych nieskomplikowanych funkcji rozwiązywać równania podane w postaci proporcji znajdować skale jednokładności wyznaczać skale podobieństw porównywać pola trójkątów podobnych stosować związki miarowe w trójkątach prostokątnych w nieskomplikowanych zadaniach wyznaczać figury tworzące siatkę walca, stożka rysować siatkę walca i stożka zamieniać jednostki objętości obliczać długości odcinków brył niezbędne do obliczania ich pól powierzchni i objętości z zastosowaniem twierdzenia Pitagorasa i związków miarowych w trójkątach prostokątnych Stopień dobry otrzymuje uczeń, który spełnia wymagania na ocenę dostateczną oraz potrafi: interpretować dane odczytane z wykresów, tabel i grafów rozwiązywać zadania tekstowe za pomocą równań lub za pomocą układów równań opisywać wzorem przedstawione zależności stosować wiadomości o proporcjach do rozwiązywania zadań 16

17 opisywać własności funkcji na podstawie ich wykresów zapisywać równania na podstawie graficznej interpretacji ich rozwiązań rozwiązywać proste zadania tekstowe z zależnościami podanymi w postaci proporcji uzasadniać, że dane figury są podobne dostrzegać związki między kątami w trójkątach prostokątnych a stosunkami długości boków Stopień bardzo dobry otrzymuje uczeń, który spełnia wymagania na ocenę dobry oraz potrafi: sporządzać histogramy dostrzegać prawidłowości, formułować spostrzeżenia i je uzasadniać formułować hipotezy i je weryfikować układać proporcje na podstawie tekstów zadań rozwiązywać zadania tekstowe z zależnościami podanymi w postaci proporcji przekształcać wzory zapisane w postaci proporcji oblicza wartości funkcji podanych wzorem stosować związki miarowe w trójkątach prostokątnych do rozwiązywania zadań realistycznych analizować teksty matematyczne Stopień celujący otrzymuje uczeń który spełnia wymagania na stopień bardzo dobry oraz potrafi: prowadzić dowody matematyczne badać własności funkcji nieliniowych stosować proporcje złożone rozwiązywać zadania tekstowe z wykorzystaniem proporcji złożonej przekształcać wzory zapisane w postaci proporcji złożonych badać stosunki pól figur 17

18 analizować dowody twierdzeń argumentować uzasadniać prawidłowości dostrzegać i wykorzystywać analogie wskazywać figury, z których na skutek obrotu względem danych osi można otrzymać stożki ścięte wyznaczać figury tworzące siatkę stożka ściętego szkicować siatki stożków ściętych obliczać objętości stożków ściętych analizować treści zadań zapisywać zależności pomiędzy danymi a szukanymi w postaci równań opisywać treści zadań za pomocą układów trzech równań z trzema niewiadomymi rozwiązywać układy równań z trzema niewiadomymi różnymi metodami sprawdzać poprawność otrzymanych wyników z warunkami zadań korzystać z podanej instrukcji rozwiązywania układów równań z trzema niewiadomymi osiąga sukcesy w konkursach matematycznych na szczeblu pozaszkolnym, samodzielnie i twórczo rozwija swoje własne uzdolnienia. Opracował : Zespół Matematyków w Zespole Szkół w Rychlikach 18

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Przedmiotowe zasady oceniania z matematyki w klasach I-III Gimnazjum w Rychlikach. od roku 2014/2015

Przedmiotowe zasady oceniania z matematyki w klasach I-III Gimnazjum w Rychlikach. od roku 2014/2015 Przedmiotowe zasady oceniania z matematyki w klasach I-III Gimnazjum w Rychlikach I. Ogólne zasady oceniania uczniów od roku 2014/2015 1. Ocenianie osiągnięć edukacyjnych ucznia polega na rozpoznawaniu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III Wymagania edukacyjne z matematyki dla kl I-III Informacje wstępne 1. Obowiązuje skala ocen: 1, 2, 3, 4, 5, 6. 2. W ciągu semestru ocenia się: a) prace klasowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe

