Krzysztof Jajuga Akademia Ekonomiczna we Wrocławiu. Modelowanie stóp procentowych a narzędzia ekonometrii finansowej

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krzysztof Jajuga Akademia Ekonomiczna we Wrocławiu. Modelowanie stóp procentowych a narzędzia ekonometrii finansowej"

Transkrypt

1 DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu Modelowanie sóp procenowych a narzędzia ekonomerii finansowej. Modelowanie sóp procenowych wprowadzenie W osanich dwudziesu laach obserwowany jes dynamiczny rozwój meod ekonomerii finansowej. Meody e znalazły zasosowanie w analizie wielu finansowych szeregów czasowych, przede wszyskim szeregów cen akcji i kursów waluowych. W osanim okresie można zaobserwować sopniowe zbliżanie się meod wypracowanych na gruncie klasycznej ekonomerii finansowej, przede wszyskim szeroko rozumianych modeli klasy ARIMA-GARCH mającymi u podsaw procesy sochasyczne w czasie dyskrenym, z meodami wypracowanymi na gruncie maemayki finansowej mającymi u podsaw procesy sochasyczne w czasie ciągłym. Niezależnie od ego, obie grupy meod w coraz większym sopniu odnoszą się do ekonomii finansowej, zawierającej eorie kszałowania się zjawisk finansowych, w ym również eorie dynamiki cen i sóp zwrou cen na rynkach finansowych. Spośród wszyskich cen finansowych, sopy procenowe są niewąpliwie najrudniejsze w modelowaniu. Jedną z głównych przyczyn jes o, iż ak naprawdę modelowaniu podlega nie jedna sopa procenowa, lecz wiele powiązanych ze sobą sóp procenowych, doyczących różnych okresów jes o modelowanie zw. srukury erminowej sóp procenowych (erm srucure of ineres raes), zwane również zagadnieniem krzywej dochodowości lub krzywej sopy dochodu (yield curve). Srukura erminowa sóp procenowych jes o zależność sóp procenowych (w szczególności sóp dochodu dłużnych insrumenów finansowych) od erminu do wykupu, czyli od długości okresu inwesycji. Zagadnienie o jes kluczowym problemem o charakerze eoreycznym i prakycznym. Teoreyczne znaczenie ego zagadnienia jes duże, gdyż, po

2 8 Krzyszof Jajuga pierwsze, nie zosało ono rozwiązane w sposób zadowalający, po drugie, modele srukury erminowej sóp procenowych są wykorzysywane w wielu innych zagadnieniach eoreycznych, np. w wycenie insrumenów dłużnych i insrumenów pochodnych na sopę procenową. Również w prakyce znajomość srukury erminowej sóp procenowych jes isona, gdyż pozwala na podejmowanie efekywnych decyzji doyczących inwesowania, finansowania i zarządzania ryzykiem sopy procenowej. W eorii sóp procenowych modelowane są nasępujące sopy: sopa naychmiasowa (spo rae); sopa erminowa (forward rae); chwilowa sopa naychmiasowa (insananeous spo rae), inaczej zwana sopą krókoerminową (shor rae); chwilowa sopa erminowa (insananeous forward rae). W prakyce właściwie większość powyższych sóp nie jes obserwowana bezpośrednio. Do określenia sóp spo, a nasępnie na ich podsawie sóp forward, wykorzysywane są sopy procenowe obserwowane bezpośrednio na rynku. Zaliczamy do nich: w przypadku okresów krószych niż rok: sopy rynku międzybankowego (np. WIBOR, LIBOR, Euribor), sopy renowności bonów skarbowych, sopy ransakcji repo na rynku pieniężnym; w przypadku okresów dłuższych niż rok: sopy dochodu obligacji, czyli Yield To Mauriy (YTM), sopy konraków swap. Modelowanie srukury erminowej sóp procenowych jes przeprowadzane najczęściej w odniesieniu do sóp dochodu dłużnych insrumenów skarbowych. Są o zaem sopy wolne od ryzyka. Oprócz ego krzywe dochodu można wyznaczać dla sóp dochodu innych insrumenów dłużnych. Są o sopy zawierające premię za ryzyko, np. za ryzyko kredyowe emiena posiadającego kaegorię raingową BB. Jeśli dla dowolnego momenu wyznaczy się różnice między sopami dochodu insrumenów dłużnych emiena kaegorii BB a sopami dochodu wolnymi od ryzyka, wówczas orzymujemy zw. srukurę erminową spreadu kredyowego (erm srucure of credi spread). Wszyskie powyżej przedsawione pojęcia doyczą poziomu sóp procenowych. W modelach sóp procenowych (podobnie jak w modelach innych insrumenów finansowych, akich jak akcji czy walu) isoną rolę odgrywa również zmienność (volailiy) ych sóp. W akiej syuacji każda sopa procenowa rakowana jes jako zmienna losowa, zaś odchylenie sandardowe ej zmiennej informuje o zmienności. Określając dla każdego momenu o odchylenie sandardowe orzymuje się nową konsrukcję, zw. srukurę erminową zmienności sóp procenowych (erm srucure of volailiy of ineres raes). W en sposób każdej krzywej sóp dochodu odpowiada krzywa zmienności ych sóp.

