Funkcja ζ Riemanna. Anna Gwiżdż. Praca magisterska napisana pod kierunkiem dr hab. Zbigniewa Błockiego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcja ζ Riemanna. Anna Gwiżdż. Praca magisterska napisana pod kierunkiem dr hab. Zbigniewa Błockiego"

Transkrypt

1 Uniwersytet Jagielloński Wydział Matematyki i Informatyki Anna Gwiżdż Funkcja ζ Riemanna Praca magisterska napisana pod kierunkiem dr hab. Zbigniewa Błockiego Kraków 7

2 Składam serdeczne podziękowania opiekunowi mojej pracy za pomoc i wyrozumiałość.

3 Spis treści Definicja i podstawowe własności funkcji ζ 4. Funkcja ζ Riemanna Globalnie zbieżny szereg dla funkcji ζ Równanie funkcyjne Funkcje ξ(s) i Ξ(t) Twierdzenie o liczbach pierwszych. Wprowadzenie Twierdzenie o liczbach pierwszych a analiza zespolona Związki analizy zespolonej i twierdzenia o liczbach pierwszych 9.4 Twierdzenie całkowe Hipoteza Riemanna 6 3. Wprowadzenie Wstęp historyczny Zasadnicze twierdzenia o zerach funkcji ζ Hipotezy równoważne RH A Dalsze własności funkcji ζ 35 A. Wartości funkcji ζ A. Podstawowe reprezentacje funkcji ζ B Zastosowania funkcji ζ w fizyce 43 B. Efekt Casimira

4 Wstęp Celem niniejszej pracy jest omówienie jednej z najważniejszych funkcji specjalnych - funkcji dzeta Riemanna. Na jej temat napisano już wiele książek, powstało mnóstwo prac naukowych oraz artykułów. Tak więc z ogromnej ilości zagadnień, problemów i zastosowań tej funkcji musieliśmy niestety wybrać tylko niektóre. W pierwszym rozdziale opiszemy podstawowe własności funkcji ζ, udowodnimy iloczyn Eulera oraz równanie funkcyjne Riemanna. Wyprowadzimy również wzory szeregów będących przedłużeniami funkcji ζ na półpłaszczyznę zespoloną {s C : R(s) > s } oraz na całą płaszczyznę zespoloną bez punktu s =. W kolejnym rozdziale zaprezentujemy oraz udowodnimy tw. o liczbach pierwszych. Pokażemy związki analizy zespolonej z teorią liczb poprzez ukazanie roli funkcji ζ w tym dowodzie. W rozdziale trzecim postaramy się przybliżyć najsłynniejszy chyba i nadal otwarty problem matematyki współczesnej, hipotezę Riemanna. Pokrótce przedstawimy dotychczasowe wyniki w kierunku udowodnienia (lub obalenia) RH, a także opiszemy kilka równoważnych stwierdzeń oraz wniosków z niej wynikających. Na koniec przedstawimy wiele dalszych własności ζ, jej wartości w wybranych punktach, związki ζ z innymi funkcjami specjalnymi jak: funkcja Γ Eulera, funkcja µ Möbiusa, funkcja λ Liouville a. Pokażemy również jedno z licznych zastosowań funkcji ζ w fizyce. 3

5 Rozdział Definicja i podstawowe własności funkcji ζ. Funkcja ζ Riemanna Funkcja dzeta Riemanna określona jest wzorem: ζ(s) = + s + 3 s + 4 s +... = n=, R(s) >. (.) ns Dla s = σ + it mamy n s = n σ. A stąd wynika, że szereg ten jest zbieżny jednostajnie w każdym podzbiorze zwartym tej półpłaszczyzny i funkcja ζ jest tam holomorficzna. 4

6 ζ(t), < t < 6. Co ciekawe, wzór (.) jako pierwszy sformułował Euler. Wykazał on również, iż funkcja ta ma głębokie i istotne związki z liczbami pierwszymi, a dokładniej udowodnił, że ζ(s) = s 3 s 5 s gdzie P oznacza zbiór liczb pierwszych.... = 7 s p P p s Twierdzenie. (Iloczyn Eulera, 737 r.). Prawdziwa jest następująca tożsamość: ζ(s) = p P ( p s ), R(s) > gdzie w iloczynie występują wszystkie liczby pierwsze. Rysunek pochodzi ze strony http : //en.wikipedia.org/wiki/riemann_zeta_function. 5

7 Fakt ten ma ogromne zastosowanie w teorii liczb, m.in. w dowodzie twierdzenia o rozkładzie liczb pierwszych. Dowód. Zauważmy, że: ζ(s)( s ) = = ( + + s 3 + ) ( s ) s ( s + + s 3 + ) ( s s + s 4 + ) s s ζ(s)( s )( 3 s ) = Widać więc, że: ( s 5 + ) ( s s 3 + s 9 + ) s s ζ(s)( s )( 3 s )... ( p s n )... = ζ(s) ( p s n ) n= = A stąd już natychmiast otrzymujemy tezę.. Globalnie zbieżny szereg dla funkcji ζ Powyżej zdefiniowaliśmy funkcję ζ dla liczb zespolonych s takich, że R(s) >. Spróbujmy teraz znaleźć jej analityczne przedłużenie na większy obszar. Dla R(s) >, mamy: ζ(s) = n= n s = n= n ( ) n s (n + ) s = s n= n+ n x s dx. n Niech x = [x] + {x}, gdzie [x] jest cechą, a {x} mantysą liczby x. Ponieważ [x] jest na każdym z przedziałów [n, n + ) stałe i równe n, możemy więc napisać ζ(s) = s n+ [x]x s dx = s [x]x s dx. n n= Wstawiając [x] = x {x} dostajemy ζ(s) = s = x s dx s {x}x s dx s s s {x}x s dx, σ > (.) 6