Kryteria ocen z matematyki dla klasy III gimnazjum. Osiągnięcia przedmiotowe umiejętności konieczne ocena dopuszczający umiejętności podstawowe ocena dostateczny umiejętności rozszerzające ocena dobry umiejętności dopełniające ocena bardzo dobry umiejętności wykraczające ocena

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym

Strona 1 z 9. prowadzić rozumowania matematyczne sprawnie posługiwać się językiem matematycznym Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe KONIECZNE( 2) PODSTAWOWE (3) ROZSZERZAJĄCE (4) DOPEŁNIAJACE

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające. tworzyć teksty w stylu matematycznym 14 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 3 uczeń potrafi: czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji nowych treści W rezultacie

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 3 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające 12 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu tworzyć teksty w stylu wykorzystywać

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II Wymagania edukacyjne z matematyki dla kl I-III Informacje wstępne 1. Obowiązuje skala ocen: 1, 2, 3, 4, 5, 6. 2. W ciągu semestru ocenia się: a) prace klasowe

Bardziej szczegółowo

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum

Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Plan wynikowy do programu MATEMATYKA 2001 klasa 3 gimnazjum Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie

WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie WYMAGANIA EDUKACYJNE MATEMATYKA klasy trzecie Gimnazjum nr 19 w Krakowie I. Zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy. 2. Formy

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum Stopień celujący może otrzymać uczeń, który spełnia kryteria na stopień bardzo dobry oraz: posiada wiadomości i umiejętności znacznie wykraczające

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE

WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE WYMAGANIA EDUKACYJNE W KLASIE DRUGIEJ Z MATEMATYKI GIMNAZJUM NR 19 W KRAKOWIE I. Szkolne zasady oceniania i sposoby sprawdzania osiągnięć edukacyjnych 1. Ocenianie ma charakter systematyczny i wieloaspektowy.

Bardziej szczegółowo

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii

Przedmiotowy system oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki w kl.ii Matematyka klasa II kryteria oceniania dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych opracowano na podstawie programu MATEMATYKA Z PLUSEM DZIAŁ 1. POTĘGI zna i rozumie pojęcie potęgi o wykładniku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM 1. 2. 3. 4. 5. 6. czytać dane przedstawione na diagramach i w tabelach przekształcać równania liniowe na równania równoważne ekształcać układy równań

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem POTĘGI POZIOM KONIECZNY ocena dopuszczająca zapisać potęgę w postaci iloczynu zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka

Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II 1 KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA II POTĘGI umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych czynników w postaci potęgi umie obliczyć potęgę o wykładniku

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ GIMNAZJUM Opracowane do programu Matematyka na czasie, Wydawnictwo Nowa Era POTĘGI I PIERWIASTKI POTĘGI Na ocenę dopuszczającą uczeń: zna i rozumie pojęcie

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą

Szczegółowe wymagania edukacyjne z matematyki Klasa II. na ocenę dopuszczającą Szczegółowe wymagania edukacyjne z matematyki Klasa II na ocenę dopuszczającą UCZEŃ zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; W zakresie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM w roku szkolnym 2015/2016 Dział Na ocenę dopuszczającą Na ocenę dostateczną Na ocenę dobrą POTĘGI PIERWIASTKI Uczeń: zna i rozumie pojęcie o

Bardziej szczegółowo

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym, szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres

Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Rok szkolny 2017/2018 I okres rozróżniać liczby naturalne, całkowite, wymierne, dodawać, odejmować,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie II gimnazjum

Kryteria ocen z matematyki w klasie II gimnazjum Kryteria ocen z matematyki w klasie II gimnazjum Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy VII

Wymagania edukacyjne z matematyki dla klasy VII Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY PO KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I:

Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II. Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: Matematyka z plusem Wymagania programowe na poszczególne oceny dla klasy II Szczegółowe kryteria oceniania po pierwszym półroczu klasy I: DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

Przedmiotowy System Oceniania. do informatyki w gimnazjum kl. II do programu Informatyka dla Ciebie autor: Piotr J. Durka