3 Modelowanie sóp procenowych a narzędzia ekonomerii finansowej 9 Obserwacje hisorycznych sóp procenowych wysępujących na rynkach finansowych doprowadziły do wyodrębnienia kilku prawidłowości doyczących ych sóp. Są one nasępujące: sopy procenowe w długim okresie charakeryzują się efekem powrou do średniej, zn. powroem do pewnego przecięnego długookresowego poziomu; zmiany sóp procenowych doyczących różnych okresów nie są z sobą bardzo mocno skorelowane; zmienność sóp procenowych krókoerminowych jes większa niż zmienność sóp procenowych długoerminowych; wysępuje skorelowanie między poziomem sóp procenowych i zmiennością sóp procenowych. 2. Modelowanie srukury erminowej sóp procenowych klasyfikacja Jak już wskazywaliśmy, powsało bardzo wiele modeli srukury erminowej sóp procenowych. Modele e mają różny rodowód, różny sopień skomplikowania, różne koncepcje u ich podsaw. Analiza modeli proponowanych w lieraurze, a również ych sosowanych w prakyce, doprowadziła nas do wyróżnienia dwóch podsawowych klas modeli:. modele aproksymacji krzywej dochodowości. 2. modele dynamiki sóp procenowych. Modele aproksymacji krzywej dochodowości polegają na wyznaczeniu pewnej funkcji, kóra przybliża dane empiryczne, zn. sopy dochodu odpowiadające pewnym okresom. Orzymana funkcja umożliwia określenie sóp dochodu dla dowolnych okresów. Można powiedzieć, że są o w pewnym sensie modele sayczne, wyjaśniające obecną srukurę erminową sóp procenowych. Modele dynamiki sóp procenowych wychodzą od pewnego ogólnego modelu, opisującego dynamikę sóp procenowych, a nasępnie na podsawie danych empirycznych dokonuje się wyznaczenia paramerów. Są o modele dynamiczne, wyjaśniające zmiany srukury erminowej sóp procenowych. Przejdziemy eraz do syneycznej prezenacji modeli należących do ych dwóch klas. W klasie modeli esymacji krzywej dochodowości wyróżnić można rzy podsawowe rodzaje modeli: modele bezpośrednie; modele aproksymacji segmenowej; modele aproksymacji całej krzywej dochodowości.

4 0 Krzyszof Jajuga Modele bezpośrednie polegają na wyznaczeniu sóp spo na podsawie sóp dochodu obligacji z odsekami. Modele aproksymacji segmenowej polegają na podziale przedziału czasowego na kilka segmenów, a nasępnie konsrukcji krzywej dochodowości na podsawie danych empirycznych dla każdego segmenu. Przy ym najczęściej dzieli się przedział czasowy na rzy segmeny, odpowiadające odpowiednio: sopom krókoerminowym ( dzień rok), sopom średnioerminowym ( rok 0 la), sopom długoerminowym (powyżej 0 la). Jeśli zaś chodzi o funkcje aproksymujące, o najczęściej sosowane są wielomiany lub funkcje wykładnicze. Modele aproksymacji całej krzywej dochodowości polegają na zasosowaniu pewnej funkcji opisującej wszyskie sopy procenowe, przy czym paramery ej funkcji mają klarowną z prakycznego punku widzenia inerpreację. Można uaj wyróżnić wiele możliwych modeli, jednym z najbardziej popularnych jes model Nelsona-Siegela (Nelson, Siegel (987)), dany wzorem: exp( m / δ) exp( m / δ) r m = β 0 + β exp + m + u m β 2 exp exp( / δ m / δ / δ gdzie u jes o składnik losowy, zaś poszczególne paramery mają nasępującą inerpreację: β 0 długoerminowa sopa procenowa, β spread między sopą długoerminową a sopą krókoerminową, β 2 sopień krzywizny krzywej dochodowości, δ prędkość, z jaką składnik krókoerminowy i średnioerminowy krzywej zdążają do zera. W klasie modeli dynamiki sóp procenowych można wyróżnić: klasyczne modele ekonomerii finansowej; modele drzew dwumianowych z endogenicznie określoną dynamiką sóp procenowych; modele sochasycznych równań różniczkowych z endogenicznie określoną dynamiką sóp procenowych; modele drzew dwumianowych wynikające z koncepcji arbirażu; modele sochasycznych równań różniczkowych wynikające z koncepcji arbirażu. Klasyczne modele ekonomerii finansowej są o znane modele klasy ARI- MA-GARCH służące do modelowania finansowych szeregów czasowych rozparywanych w czasie dyskrenym. W zakresie modelowania poziomu są o modele warunkowej warości oczekiwanej ARIMA oraz ich modyfikacje i uogólnienia. W zakresie modelowania zmienności są o modele warunkowej