8 Zauważmy teraz, że całka niewłaściwa w (.) jest zbieżna dla σ > (ponieważ całka x σ dx jest zbieżna). Ta całka niewłaściwa definiuje funkcję analityczną w obszarze R(s) >. Stąd też funkcja meromorficzna w (.) daje analityczną kontynuację ζ(s) na półpłaszczyznę R(s) >, a wyraz daje biegun ζ(s) w punkcie s =. Aby przedłużyć funkcję ζ(s) na całą płaszczyznę zespoloną bez punktu s = posłużymy się funkcją gamma Γ(s) zdefiniowaną w następujący sposób: Mamy Γ(s) = s s t s e t dt. (.3) ( s Γ = t ) s e t dt dla σ >. Wstawiając t = n πx, dostajemy π s Γ ( s ) n s = x s e nπx dx. Dalej sumując po n =,, 3,... oraz zmieniając kolejność sumowania i całkowania: gdzie π s Γ ( s θ(x) := ) ζ(s) = = e n πx n= jest funkcją theta Jacobiego. ( ) x s e n πx n= ) x s ( θ(x) Lemat.. Funkcja θ spełnia następujące równanie funkcyjne: dx dx, (.4) x θ(x) = θ(x ), (.5) prawdziwe dla x >. 7

9 Dowód. Definiujemy f(t) := e πt x oraz F (t) := f(t + n). n= Wówczas F jest funkcją okresową o okresie i spełnia warunek Lipschitza. Jej szereg Fouriera jest więc zbieżny punktowo, a stąd θ(x) = f(n) = F () = e πint F (t)dt = n= n= n= f(n), gdzie f(s) = e πist f(t)dt jest transformatą Fouriera funkcji f. Aby znaleźć f, musimy obliczyć całkę eiax bx dx dla a R oraz b >. Po podstawieniu s = bx ai/( b) i całkowaniu po odpowiednim konturze otrzymamy e iax bx dx = e a 4b b {I(s)= a b } e s ds = e a 4b b e x dx = πe a 4b b. Stąd ( e πt x ) = e πs /x x, co kończy dowód. dalej: Możemy więc już powrócić do naszych poprzednich rozważań. Liczymy ( ) x s θ(x) ( ) dx = x s θ(x) ( ) dx+ x s θ(x) dx. Zajmijmy się najpierw pierwszą całką. Korzystając z równania (.5) otrzy- 8

10 mujemy: ( ) x s θ(x) dx = ( ) x s θ(x)dx x s dx ( ) x s θ(x)dx = s + = s + = s + = s + = s + = x s x θ(x )dx x s θ(x)dx ( ) θ(x) dx + x s dx ( ) θ(x) dx + s ( ) x s θ(x) dx. x s x s s(s ) + Sumując ostatni wynik z drugą całką, dostajemy: ζ(s) = π s { ( ) } Γ ( ) s s(s ) + ( ) s x + x s θ(x) dx. (.6) Wskutek eksponencjalnego spadku funkcji θ, całka niewłaściwa w równaniu (.6) jest zbieżna dla każdego s C a stąd definiuje funkcję całkowitą na zbiorze liczb zespolonych. Stąd też (.6) jest analityczną kontynuacją funkcji ζ(s) na całą płaszczyznę zespoloną bez punktu s =..3 Równanie funkcyjne Zajmiemy się teraz równaniem funkcyjnym dla ζ(s). Riemann zauważył, że wzór (.6) nie tylko zapewnia analityczne przedłużenie funkcji ζ(s), ale także dostarcza równanie funkcyjne. Zaobserwował on bowiem, że wyrażenie s(s ) oraz całka niewłaściwa w (.6) nie zmienią się jeśli zastąpimy s przez s. Stąd też wyprowadził poniższe równanie: Twierdzenie.3 (Równanie funkcyjne). Dla każdego s C, ( ) ( ) π s s Γ ζ(s) = π s s Γ ζ( s), 9

11 Z powyższego równania funkcyjnego, widać że funkcja ζ ma tak zwane zera trywialne w punktach s =, 4, 6, Funkcje ξ(s) i Ξ(t) Rozpatrzmy funkcję: ξ(s) = s(s )π s Γ ( s ) ζ(s). Wówczas równanie funkcyjne upraszcza się do postaci: ξ(s) = ξ( s). Zbiór zer funkcji ξ(s) jest zbiorem nietrywialnych zer funkcji ζ(s). Mamy także ξ(s) = ξ(s). Wobec tego ( ) ( ) ξ + it = ξ it = ξ ( ( ) ( ) + it) = ξ + it Zatem ξ ( + it) R dla t R. Określamy teraz funkcję rzeczywistą Ξ(t) := ξ ( + it). Jest to funkcja parzysta, Ξ( t) = Ξ(t). Zbiór zer funkcji ζ(s) na prostej krytycznej jest równy zbiorowi zer funkcji ξ(s) na tej prostej, odpowiada więc zbiorowi zer rzeczywistych funkcji Ξ(t).

12 Rozdział Twierdzenie o liczbach pierwszych. Wprowadzenie Nasza fascynacja liczbami pierwszymi rozpoczęła się już w starożytności. Euklides udowodnił, że istnieje nieskończenie wiele liczb pierwszych. Eratostenes opracował metodę znajdowania liczb pierwszych (tzw. Sito Eratostenesa). Poprzez dokładne badania tabeli liczb pierwszych, C. Gauss ( ) sformułował zależność, którą my dziś nazywamy twierdzeniem o liczbach pierwszych. Niech π(n) oznacza moc zbioru liczb pierwszych spełniających warunek p n. Twierdzenie o liczbach pierwszych głosi, że: π(n) n log n, (tzn. π(n) n/ log n n ) Nie ma tu wzmianki o liczbach zespolonych, tym bardziej zaskakującym jest fakt, że pierwszy (i przez długi czas jedyny znany) dowód przeprowadzony był w oparciu o analizę zespoloną. Droga wiodąca do dowodu tego twierdzenia była długa i zawiła. Niezwykle pomocną okazała się być poniższa funkcja, tak zwany logarytm całkowy: Li(x) = x dt log t Łatwo zaobserwować, że Li(x) x/ log x przy x +. Posługując się komputerem można obliczyć, że dla x = 6 Li(x) oraz π(x) =