Przedmiotowy System Oceniania. do informatyki w gimnazjum kl. II do programu Informatyka dla Ciebie autor: Piotr J. Durka Przedmiotowy System Oceniania do informatyki w gimnazjum kl. II do programu Informatyka dla Ciebie autor: Piotr J. Durka Ogólne zasady oceniania uczniów 1. Ocenianie osiągnięć edukacyjnych ucznia polega

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM

ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Przedmiotowy System Oceniania z matematyki

Przedmiotowy System Oceniania z matematyki Przedmiotowy System Oceniania z matematyki w klasach I, II i III gimnazjum spójny z programem nauczania matematyki nr 9M/09 zatwierdzonym dnia 27.08.2009 r. przez Radę Pedagogiczną Gimnazjum nr 1 w Chojnicach

Bardziej szczegółowo

DZIAŁ 1. POTĘGI. stopień

DZIAŁ 1. POTĘGI. stopień DZIAŁ 1. POTĘGI zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna i rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM I. POTĘGI. 1. Zna i rozumie pojęcie potęgi o wykładniku naturalnym. 2. Umie zapisać potęgę w postaci iloczynu. 3. Umie zapisać iloczyn jednakowych

Bardziej szczegółowo

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej,

KLASA II POTĘGI. 20) umie zapisywać liczby w notacji wykładniczej, KLASA II POTĘGI 1) zna i rozumie pojęcie potęgi o wykładniku naturalnym, 2) umie zapisać potęgę w postaci iloczynów, 3) umie zapisać iloczyny jednakowych czynników w postaci potęgi, 4) umie obliczyć potęgi

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach

Bardziej szczegółowo

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu.

Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Klasa II: DZIAŁ 1. POTĘGI Lekcja organizacyjna. Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych podstawach. Potęgowanie potęgi. Potęgowanie iloczynu i ilorazu. Działania na potęgach.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018

Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 Wymagania edukacyjne z matematyki Klasa II program Matematyka z plusem Rok szkolny 2017/2018 I Okres POTĘGI zapisać potęgę w postaci iloczynu liczb, zapisać iloczyn jednakowych czynników w postaci potęgi

Bardziej szczegółowo

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM

ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM ZAKRES WYMAGAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM Ocena dopuszczająca: Uczeń: Zna pojęcie potęgi o wykładniku naturalnym Rozumie pojęcie potęgi o wykładniku naturalnym Umie zapisać potęgi w postaci iloczynów

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo dobra (5); (6)

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASA III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASA III GIMNAZJUM OCENA ŚRÓDROCZNA: WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH MATEMATYKA KLASA III GIMNAZJUM DOPUSZCZAJĄCY uczeń: zna sposób zaokrąglania liczb, rozumie potrzebę

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE klasa II

WYMAGANIA EDUKACYJNE klasa II Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE klasa II POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4)

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 2 GIM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 Ocenę dopuszczającą otrzymuje uczeń, który: (Symetrie) zna pojęcie punktów symetrycznych względem prostej, umie rozpoznawać figury

Bardziej szczegółowo

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 2 gimnazjum Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011

WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 WYMAGANIA EDUKACYJNE DLA KLASY II GIMNAZJUM ROK SZKOLNY 2010/2011 Uczeń chcąc uzyskać daną ocenę musi spełnić również wymagania na oceny niższe. Uczeń na ocenę: DOPUSZCZAJĄCY: zna i rozumie pojęcie potęgi

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Wydawnictwo GWO 4 GODZ. TYGODNIOWO

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) DZIAŁ 1. POTĘGI (14 h) TEMAT ZAJĘĆ 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach. 6. Potęgowanie potęgi. 7-8. Potęgowanie iloczynu i

Bardziej szczegółowo

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum

Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Poziomy wymagań edukacyjnych: K konieczny P podstawowy R rozszerzający D dopełniający W wykraczający Nie tylko wynik Plan wynikowy dla klasy 2 gimnazjum Potęgi o wykładnikach naturalnych i całkowitych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum

Wymagania edukacyjne z matematyki dla klasy II gimnazjum Wymagania edukacyjne z matematyki dla klasy II gimnazjum Opracowano na podstawie programu Matematyka z plusem Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE

PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.

Bardziej szczegółowo