5 Modelowanie sóp procenowych a narzędzia ekonomerii finansowej wariancji GARCH oraz ich modyfikacje i uogólnienia. W ym wypadku modelowana zmienna jes o oczywiście sopa procenowa. Nasępne dwa rodzaje modeli charakeryzują się zw. endogenicznie określoną dynamiką sóp procenowych. Oznacza o, że jes zadany pewien hipoeyczny model, zaś jego paramery szacowane są na podsawie danych empirycznych. W pierwszej grupie ego ypu modeli dynamika sóp procenowych opisywana jes za pomocą drzew dwumianowych. Zakłada się, że na koniec każdego okresu należącego do rozparywanego przedziału czasowego sopa procenowa może przyjąć dwie warości (każdą z jednakowym prawdopodobieńswem). Przy rozparywaniu wielu okresów dynamika sóp procenowych może być w sposób graficzny przedsawiona za pomocą drzewa, co wyjaśnia nazwę meody. W drugiej grupie modeli z endogenicznie określoną dynamiką sóp procenowych dynamika a jes opisana modelem w posaci sochasycznego równania różniczkowego. Z kolei dwa osanie rodzaje modeli charakeryzują się ym, iż wywodzą się z koncepcji braku arbirażu. Koncepcja braku arbirażu oznacza, iż dokonuje się wyceny insrumenów finansowych w aki sposób, aby nie był możliwy arbiraż, zn. sraegia, kóra nie wymaga nakładów, jes wolna od ryzyka i daje dodani przychód. Przy ym orzymany model jes zgodny z obserwowanymi rzeczywisymi sopami procenowymi, a nie wynika z endogenicznie określonej dynamiki sóp. Również uaj można wyróżnić dwa rodzaje modeli. Pierwszy rodzaj do opisu dynamiki wykorzysuje drzewa dwumianowe. Z kolei drugi rodzaj wynika ze sochasycznych równań różniczkowych. 3. Modele dynamiki sóp procenowych wynikające ze sochasycznych równań różniczkowych Najbardziej zaawansowane modele srukury erminowej o e, w kórych dynamika sóp procenowych opisana jes za pomocą sochasycznego równania różniczkowego. Przedsawimy eraz rzy najczęściej w finansach sosowane ypy modeli zapisanych w posaci sochasycznych równań różniczkowych. Przy ym oprócz klasycznej posaci modelu podamy również wersje dyskreną, w kórej zakłada się, że czas może się zmieniać o jednoskę. Podsawowe modele są nasępujące (dla uproszczenia nie wprowadza się w oznaczeniach osobnego indeksu dla okresu, kórego doyczy sopa, zaś indeks przy sopie procenowej oznacza dany momen czasowy):. Geomeryczny ruch Browna, dany wzorem: dr = µ r d + σr dz. zaś w wersji dyskrenej (po przekszałceniach):