13 A biorąc x = 9 dostajemy Li(x) oraz π(x) = Twierdzenie o liczbach pierwszych orzeka, że błąd (w pewnym sensie) będzie malał do zera przy x dążącym do nieskończoności. Dokładniejsze przybliżenia tego błędu dostarczają nam bardziej szczegółowych informacji dotyczących rozmieszczenia liczb pierwszych. Rosyjski matematyk P. L. Czebyszew (8-894) udowodnił, że iloraz: π(n) n/ log n (.) zawsze leży pomiędzy dwoma dodatnimi stałymi, kiedy n jest duże. J. J. Sylvester (84 897) zepchnął te stałe bliżej siebie (choć nadal leżały one po obydwu stronach ). Dopiero J. Hadamard ( ) i C. de la Vallee Poussin (866 96), niezależnie od siebie udowodnili, że wyrażenie (.) jest asymptotyczne z gdy n. Napiszmy to bardziej formalnie: Twierdzenie. (Twierdzenie o liczbach pierwszych). Funkcja π(n) jest asymptotycznie równoważna z n/ log n w następującym sensie: lim n π(n) n/ log n =. Istotnym krokiem do przodu w dowodzie tego twierdzenia, dokonanym przez Hadamarda i de la Vallee Poussina, było zastosowanie narzędzi spoza teorii liczb. W szczególności posłużyli się analizą zespoloną - wykorzystali funkcję ζ Riemanna w wyczerpujący i oryginalny sposób. W 949 Selberg i Erdős znaleźli elementarny dowód Tw... Był on elementarny w tym sensie, że nie wykorzystano w nim analizy zespolonej. W istocie był on techniczny i niezwykle skomplikowany. Aktualny dowód Tw.., który zaprezentuję pochodzi od D. J. Newmana [6] i został nieco uproszczony przez Zagiera [].

14 . Twierdzenie o liczbach pierwszych a analiza zespolona Na pierwszy rzut oka nie widać żadnego oczywistego związku Tw.. z analizą zespoloną. Funkcja π(n) prowadzi z N w N stąd nie ma mowy o jej różniczkowalności, a nawet ciągłości. Kluczem do rozwiązania okazał się być iloczyn Eulera (patrz Tw..): ζ(s) = ( p ), p P R(s) > (.) który możemy zapisać w równoważnej postaci: ζ(s) = p P ( + p ). (.3) s ps Zaczniemy od dowodu następującego twierdzenia: Twierdzenie.. Suma odwrotności liczb pierwszych jest nieskończona: p P p = +. W szczególności istnieje nieskończenie wiele liczb pierwszych. Dowód. Zauważmy, że < ζ(s) < + dla s (, ). Prawa strona równości (.) wyraźnie maleje kiedy zbliżamy się z s do, s +. Załóżmy niewprost, że p P < +. Wówczas iloczyn p p P( ) jest zbieżny i ma granicę p różną od zera. Również dla wszystkich rzeczywistych s > oraz dla ustalonej N > mamy: ( p ) ( ) ( ) > p N s p N p p p Stąd lim s + ζ(s) = lim ( p ) ( p ) >. s + p P s p P s A zatem granica lim x + ζ(s) jest skończona. Ale dla dowolnego A >, znajdziemy N Z + takie, że N n > A. Stąd też lim s + ζ(s) N n > A. 3

15 W rezultacie otrzymujemy, że lim s + ζ(s) nie może być skończone. Sprzeczność. Dla uproszczenia zapisu będziemy używać następującego oznaczenia: f(x) f(x) g(x) lim x + g(x) =. Heureza. Funkcja π(x) wskazuje które liczby są pierwsze w następujący sposób: liczba naturalna n jest pierwsza wtedy i tylko wtedy, gdy wartość π(x) wzrasta o dla x = n. Stąd wartość poniższej sumy: f(p), p x p P gdzie dana funkcja f jest określona na R +, jest w tym sensie zdeterminowana przez wartości funkcji π(x). To ostatnie wyrażenie zapiszemy teraz przy pomocy całki Stjeltiesa. Mianowicie: x f(p) = f(t)dπ(t) p x zakładając oczywiście, że f jest ciągłą funkcją określoną na R +. Podstawmy w powyższym wyrażeniu f(x) = log x zakładając przy tym na chwilę, że π(x) równa się x/ log x. Oczywiście funkcja π(x), która jest skokowa, nie może i nie równa się x/ log x, która jest C na {x : x > }. Możemy jednak założyć, że idea asymptotycznego zachowania f(p) przy n + może wywodzić się z asymptotycznego zachowania funkcji π(x). Oznaczmy teraz: ϑ(x) := log p. p x p x Następnie dla wygody możemy zmienić dolną granicę sumowania (bez straty ogólności, ponieważ interesują nas tylko duże wartości x), ϑ(x) log p. <p x 4

16 Wyrażenie <p x log p powinno być tej samej wielkości co: x t log t d(t/ log t) = log t log t = x x x x log t dt. t t log t dt Skorzystaliśmy tu z całkowania przez części. Korzystając z reguły l Hospitala otrzymujemy: lim x x dt log t x R.H. = lim x Stąd możemy już wnioskować, że log x log x lim log p = lim x x x p x x lub też ϑ(x) x. = =. Ta ostatnia asymptotyczność jest rzeczywiście prawdziwa, chociaż jeszcze jej dokładnie nie udowodniliśmy, nawet przy dodatkowym założeniu, że π(x) x/ log x. Powyższe heurystyczne rozumowanie może być (nawet mniej formalnie) odwrócone. Załóżmy, że ϑ(x) = x lub x x (log t)dπ(t). Różniczkujemy ostatnie wyrażenie względem x otrzymując: czyli log x dπ(x) dx Ale π(x) x log t dt lim x + x dt log t x/ log x = 5