6 2 Krzyszof Jajuga r + = ( + ) r + σr ε + µ. 2. Proces pierwiaskowy, dany wzorem: dr = µ r d + σ r dz. zaś w wersji dyskrenej (po przekszałceniach): r + = ( + ) r + σ r ε + µ. 3. Proces Ornseina-Uhlenbecka (charakeryzujący się właściwością powrou do średniej), dany wzorem: dr = κ ( θ r ) d + σdz. zaś w wersji dyskrenej (po przekszałceniach): r + = + ( κ ) r + σε + κθ. Jak wynika z osaniego wzoru, proces Ornseina-Uhlenbecka charakeryzuje się właściwością powrou do średniej sopa procenowa w danym momencie jes skorygowaną o składnik losowy ważoną średnią dwóch wielkości: długoerminowej sopy procenowej oraz sopy procenowej z poprzedniego momenu. Przy ym waga przyporządkowana długoerminowej sopie procenowej jes inerpreowana jako prędkość powrou do ej średniej długookresowej. Powyżej przedsawione modele znalazły swoje poczesne miejsce w konkrenych wersjach modele sóp procenowych z endogenicznie określoną dynamiką. Modeli ych jes wiele, a dzieli się je zazwyczaj w zależności od liczby czynników, kóre są modelowane. W szczególności w najwcześniej zaproponowanych modelach jednoczynnikowych jedynym czynnikiem jes zw. krókoerminowa sopa procenowa, czyli chwilowa sopa spo. Jeśli modelowanych czynników jes więcej, wówczas pod uwagę bierze się na przykład zmienność krókoerminowej sopy procenowej i średnią sopę długookresową. Przedsawimy eraz kilka najbardziej popularnych modeli, wskazując na modelowane czynniki.. Modele jednoczynnikowe modelowana jes krókoerminowa sopa procenowa: model Vasicka (Vasicek (977)): dr = κ ( θ r ) d + σdz. model Coxa-Ingersolla-Rossa (Cox, Ingersoll, Ross (985)): dr = κ ( θ r ) d + σ r dz. 2. Modele dwuczynnikowe modelowana jes krókoerminowa sopa procenowa i zmienność ej sopy: model Fonga i Vasicka (Fong, Vasicek (99)):

7 Modelowanie sóp procenowych a narzędzia ekonomerii finansowej 3 dr = κ( θ r ) d + dv v dz = γ ( ϑ v ) d + ξ v dz Modele rójczynnikowe modelowana jes krókoerminowa sopa procenowa, zmienność ej sopy oraz średnia długoerminowa: model Chena (Chen (996)): dr = κ( θ r ) d + dθ = ϕ( λ θ ) d + η dv = γ ( ϑ v ) d + ξ v dz v r dz 2 θ dz 3. Jak widać, we wszyskich powyżej przedsawionych modelach rozparywane procesy są o kombinacje procesów Ornseina-Uhlenbecka z procesami pierwiaskowymi. Pewną wadą przedsawionych modeli jes jednak o, iż dynamika sóp procenowych jes określana endogenicznie, co oznacza, że nawe w przypadku wieloczynnikowych modeli obecna srukura erminowa sóp procenowych, dana w posaci sóp dochodu obligacji, niekoniecznie musi być odzwierciedlona w sposób dokładny. Z ą niedogodnością próbują sobie radzić modele arbirażowe. Jak już wskazywaliśmy, są dwie grupy akich modeli. Jedna grupa wykorzysuje wspomnianą już koncepcję drzew dwumianowych. Pierwszy i najbardziej znany model ej klasy zosał zaproponowany przez Ho i Lee (Ho, Lee (986)). Druga grupa modeli arbirażowych wykorzysuje sochasyczne równania różniczkowe. Pierwszym i najbardziej znanym modelem ej klasy jes model Heaha-Jarrowa-Morona (Heah, Jarrow, Moron (992)). W modelu ym przedmioem zaineresowania jes chwilowa sopa erminowa, a zaem ak naprawdę modelowana jes jednocześnie cała srukura erminowa sóp procenowych. Okazuje się przy ym, że wiele modeli powsałych wcześniej może być porakowanych jako szczególne przypadki modelu Heaha-Jarrowa-Morona. W najbardziej ogólnej wersji model en można zapisać nasępująco: dr =, T ) dz., T µ (, T ) d + σ ( Jak widać, w ym modelu zmiany chwilowej sopy forward są funkcją chwilowego dryfu i chwilowej zmienności ej sopy. Przedsawione powyżej modele muszą być wyznaczone w prakyce, zn. esymowane i/lub kalibrowane na podsawie danych obecnych i hisorycznych. Prowadzi o do konkrenych wyzwań pod adresem ekonomerii. To właśnie ekonomeria dosarcza przecież narzędzi służących do weryfikacji hipoez sawianych przez eorię ekonomii w ym wypadku modeli sóp procenowych zaproponowanych przez maemaykę finansową i ekonomię finansową.