17 Ponownie, dzięki regule l Hospitala mamy: π(x) x log x. Tak więc niespodziewanie, te niepewne rozważania i mało rygorystyczne rozumowania zaprowadziły nas do prawdziwych konkluzji. Teraz sformułujemy i udowodnimy nasze pomysły prawidłowo i dokładnie: Lemat.3. Prawdziwa jest następująca asymptotyczność: ϑ(x) x wtedy i tylko wtedy, gdy π(x) x log x Dowód. Załóżmy najpierw, że ϑ(x) x. Teraz ϑ(x) = log p log x = π(x) log x. p x p x Także, dla ε >, ϑ(x) Stąd, dla dużych x, x ε p x x ε p x log p ( ε) log x ( ε) log x[π(x) π(x ε )]. ϑ(x) π(x) log x x x Ale π(x ε ) x ε, tak więc π(x ε ) log x lim x + x x ( ε)log x =. π(x) π(x ε ) log x ( ε). x Stąd już wynika, że π(x) x/ log x. Dowód w przeciwną stronę polega na odwróceniu kroków powyższego rozumowania. Pokażemy teraz, że dla dużych wartości x, ϑ(x) jest bliskie x w pewnym całkowym sensie. 6

18 Lemat.4. Jeśli istnieje x lim x + ϑ(t) t dt t to wówczas ϑ(x) x. Dowód. Załóżmy niewprost, że istnieje liczba λ > taka, że dla pewnego ciągu {x j }, x j R, którego granica lim j x j = + mamy: ϑ(x j ) λx j. Korzystając z faktu, że ϑ jest niemalejąca oraz biorąc x równe pewnemu x j dostajemy: λx x gdzie c ϑ(t) t λx λx t dt dt = t x t u= t x λ du= dt x = xdu=dt λ u u du = c, = + λ log λ > dla dowolnej λ >. To oszacowanie jest sprzeczne z założeniem o zbieżności całki (z warunku Cauchy ego). Ta zbieżność implikuje że λxj lim j + x j ϑ(t) t t dt =. Jeśli teraz założymy, że dla pewnego < λ < zachodzi nierówność ϑ(x j ) λx j, to dla x równemu pewnemu x j, mamy: x λx ϑ(t) t dt t x λx gdzie c = λ + log λ <. λx t t dt = Ponownie dostaliśmy sprzeczność. λ λ t t dt = c. To, czy faktycznie zrobiliśmy jakiś postęp w dowodzie Tw.., zależy od tego czy potrafimy udowodnić zbieżność całki: x ϑ(t) t dt, gdzie x +. t I tu właśnie sięgniemy po analizę zespoloną. Zanim jednak to zrobimy, udowodnimy jeszcze pewien wniosek dotyczący funkcji ϑ. Chcemy pokazać, że ϑ(x) x, ale już w tej chwili możemy zobaczyć, że ϑ(x) = O(x). notacja Landau a; oznacza to, że lim sup x + ϑ(x)/x < + lub równoważnie, że istnieje stała C > taka, że ϑ(x) Cx 7

19 Lemat.5. Dla pewnego C > i wszystkich x, mamy ϑ(x) Cx. Równoważnie, używając notacji Landau a, ϑ(x) = O(x). Dowód. Dla dowolnej liczby N Z + prawdą jest, że ( + ) N = N m= ( ) N m ( ) N e ϑ(n) ϑ(n) (.4) N biorąc liczbę pierwszą p taką, że p (N, N), widzimy że p dzieli (N)! ale nie dzieli N!. Stąd p dzieli ( ) N = (N)! N (N!). Logarytmując obustronnie wyrażenie (.4) otrzymujemy: ϑ(n) ϑ(n) N log. Sumując po N =, N = 4, N = 8,..., N = k ϑ(4) ϑ() 4 log ϑ(8) ϑ(4) 8 log + dostajemy: ϑ( k+ ) ϑ( k ) k log ϑ( k+ ) + (log )( k ) + (log )( k+ ) (3 log )( k ) przy założeniu, że k. Teraz, dla dowolnego x istnieje liczba całkowita k > taka, że k x k+. Stąd ϑ(x) ϑ( k+ ) (3 log )( k ) (6 log )x. 8

20 .3 Związki analizy zespolonej i twierdzenia o liczbach pierwszych W poprzednich podrozdziałach zasygnalizowaliśmy w jaki sposób wykorzystać nasze wiadomości na temat funkcji ζ w celu uzyskania informacji na temat dystrybucji liczb pierwszych. Jednakże w dowodzie Tw.. będziemy opierać się na bardziej szczegółowych rozważaniach dotyczących związku ζ i funkcji π. Rozpoczniemy prostej obserwacji, którą wykorzystamy w kilku dowodach. Lemat.6. Funkcja ζ(s) s, gdzie R(s) > przedłuża się holomorficznie do całej półpłaszczyzny {s : R(s) > }. Dowód. Wynika z faktu, że funkcja ζ jest postaci (.). Zdefiniujemy teraz funkcję Φ Φ(s) := p P(log p)p s, gdzie s C. Oczywiście, aby ta definicja miała sens, musimy mieć pewność, że szereg jest zbieżny dla wskazanych wartości s. W rzeczywistości, ten szereg jest absolutnie i jednostajnie zbieżny na zwartych podzbiorach półpłaszczyzny {s C : R(s) > s }, co w oczywisty sposób wynika z następujących faktów: () Oszacowanie: (log p)p s p s+ε p R(s)+ε pozostaje prawdziwe dla dużych wartości p; () Szereg p s jest zbieżny dla każdego s zespolonego z R(s) >. 9

21 Obydwa powyższe stwierdzenia są trywialne i nie wymagają formalnych dowodów. Funkcja Φ jest blisko związana z funkcją ζ. W szczególności Φ powstaje poprzez obliczenie pochodnej logarytmicznej ζ /ζ w następujący sposób: Korzystamy z reprezentacji ζ przy pomocy nieskończonego iloczynu: Stąd ζ(s) = p P ( p s ). ζ (s) ζ(s) = [ / s]( p s ) p P p s = p P(p s log p) p s = p P log p p s ζ (s) ζ(s) = p P = p P log p p s p s log p p s (p s ) (p s + ) log p p s (p s ) = p P = log p p P p s (p s ) + p P log p p s (p s ) + Φ(s). = p P log p p s Szereg p log p p s (p s ) jest absolutnie i jednostajnie zbieżny na zwartych podzbiorach półpłaszczyzny {s : R(s) > /}. Uzasadnienie tego faktu jest analogiczne do pokazania, że Φ jest dobrze zdefiniowana na {s : R(s) > }. Stąd z rozszerzenia

22 funkcji ζ na {s : R(s) > } wynika, że Φ przedłuża się meromorficznie na {s : R(s) > /}. Ta meromorficznie przedłużona funkcja ma biegun w s =, gdzie ζ też ma biegun. Ma również bieguny w miejscach zerowych funkcji ζ w półpłaszczyźnie {s : R(s) > /}. Oczywiście wiedzielibyśmy więcej o funkcji Φ gdybyśmy umieli dokładnie zlokalizować zera funkcji ζ. Twierdzenie.7. Funkcja ζ(s) dla s = + iα, gdzie α R. W szczególności Φ(s) /(s ) jest holomorficzna w otoczeniu zbioru {R(s) }. Dowód. Skoro ζ posiada biegun w punkcie s = to interesuje nas tylko przypadek gdy α. Załóżmy, że ζ ma zero rzędu µ w punkcie + iα oraz rzędu ν w punkcie + iα (używamy tu konwencji, w której zero rzędu jest punktem w którym funkcja jest niezerowa). Chcemy pokazać, że µ =. W tym celu ocenimy pewne granice, używając wzoru na ζ /ζ. (i) Granica lim ε + εφ( + ε) =, ponieważ Φ(s) /(s ) jest holomorficzna w otoczeniu punktu s =. (ii) Granica lim ε Φ( + ε ± iα) = µ ε + ponieważ końcowa suma w wyrażeniu na ζ /ζ jest zbieżna, więc pomnożona przez ε ma granicę równą zero. Ponadto (s ( + iα)) ζ (s)/ζ(s) ma granicę µ w + iα oraz (s ( iα)) ζ (s)/ζ(s) ma granicę µ w iα. (Zauważmy, że rzędy zer w punktach + α i α muszą być równe skoro ζ(s) = ζ(s). Ostatnia równość wynika z faktu, że ζ przyjmuje wartości rzeczywiste na zbiorze {x+i : x R, x > }.) (iii) Granica lim ε Φ( + ε ± iα) = ν. ε + Uzasadnienie analogiczne jak w (ii).

23 Teraz wykorzystamy pewną algebraiczną sztuczkę. Mianowicie, zauważmy że, skoro p iα/ + p iα/ jest liczbą rzeczywistą, to: ale p> p log p p +ε ( p iα/ + p iα/) 4, log p p +ε ( p iα/ + p iα/) 4 = Φ(+ε iα)+4φ(+ε iα)+6φ(+ε)+4φ(+ε+iα)+φ(+ε+iα). Mnożąc przez ε > i biorąc granice po ε + dostajemy ν 4µ + 6 4µ ν = 6 8µ ν Stąd µ = czyli ζ( + iα). Holomorficzność funkcji Φ(s) /(s ) w otoczeniu wynika z uwag poprzedzających to twierdzenie. Postaramy się teraz powiązać funkcję ϑ z Φ, o której zebraliśmy już sporo informacji. Lemat.8. Jeśli R(s) >, to Φ(s) = s e st ϑ(e t )dt. Dowód. Spróbujmy wyrazić Φ przy pomocy ϑ: ϑ(n) ϑ(n ) Φ(s) = = co kończy dowód. = s = = s n= n= ϑ(n) x=e t dx=e t dt n s ( ) n s (n + ) s ϑ(x) x s+ dx e st ϑ(e t )dt,

24 Możemy teraz sprowadzić tw. o liczbach pierwszych do ważnego wniosku analizy zespolonej. Wystarczy pokazać, że całka ϑ(x) x dx x jest zbieżna. Ta zbieżność jest równoważna, poprzez zmianę zmiennych x = e t, ze zbieżnością (ϑ(e t )e t )dt. Weźmy f(t) = ϑ(e t )e t. Wtedy, ze wzoru: Φ(s) = s e st ϑ(e t )dt, widzimy, że f(t)e st dt jest holomorficzna w otoczeniu {s : R(s) }. Mianowicie, s + Φ(s + ) = s + (s + ) = = = Ale jak już pokazaliśmy funkcja s + Φ(s + ) s + e st e t ϑ(e t )dt e st f(t)dt + e (s+)t ϑ(e t )dt e st f(t)dt + s. jest holomorficzna w otoczeniu {s : R(s) }. e st dt Jak widać zbieżność całki f(t)dt pociąga za sobą tw. o liczbach pierwszych, tak więc będzie ono udowodnione, jeśli uda nam się pokazać następujący rezultat (gdzie f zdefiniowana jak wyżej oraz g(s) = f(t)e st dt). 3