8 4 Krzyszof Jajuga Lieraura Chen, L. (996), Sochasic mean and sochasic volailiy a hree facor model of he erm srucure of ineres raes and is applicaions in derivaives pricing and risk managemen, Financial Markes, Insiuions and Insrumens, vol. 5, 87. Cox, J. C., Ingersoll, J. E., Ross, S. A. (985), A heory of erm srucure of ineres raes, Economerica, vol. 53, Fong, H. G., Vasicek, O. A. (99), Fixed-income volailiy managemen, Journal of Porfolio Managemen, vol. 7, Heah, D., Jarrow, R. A., Moron, A. (992), Bond pricing and he erm srucure of ineres raes: a new mehodology for coningen claim valuaions, Economerica, vol. 60, Ho, T. S. Y., Lee, S. B. (986), Term srucure movemens and pricing ineres rae coningen claims, Journal of Finance, vol. 4, Nelson, C. R., Siegel, A. F. (987), Parsimonious modeling of yield curves, Journal of Business, vol. 60, Vasicek, O. A. (977), An equilibrium characerizaion of he erm srucure, Journal of Financial Economics, vol. 5,

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP

WYCENA KONTRAKTÓW FUTURES, FORWARD I SWAP Krzyszof Jajuga Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Uniwersye Ekonomiczny we Wrocławiu WYCENA KONRAKÓW FUURES, FORWARD I SWAP DWA RODZAJE SYMERYCZNYCH INSRUMENÓW POCHODNYCH Symeryczne insrumeny

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 2005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Kaarzyna Kuziak Akademia Ekonomiczna

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ

KRZYSZTOF JAJUGA Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ KRZYSZTOF JAJUGA Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu 25 LAT EKONOMETRII FINANSOWEJ EKONOMETRIA FINANSOWA OKREŚLENIE Modele ekonomerii finansowej są worzone

Bardziej szczegółowo

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp

MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. 1. Wstęp WERSJA ROBOCZA - PRZED POPRAWKAMI RECENZENTA Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE FINANSOWYCH SZEREGÓW CZASOWYCH Z WARUNKOWĄ WARIANCJĄ. Wsęp Spośród wielu rodzajów ryzyka, szczególną

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU Modelowanie ryzyka kredyowego MODELOWANIE ZA POMOCA PROCESU HAZARDU Mariusz Niewęgłowski Wydział Maemayki i Nauk Informacyjnych, Poliechniki Warszawskiej Warszawa 2014 hazardu Warszawa 2014 1 / 18 Proces

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK)

KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) KONCEPCJA WARTOŚCI ZAGROŻONEJ VaR (VALUE AT RISK) Kaarzyna Kuziak Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W 1994 roku insyucja finansowa JP Morgan opublikowała

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb)

Marża zakupu bid (pkb) Marża sprzedaży ask (pkb) Swap (IRS) i FRA Przykład. Sandardowy swap procenowy Dealer proponuje nasępujące sałe sopy dla sandardowej "plain vanilla" procenowej ransakcji swap. ermin wygaśnięcia Sopa dla obligacji skarbowych Marża

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

KONTRAKTY FUTURES STOPY PROCENTOWEJ

KONTRAKTY FUTURES STOPY PROCENTOWEJ KONTRAKTY FUTURES STOPY PROCENTOWEJ Zasosowanie z perspekywy radera Dominik Łogin 18 październik 2013 Agenda I. Fuures obligacyjne Podsawy konsrukcji Porównanie międzynarodowe Baza Cash-Fuures Wyznaczanie

Bardziej szczegółowo

PRACA MAGISTERSKA. Modelowanie cen i zapotrzebowania na energię elektryczną.

PRACA MAGISTERSKA. Modelowanie cen i zapotrzebowania na energię elektryczną. Insyu Maemayki Wydział Podsawowych Problemów Techniki Poliechnika Wrocławska PRACA MAGISTERSKA Modelowanie cen i zaporzebowania na energię elekryczną. Pior Wilman 14.6.22 Wrocław promoor: dr Rafał Weron

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ

OCENA ATRAKCYJNOŚCI INWESTYCYJNEJ AKCJI NA PODSTAWIE CZASU PRZEBYWANIA W OBSZARACH OGRANICZONYCH KRZYWĄ WYKŁADNICZĄ Tadeusz Czernik Daniel Iskra Uniwersye Ekonomiczny w Kaowicach Kaedra Maemayki Sosowanej adeusz.czernik@ue.kaowice.pl daniel.iskra@ue.kaowice.pl OCEN TRKCYJNOŚCI INWESTYCYJNEJ KCJI N PODSTWIE CZSU PRZEBYWNI

Bardziej szczegółowo

Kalibracja dwuczynnikowego modelu chwilowej stopy procentowej typu G2++ w mierze rzeczywistej i neutralnej względem ryzyka

Kalibracja dwuczynnikowego modelu chwilowej stopy procentowej typu G2++ w mierze rzeczywistej i neutralnej względem ryzyka Bank i Kredy 48(4, 7, 43 45 Kalibracja dwuczynnikowego modelu chwilowej sopy procenowej ypu G++ w mierze rzeczywisej i neuralnej względem ryzyka Łukasz Delong, Damian Sulik # Nadesłany: sycznia 7 r. Zaakcepowany:

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE

O PEWNYCH KRYTERIACH INWESTOWANIA W OPCJE NA AKCJE MEODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH om XIII/3, 01, sr 43 5 O EWNYCH KRYERIACH INWESOWANIA W OCJE NA AKCJE omasz Warowny Kaedra Meod Ilościowych w Zarządzaniu oliechnika Lubelska e-mail: warowny@pollubpl

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH

WPŁYW NIEPEWNOŚCI OSZACOWANIA ZMIENNOŚCI NA CENĘ INSTRUMENTÓW POCHODNYCH Tadeusz Czernik Uniwersye Ekonomiczny w Kaowicach WPŁYW NIEPEWNOŚCI OZACOWANIA ZMIENNOŚCI NA CENĘ INTRUMENTÓW POCHODNYCH Wprowadzenie Jednym z filarów współczesnych finansów jes eoria wyceny insrumenów

Bardziej szczegółowo

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena Finanse 1. Premia za ryzyko PR r m r f. Wskaźnik Treynora T r r f 3. Wskaźnik Jensena r [ rf ( rm rf ] 4. Porfel o minimalnej wariancji (ile procen danej spółki powinno znaleźć się w porfelu w a w cov,

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012)

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 211 220 Pierwsza wersja złożona 25 października 2011 ISSN Końcowa wersja zaakcepowana 3 grudnia 2012 2080-0339

Bardziej szczegółowo

WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU ODPOWIEDZIALNOŚCI

WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU ODPOWIEDZIALNOŚCI ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 668 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 41 2011 BARTŁOMIEJ NITA Uniwersye Ekonomiczny we Wrocławiu WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYMULACJAMI NUMERYCZNYMI

WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYMULACJAMI NUMERYCZNYMI Zeszyy Naukowe Wydziału Informaycznych Technik Zarządzania Wyższej Szkoły Informayki Sosowanej i Zarządzania Współczesne Problemy Zarządzania Nr 1/2010 WYCENA OBLIGACJI KATASTROFICZNEJ WRAZ Z SYULACJAI

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE

WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Daniel Iskra Uniwersye Ekonomiczny w Kaowicach WARTOŚĆ ZAGROŻONA OPCJI EUROPEJSKICH SZACOWANA PRZEDZIAŁOWO. SYMULACJE Wprowadzenie Jednym z aspeków współczesnej ekonomii jes zarządzanie ryzykiem związanym

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie

Daniel Papla Akademia Ekonomiczna we Wrocławiu. Wykorzystanie modelu DCC-MGARCH w analizie zmian zależności wybranych akcji GPW w Warszawie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna we Wrocławiu Wykorzysanie

Bardziej szczegółowo

Ocena wpływu zmian poziomu rezerw walutowych na premię za ryzyko kredytowe Polski wykorzystanie metody roszczeń warunkowych

Ocena wpływu zmian poziomu rezerw walutowych na premię za ryzyko kredytowe Polski wykorzystanie metody roszczeń warunkowych Bank i Kredy 455, 04, 467 490 Ocena wpływu zmian poziomu rezerw waluowych na premię za ryzyko kredyowe Polski wykorzysanie meody roszczeń warunkowych Michał Konopczak* Nadesłany: 5 kwienia 04 r. Zaakcepowany:

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(301), Sławomir I. Bukowski *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(301), Sławomir I. Bukowski * A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA (301), 014 * STOPIEŃ INTEGRACJI CZESKIEGO GIEŁDOWEGO RYNKU AKCJI Z GIEŁDOWYM RYNKIEM AKCJI W OBSZARZE EURO 1 1. WPROWADZENIE W obszarze

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI

OBLICZANIE TERMINU REALIZACJI PRZEDSIĘWZIĘĆ BUDOWLANYCH METODĄ CCPM NA PODSTAWIE MULTIPLIKATYWNEGO MODELU CZASU TRWANIA CZYNNOŚCI Dane bibliograficzne o arykule: hp://mieczyslaw_polonski.users.sggw.pl/mppublikacje Mieczysław POŁOŃSKI 1 OBLICZANIE TERMIN REALIZACJI PRZEDSIĘWZIĘĆ BDOWLANYCH METODĄ CCPM NA PODSTAWIE MLTIPLIKATYWNEGO

Bardziej szczegółowo

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzystaniem instrumentów SWAP na POLONIĘ

Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzystaniem instrumentów SWAP na POLONIĘ Agaa Kliber * Pior Płuciennik ** Modelowanie premii za ryzyko na polskim rynku pieniężnym z wykorzysaniem insrumenów SWAP na POLONIĘ Wsęp Problemem polskiej bankowości jes duża nadpłynność. Banki niechęnie

Bardziej szczegółowo

Anna Pajor Akademia Ekonomiczna w Krakowie

Anna Pajor Akademia Ekonomiczna w Krakowie DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Krakowie Prognozowanie

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 690 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 51 2012 MAŁGORZATA WASILEWSKA PORÓWNANIE METODY NPV, DRZEW DECYZYJNYCH I METODY OPCJI REALNYCH W WYCENIE PROJEKTÓW

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

Wpływ sposobu zarządzania płynnością, premii za ryzyko i oczekiwań na stopy rynku międzybankowego w Polsce

Wpływ sposobu zarządzania płynnością, premii za ryzyko i oczekiwań na stopy rynku międzybankowego w Polsce Bank i Kredy 47(1), 2016, 61-90 Wpływ sposobu zarządzania płynnością, premii za ryzyko i oczekiwań na sopy rynku międzybankowego w Polsce Anna Sznajderska* Nadesłany: 29 czerwca 2015 r. Zaakcepowany: 25

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 5 4 EWA DZIAWGO Uniwersye Miołaa Kopernia w Toruniu ANALIZA WRA LIWO CI CENY KOSZYKOWEJ OPCJI KUPNA WPROWADZENIE

Bardziej szczegółowo

Modele Markov-Functional przegląd wybranych własności i zastosowanie do wyceny wybranych instrumentów pochodnych

Modele Markov-Functional przegląd wybranych własności i zastosowanie do wyceny wybranych instrumentów pochodnych Uniwersye Warszawski Wydział Maemayki, Informayki i Mechaniki Rober Pysiak Nr albumu: 234577 Modele Markov-Funcional przegląd wybranych własności i zasosowanie do wyceny wybranych insrumenów pochodnych

Bardziej szczegółowo

Struktura terminowa stóp procentowych po kryzysie 2007 roku. praca zespołowa

Struktura terminowa stóp procentowych po kryzysie 2007 roku. praca zespołowa Srukura erminowa sóp procenowych po kryzysie 2007 roku praca zespołowa 17 września 2012 Spis reści I Srukura erminowa sóp procenowych po kryzysie 2007 roku 3 1 Opis rynku finansowego po kryzysie 4 1.1

Bardziej szczegółowo

Mariusz Plich. Spis treści:

Mariusz Plich. Spis treści: Spis reści: Modele wielorównaniowe - mnożniki i symulacje. Podsawowe pojęcia i klasyfikacje. Czynniki modelowania i sposoby wykorzysania modelu 3. ypy i posacie modeli wielorównaniowych 4. Przykłady modeli

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń

Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Katedra Inwestycji Finansowych i Ubezpieczeń Krzyszof Pionek Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Kaedra Inwesycji Finansowych i Ubezpieczeń Przegląd i porównanie meod oceny modeli VaR Wsęp - Miara VaR Warość zagrożona (warość narażona

Bardziej szczegółowo

Model segmentowy bezzatrudnieniowego wzrostu gospodarczego

Model segmentowy bezzatrudnieniowego wzrostu gospodarczego Maria Jadamus-Hacura * Krysyna Melich-Iwanek ** Model segmenowy bezzarudnieniowego wzrosu gospodarczego Wsęp Wzros gospodarczy jes jednym z podsawowych czynników kszałujących rynek pracy. Rynek en jes

Bardziej szczegółowo

Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r.

Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO. z dnia 2 czerwca 2017 r. DZIENNIK URZĘDOWY NARODOWEGO BANKU POLSKIEGO Warszawa, dnia 5 czerwca 2017 r. Poz. 13 UCHWAŁA NR 29/2017 ZARZĄDU NARODOWEGO BANKU POLSKIEGO z dnia 2 czerwca 2017 r. zmieniająca uchwałę w sprawie wprowadzenia

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

MODELOWANIE PREFERENCJI A RYZYKO 11

MODELOWANIE PREFERENCJI A RYZYKO 11 MODELOWANIE PREFERENCJI A RYZYKO Sudia Ekonomiczne ZESZYTY NAUKOWE WYDZIAŁOWE UNIWERSYTETU EKONOMICZNEGO W KATOWICACH MODELOWANIE PREFERENCJI A RYZYKO Kaowice 20 Komie Redakcyjny Tadeusz Trzaskalik (redakor