25 .4 Twierdzenie całkowe Twierdzenie.9. Niech f(t), t będzie ograniczoną i lokalnie całkowalną funkcją taką, że g(s) = f(t)e st dt, R(s) > przedłuża się holomorficznie do pewnego otoczenia {s : R(s) }. Wtedy f(t)dt istnieje (jest zbieżna) i równa jest g(). Dowód. Ustalamy T > i zdefiniujmy g T (s) = Wtedy g T T f(t)e st dt. jest w oczywisty sposób holomorficzna dla każdego s (z tw. Morery). Musimy pokazać, że lim g T () = g() T + Niech R będzie dużą, dodatnią liczbą, δ - małą, dodatnią liczbą a C - brzegiem następującego obszaru: U = {s C : s R, R(s) δ}. Dobieramy δ odpowiednio małą, tak aby g(s) była holomorficzna w otoczeniu domknięcia obszaru wyznaczonego przez C. Wtedy, z wzoru Cauchy ego zastosowanego do funkcji (g g T )h T, gdzie mamy: ( ) h T (s) := e st + s, R g() g T () = ( ) [g(s) g T (s)]e st + s ds πi C R s. 4

26 Na zbiorze C + = C {R(s) > }, funkcja podcałkowa jest ograniczona przez 4B/R, gdzie B = max t f(t). Jest tak ponieważ g(s) g T (s) = f(t)e st dt B e st dt = Be R(s)T T T R(s) dla R(s) > ) oraz ( ) est + s R s ( ) = e R(s) T + s R s = e R(s) T ( + eit ) s = e R(s) T R = e R(s) T R ( + cos(t)) + sin (t) + cos(t) = e R(s) T cos(t) R = e R(s) T R(s). R Stąd odpowiednia całka po C + jest zbieżna do, gdy R. Niech C osobno g i g T. C {R(s) < }. By obliczyć tę całkę po C, rozważmy Z jednej strony, skoro g T jest całkowita, drogę całkowania możemy zamienić na C {s C : s = R, R(s) < }. Całka po C będzie wtedy ograniczona na moduł przez 4πB/R z tym samym oszacowaniem co wcześniej, ponieważ g T (s) = dla R(s) <. T f(t)e st T dt B e st dt = Be R(s) T R(s) Z drugiej strony, pozostała całka po C zmierza do gdy T ponieważ funkcja podcałkowa jest jest iloczynem funkcji g(s) ( + s /R )/s, która jest niezależna od T oraz funkcji e st, która zmierza jednostajnie do na zbiorach zwartych gdy T + w półpłaszczyźnie {R(s) < }. Stąd lim sup g() g t () 4πB/R. T + Skoro R jest dowolne, twierdzenie zostało udowodnione. 5

27 Rozdział 3 Hipoteza Riemanna 3. Wprowadzenie Hipoteza Riemanna sformułowana pierwotnie przez Bernharda Riemanna w 859 r. jest chyba najbardziej znanym i najważniejszym nierozwiązanym problemem matematyki współczesnej. Pomimo skoncentrowanych wysiłków wielu wybitnych matematyków, problem ten nadal pozostaje otwarty. Hipoteza Riemanna dotyczy rozmieszczenia zer funkcji ζ(s). Wiemy, że funkcja ζ jest określona dla wszystkich liczb zespolonych s oraz że posiada tak zwane zera trywialne w punktach, 4, 6,.... Hipoteza Riemanna koncentruje się na zerach nietrywialnych i orzeka, że: Hipoteza 3. (Riemanna). Część rzeczywista każdego nietrywialnego zera funkcji ζ jest równa. Innymi słowy wszystkie nietrywialne zera funkcji ζ leżą na tak zwanej prostej krytycznej +it, t R. Hipoteza ta jest jednym z najważniejszych otwartych problemów matematyki współczesnej, ponieważ wiele głębokich i istotnych twierdzeń zostało udowodnionych przy założeniu, że jest ona prawdziwa. Clay Mathematics Institute zaoferował nawet nagrodę wysokości $.. za pierwszy poprawny dowód. 6

28 3. Wstęp historyczny W 859 r. Riemann sformułował w swojej pracy Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, swoją hipotezę. Wiedział on, że funkcja ζ spełnia następujące równanie funkcyjne: ( s π s/ Γ ζ(s) = π ) ( s)/ Γ ( s ) ζ( s), a także, że nietrywialne zera funkcji ζ są symetrycznie rozłożone względem prostej s = + it oraz leżą w pasie < R(s) <. Policzył nawet kilka pierwszych zer: + i , + i.... Riemann wprowadził następującą funkcję zmiennej zespolonej s: ξ(s) = ( s s(s )π s/ Γ ζ(s) ) i pokazał, że ξ(s) jest całkowitą i parzystą funkcją zmiennej s, a jej zera pokrywają się z nietrywialnymi zerami funkcji ζ. Stwierdził również, że liczba zer ζ( + it) dla t (, T ] wynosi około T π log( T πe ). W 896 r. Hadamard i de la Vallée-Poussin niezależnie od siebie udowodnili, że funkcja ζ nie posiada zer na prostej R(s) =. W 9 r. Hilbert umieścił Hipotezę Riemanna na swojej sławnej liście 3 nierozwiązanych problemów (pod numerem VIII). Jednakże początkowo miał on mylne pojęcie na temat trudności RH. Porównał on bowiem trzy nierozwiązane problemy: przestępność liczby, Wielkie Twierdzenie Fermata oraz Hipotezę Riemanna. Uznał, że RH doczeka się rozwiązana w ciągu kilu najbliższych lat, Wielkie Twierdzenie Fermata w przeciągu jego życia, a przestępność liczby prawdopodobnie nigdy. W rzeczywistości problem przestępności został rozwiązany jako pierwszy zaledwie parę lat później przez Gelfonda i Schneidera, tw. Fermata w 994 r. przez Andrew Wilesa, a jak wiemy RH pozostaje nadal otwarta. W 94 r. Hardy udowodnił, że na prostej krytycznej leży nieskończenie wiele zer funkcji ζ. Późniejsze prace Hardy ego i Littlewood a z 9 r. oraz 7

29 Selberga z 94 r. przyniosły oszacowania średniej gęstości zer na prostej krytycznej. W 945 r. wydawało się, że niemiecki matematyk Hans Rademacher obalił RH. Ten wniosek oparty był na dedukcji, że pewna funkcja miałaby absurdalne przedłużenie analityczne, gdyby RH byłaby prawdziwa. Jednakże matematycy, którzy wzięli pod lupę ten dowód, wykazali że jest on błędny. Najnowsze prace skupiają się na obliczeniu dokładnych lokacji wielkiej liczby miejsc zerowych (w nadziei na znalezienie kontrprzykładu) lub umiejscowieniu górnych granic liczby zer, które mogą leżeć poza prostą krytyczną (w nadziei, że uda się je zredukować do zera). 3.3 Zasadnicze twierdzenia o zerach funkcji ζ Przypomnijmy najpierw udowodnione w rozdziale drugim jedno ważniejszych twierdzeń dotyczących zer funkcji ζ. Twierdzenie 3. (J. Hadamard, Ch. de le Vallée-Poussin, 896). Funkcja ζ(s) nie ma zer na prostej R(s) =. Warto tu jeszcze wspomnieć o osiągnięciach dwóch matematyków Vinogradova i Korobova, którzy niezależnie od siebie wykazali, że ζ(s) nie ma zer w obszarze: c R(s), (log t + ) 3 (log log(3 + t )) 3 gdzie c jest pewną stałą dodatnią. Oznaczmy teraz N(T ) := #{s C : ζ(s) =, R(s), I(s) T }, N (T ) := #{s C : ζ(s) =, R(s) =, I(s) T }, 8

30 Twierdzenie 3.3 (H. v. Mangoldt, 895, 95). Mamy N(T ) = T ( ) T π log T π π + O(log T ) Dokładniej O(log T ).5 log T + log log T + 4 W 94 r. J.E. Littlewood poprawił to oszacowanie do O(log T/ log log T ). Jednym z pierwszych rezultatów przemawiających na korzyść RH jest twierdzenie Hardy ego. ζ( + it), < t < 5. Twierdzenie 3.4 (G. H. Hardy, 94). Nieskończenie wiele zer funkcji ζ(s) leży na prostej R(s) = Rysunek pochodzi z pracy J.B.Conrey [3]. 9

31 Twierdzenie 3.5 (J. B. Conrey, 989). N (T ).488 N(T ). Hipoteza 3.6 (Riemanna). N (T ) = N(T ). 3.4 Hipotezy równoważne RH Omówię teraz kilka innych nadal otwartych problemów matematycznych, równoważnych RH. Warto poświęcić im trochę uwagi, ponieważ dają one większe pole do manewrów przy ewentualnych próbach dowiedzenia RH. Po pierwsze RH jest równoważna następującemu wzmocnionemu tw. o rozkładzie liczb pierwszych: Równoważność 3.7. Stwierdzenie, że π(x) = Li(x) + O( x log x) jest równoważne hipotezie Riemanna. Dla potrzeb kolejnej równoważności zdefiniujemy funkcję lambda Liouville a. Definicja 3.8. Funkcja lambda Liouville a jest zdefiniowana w następujący sposób: λ(n) := ( ) ω(n), gdzie ω(n) jest liczbą wszystkich czynników pierwszych n liczonych z krotnościami. Równoważność 3.9. Hipoteza Riemanna jest równoważna stwierdzeniu, że dla dowolnego ε > zachodzi λ() + λ() +... λ(n) n /+ε. 3

32 Używając języka rachunku prawdopodobieństwa możemy powiedzieć, że liczba całkowita ma równe szanse posiadania parzystej jak i nieparzystej liczby czynników pierwszych. Następna równoważność wykorzystuje funkcje Möbiusa i Mertensa. Definicja 3.. Funkcja Möbiusa jest zdefiniowana w następujący sposób, jeżeli n dzieli się przez kwadrat jakiejś liczby pierwszej µ(n) := k, gdy n = p... p k, p i P, p i p j dla i j, gdy n = Definicja 3.. M(x) = µ(n). n x Równoważność 3.. Hipoteza Riemanna jest równoważna następującemu oszacowaniu: M(x) = O(x /+ε ) dla dowolnego ε >. Zamiast analizować funkcję π(x), rozsądniejsza wydaje się być praca z funkcją M(x) i dowód powyższego oszacowania, być może poprzez jakieś rozumowanie kombinatoryczne. W rzeczywistości Stjelties dał do zrozumienia, że ma taki dowód. W 896 Hadamard, w swoim sławnym dowodzie tw. o liczbach pierwszych, odniósł się do orzeczenia Stjeltiesa i zaproponował osłabione znacznie twierdzenie, że ζ(s) na prostej R(s) =, w nadziei że prostota jego dowodu może się okazać użyteczna. Niestety Stjelties nigdy nie opublikował swojego dowodu. Z kolei Mertens postawił mocniejsza hipotezę: M(x) x. Oczywiście implikuje ona RH. Jednakże hipotezę tą obalili Odlyżko i te Riele w 985. Oszacowanie M(x) = O( x) najprawdopodobniej również jest nieprawdziwe, choć nikomu jeszcze nie udało się tego dowieść. Możemy także sformułować RH przy pomocy funkcji sumy dzielników. 3

33 Definicja 3.3. Dla n N σ(n) := d. d n Równoważność 3.4. Hipoteza Riemanna jest równoważna stwierdzeniu, że dla każdego n > 54 σ(n) < e γ n log log n, gdzie γ jest stałą Eulera. Robin wykazał również, bezwarunkowo, że: σ(n) < e γ n n log log n +.648, n 3, log log n W oparciu o jego prace, Lagarias udowodnił kolejną równoważność RH, która wykorzystuje funkcję sumy dzielników. Równoważność 3.5. Poniższe stwierdzenie jest równoważne RH: σ(n) H n + e Hn log H n dla każdego n, równość zachodzi gdy n=. Tutaj H n oznacza n-tą liczbę harmoniczną, zdefiniowaną jako: H n := n j= j. Ostatnia zaprezentowana równoważność odróżnieniu od poprzednich, ma charakter analityczny. Równoważność 3.6. Hipoteza Riemanna jest równoważna stwierdzeniu, że wszystkie zera funkcji η Dirichleta: ( ) n η(n) := n= n s = ( s )ζ(s), które znajdują się w pasie < R(s) <, leżą na prostej R(s) =. 3