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO

ZASTOSOWANIE DRZEW KLASYFIKACYJNYCH DO BADANIA KONDYCJI FINANSOWEJ PRZEDSIĘBIORSTW SEKTORA ROLNO-SPOŻYWCZEGO 120 Krzyszof STOWARZYSZENIE Gajowniczek, Tomasz Ząbkowski, EKONOMISTÓW Michał Goskowski ROLNICTWA I AGROBIZNESU Roczniki Naukowe om XVI zeszy 6 Krzyszof Gajowniczek, Tomasz Ząbkowski, Michał Goskowski

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

Inwestycje w lokale mieszkalne jako efektywne zabezpieczenie przed inflacją na przykładzie Poznania w latach

Inwestycje w lokale mieszkalne jako efektywne zabezpieczenie przed inflacją na przykładzie Poznania w latach Radosław Trojanek Kaedra Mikroekonomii Akademia Ekonomiczna w Poznaniu Srona nieparzysa Inwesycje w lokale mieszkalne jako efekywne zabezpieczenie przed inflacją na przykładzie Poznania w laach 996-2004.

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

Modele dyfuzyjne dla wyceny instrumentów pochodnych na rynku energii elektrycznej

Modele dyfuzyjne dla wyceny instrumentów pochodnych na rynku energii elektrycznej Poliechnika Wrocławska Insyu Maemayki i Informayki Modele dyfuzyjne dla wyceny insrumenów pochodnych na rynku energii elekrycznej Ewa Broszkiewicz-Suwaj Rozprawa dokorska napisana pod kierunkiem dr hab.

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I)

STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) STATYSTYCZNY POMIAR EFEKTYWNOŚCI FUNDUSZY INWESTYCYJNYCH OTWARTYCH ZA POMOCĄ EAM (I) dr Jacek, M. Kowalski Wyższa Szkoła Bankowa w Poznaniu jakowalski@op.pl Absrak Jes o pierwsza część, drugiego z cyklu

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr 2 (2012) 161 181 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XLIII nr (01) 161 181 Pierwsza wersja złożona 9 marca 01 ISSN Końcowa wersja zaakcepowana 15 grudnia 01 080-0339 Anna Michałek

Bardziej szczegółowo

Silniki cieplne i rekurencje

Silniki cieplne i rekurencje 6 FOTO 33, Lao 6 Silniki cieplne i rekurencje Jakub Mielczarek Insyu Fizyki UJ Chciałbym Pańswu zaprezenować zagadnienie, kóre pozwala, rozważając emaykę sprawności układu silników cieplnych, zapoznać

Bardziej szczegółowo

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego

Analiza efektywności kosztowej w oparciu o wskaźnik dynamicznego kosztu jednostkowego TRANSFORM ADVICE PROGRAMME Invesmen in Environmenal Infrasrucure in Poland Analiza efekywności koszowej w oparciu o wskaźnik dynamicznego koszu jednoskowego dr Jana Rączkę Warszawa, 13.06.2002 2 Spis reści

Bardziej szczegółowo

GEOTECHNIKA KIERUNEK GEODEZJA I KARTOGRAFIA. 9. MODELE REOLOGICZNE GRUNTÓW I SKAŁ Monika Bartlewska

GEOTECHNIKA KIERUNEK GEODEZJA I KARTOGRAFIA. 9. MODELE REOLOGICZNE GRUNTÓW I SKAŁ Monika Bartlewska 9.. Modele reologiczne 9. MODEE REOOGICZNE GRUNTÓW I KAŁ Monika Barlewska W poprzednim rozdziale przyjęliśmy założenie, że szkiele grunowy jes ciałem nieodkszałcalnym, a jeżeli dopuszczamy jakieś odkszałcenia

Bardziej szczegółowo

Maksyminowe strategie immunizacji portfela

Maksyminowe strategie immunizacji portfela Alina Kondraiuk-Janyska Maksyminowe sraegie immunizacji porfela rozprawa dokorska Promoor: dr hab. Leszek Zaremba Kaedra Meod Ilościowych Wyższa Szkoła Zarządzania- The Polish Open Universiy Wydział Fizyki

Bardziej szczegółowo

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski

Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie strategii inwestycyjnej OFE - kotynuacja. Wojciech Otto Uniwersytet Warszawski Pomiar ryzyka odchylenia od benchmarku w warunkach zmiennej w czasie sraegii inwesycyjnej OFE - koynuacja Wojciech Oo Uniwersye Warszawski Refera przygoowany na Ogólnopolską Konferencję Naukową Zagadnienia

Bardziej szczegółowo