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie

Liczby pierwsze rozmieszczenie. Liczby pierwsze rozmieszczenie Rozmieszczenie liczb pierwszych Wprowadzamy funkcję π(x) def = p x 1, liczbę liczb pierwszych nie przekraczających x. Łatwo sprawdzić: π(12) = 5 (2, 3, 5, 7, 11); π(17) = 7 (2, 3, 5, 7, 11, 13, 17). Jeszcze

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka

Szeregi funkcyjne. Szeregi potęgowe i trygonometryczne. Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne Szeregi potęgowe i trygonometryczne Małgorzata Wyrwas Katedra Matematyki Wydział Informatyki Politechnika Białostocka Szeregi funkcyjne str. 1/36 Szereg potęgowy Szeregiem potęgowym o

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Krzysztof Rykaczewski. Szeregi

Krzysztof Rykaczewski. Szeregi Krzysztof Rykaczewski Spis treści 1 Definicja szeregu 2 Zbieżność szeregu 3 Kryteria zbieżności szeregów 4 Iloczyn Cauchy ego szeregów 5 Bibliografia 1 / 13 Definicja szeregu Niech dany będzie ciąg (a

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA

EGZAMIN, ANALIZA 1A, , ROZWIĄZANIA Zadanie 1. Podać kresy następujących zbiorów. Przy każdym z kresów napisać, czy kres należy do zbioru (TAK = należy, NIE = nie należy). infa = 0 NIE A = infb = 1 TAK { 1 i + 2 j +1 + 3 } k +2 : i,j,k N

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

5. Logarytmy: definicja oraz podstawowe własności algebraiczne.

5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Jeśli lubisz matematykę

Jeśli lubisz matematykę Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II Rozwiązania zadań z kolokwium w dniu 10.1.010r. Zarządzanie Inżynierskie, WDAM, grupy I i II Zadanie 1. Wyznacz dziedzinę naturalną funkcji f (x) = x 4x + 3 x + x + log arc sin 1 x. Rozwiązanie. Wymagane

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Zajęcia nr. 6: Równania i układy równań liniowych

Zajęcia nr. 6: Równania i układy równań liniowych Zajęcia nr. 6: Równania i układy równań liniowych 13 maja 2005 1 Podstawowe pojęcia. Definicja 1.1 (równanie liniowe). Równaniem liniowym będziemy nazwyać równanie postaci: ax = b, gdzie x oznacza niewiadomą,

Bardziej szczegółowo

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 3. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 3 Jacek M. Jędrzejewski ROZDZIAŁ 6 Różniczkowanie funkcji rzeczywistej 1. Pocodna funkcji W tym rozdziale rozważać będziemy funkcje rzeczywiste określone w pewnym przedziale

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Sumy kwadratów. Twierdzenie Fermata-Eulera. Lemat Minkowskiego

Sumy kwadratów. Twierdzenie Fermata-Eulera. Lemat Minkowskiego Sumy kwadratów TWIERDZENIE LAGRANGE A Każda liczba naturalna da się przedstawić w postaci sumy czterech kwadratów. Twierdzenie Fermata-Eulera Każda liczba pierwsza postaci 4k + 1 daje się przedstawić w

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1,y 1 +x,y := x 1 +x,y 1 +y, 1 x 1,y 1 x,y := x 1 x y 1 y,x 1 y +x y 1 jest ciałem zob przykład 16, str 7; jest to tzw

Bardziej szczegółowo

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn.

1 + iϕ n. = cos ϕ + i sin ϕ. e n z n n n. c M n z n, c n z Mn. WRAiT 2 #1 1. Dla jakich a C ciągi o wyrazach na n, a n 1 + a n, an /n, są zbieżne? 2. Wykaż zbieżność i znajdź granice ciągów n a k, a n 1 + a 2n ( a < 1), a n 1 + a 2n ( a > 1), 1 n 3. Dla danego ϕ R

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Kongruencje pierwsze kroki

Kongruencje pierwsze kroki Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Równania i nierówności wykładnicze i logarytmiczne

Równania i nierówności wykładnicze i logarytmiczne Równania i nierówności wykładnicze i logarytmiczne Paweł Foralewski Teoria Ponieważ funkcje wykładnicza i logarytmiczna zostały wprowadzone wcześniej, tutaj przypomnimy tylko definicję logarytmu i jego

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

czyli o szukaniu miejsc zerowych, których nie ma

czyli o szukaniu miejsc zerowych, których nie ma zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *

Powtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową * Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,

Bardziej szczegółowo

Analiza Matematyczna I

Analiza Matematyczna I Analiza Matematyczna I Informatyka, WPPT, Politechnika Wrocławska Wprowadzenie (2 godziny ćwiczeń) Pokaż, że dla dowolnych liczb rzeczywistych a i b zachodzą nierówności:. a b = a b, 2. a + b a + b, 3.

Bardziej szczegółowo

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):

Bardziej szczegółowo

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie Rozdział 7 Różniczkowalność Jedną z konsekwencji pojęcia granicy funkcji w punkcie jest pojęcie pochodnej funkcji. W rozdziale tym podamy podstawowe charakteryzacje funkcji związane z pojęciem pochodnej.

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1.2 Rozwiązanie ogólne............................... 2 1.3 Obniżanie rzędu

Bardziej szczegółowo

Analiza Matematyczna MAEW101

Analiza Matematyczna MAEW101 Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo