Zaglądamy pod maskę: podstawy działania silnika wyszukiwawczego na przykładzie Lucene

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zaglądamy pod maskę: podstawy działania silnika wyszukiwawczego na przykładzie Lucene"

Transkrypt

1 2..22 Zaglądamy pod maskę: podstawy działania silnika wyszukiwawczego na przykładzie Lucene Dominika Puzio

2 Indeks

3 Podstawy: dokument Dokument: jednostka danych, pojedynczy element na liście wyników wyszukiwania, to co chcemy wyszukiwać ( strona www, artykuł, post, dobro konsumpcyjne ) dokument id: content: Ala ma kota pole 3

4 Podstawy: indeks Indeks: repozytorium, w którym silnik wyszukiwawczy przechowuje dane, zorganizowane w taki sposób, aby dało się w nich szybko wyszukiwać id: content: Ala ma kota id:2 content: Ola ma psa id:3 content: Ala lubi psa 4

5 Indeks odwrócony doc content: content: Ala Ala ma ma kota kota doc2 content: content: Ola Ola ma ma psa psa doc3 content: content: Ala Ala lubi lubi psa psa ala 3 ma 2 kota ola 2 psa 2 3 lubi 3 5

6 Indeks: budowanie doc content: content: Ala Ala ma ma kota kota content:ala 3 doc2 content: content: Ola Ola ma ma psa psa doc3 content: content: Ala Ala lubi lubi psa psa content:kota content:ma content:lubi content:ma 3 2 content:ola content:ma 2 2 content:psa content:ola 2 content:psa 2 3 6

7 Indeks: słownik content:ala 3 content:kota słownik content:lubi 3 content:ma 2 content:ola 2 content:psa 2 3 termy listy id dokumentów 7

8 Indeks: słownik doc id: id: content:ala ma ma kota kota content:ala 3 content:kota doc2 id:2 id:2 content:ola ma ma psa psa doc3 id:3 id:3 content:ala lubi lubi psa psa content:lubi 3 content:ma 2 content:ola 2 content:psa 2 3 id: id:2 2 id:3 3 8

9 Indeks: przebieg wyszukiwania QUERY: [content: ala] content:ala 3 QUERY: [content: ala OR content: kota] content:ala 3 content:kota OR 3 QUERY: [content: ala AND content: kota] content:ala 3 content:kota AND 9

10 Indeks: oglądamy słownik Luke czytnik indeksów Lucene

11 Algorytm scoringu (czyli dlaczego kot jest ważniejszy niż pies)

12 Vector Space Model i trochę historii historycznie: idea użycia komputerów do poszukiwania informacji pojawiła się w 945 roku (http://www.theatlantic.com/magazine/archive/945/7/as-we-may-think/3388/) pierwsze silniki wyszukiwawcze (akademickie) lata 5' pierwsze wielkoskalowe silniki wyszukiwawcze, gotowe do użytku komercyjnego lata 7' Vector Space Model: algebraiczny model dokumentu tekstowego, opracowany i pierwszy raz użyty w latach 6' na Cornell University jako część systemu SMART (System for the Mechanical Analysis and Retrieval of Text) jednej z pierwszych tekstowych wyszukiwarek Vector Space Ranking: algorytm scoringu oparty o Vector Space Model 2

13 Informacje zawarte w słowniku content:ala 3 content:kota content:lubi 3 content:ma 2 content:ola 2 dokument : zawiera słowo ala dokument 2: nie zawiera słowa ala dokument 3: zawiera słowo ala content:psa 2 3 3

14 Alternatywny zapis słownika doc doc2 doc3 content:ala content:kota content:lubi content:ma content:ola content:psa Indeks macierzowy 4

15 Vector Space Model: wektor dokumentu doc doc2 doc3 ala kota doc3 lubi doc2 ma doc ola psa ala kota lubi ma ola psa wektor dokumentu wektor dokumentu doc w przestrzeni doc słów 5

16 Vector Space Model: waga słów doc ala kota lubi ma ola psa Założenie Vector Space Model: informacja o tym, że słowo wystąpiło w dokumencie (lub nie) nie jest wystarczająca. Model bierze pod uwagę również to, że: im więcej wystąpień słowa w dokumencie, tym wyżej powinien być na liście wyników nie wszystkie słowa są jednakowo ważne 6

17 Vector Space Model: waga słów Wartością współrzędnej słowa s w dokumencie d jest waga w s, d obliczana na podstawie liczby wystąpień słowa s w dokumencie d i wartości informacyjnej słowa s. doc w ala,doc w kota,doc w lubi,doc w ma,doc w ola,doc w psa,doc ala kota lubi ma ola psa 7

18 Vector Space Model Krok : każde słowo w dokumencie dostaje wagę zależną od liczby wystąpień słowa w dokumencie i wartości informacyjnej słowa bierzemy pod uwagę liczbę wystąpień poszukiwanego słowa w dokumencie - im więcej razy słowo z zapytania wystąpiło w dokumencie, tym wyższy score dla dokumentu dla każdego słowa w dokumencie mamy liczbę: tf s, d (term frequency) = liczba wystąpień słowa s w dokumencie d dla każdego słowa w dokumencie wyznaczamy wagę wg. wzoru: w s, d = log tf s, d dlatf s,d w przeciwnym wypadku 8

19 Vector Space Model Dlaczego logarytm? w s,d = log tf s, d dlatf s,d w przeciwnym wypadku żeby nie mieć zależności wprost (dokument zawierający słowo razy, nie jest razy lepszy od tego, który zawiera je raz) Dlaczego +log? żeby słowo, które wystąpiło w dokumencie raz, nie otrzymało wagi ( log = ) Dlaczego osobno przypadek, kiedy tf s, d =? dlatego, że log = -ꝏ 9

20 Vector Space Model Krok : każde słowo w dokumencie dostaje wagę zależną od liczby wystąpień słowa w dokumencie i wartości informacyjnej słowa bierzemy pod uwagę liczbę wystąpień poszukiwanego słowa w całym indeksie im rzadsze słowo, tym więcej informacji niesie i dokument je zawierający powinien mieć wyższy score dla każdego słowa w dokumencie mamy liczbę: df s (document frequency) = liczba dokumentów w indeksie zawierających słowo s dla każdego słowa w dokumencie wyznaczamy tzw. inverse document frrequency: idf s =log N df s N - liczba wszystkich dokumentów w indeksie 2

21 Vector Space Model Krok : każde słowo w dokumencie dostaje wagę zależną od tf i idf dla każdego słowa w dokumencie wyznaczamy wagę: w s, d = log tf s,d log N df s waga jest wyznaczana podczas indeksowania i zapisywana w indeksie Przykład: doc doc2 doc3 ala tf ala, doc = tf ala,doc3 = tf ala,doc2 = N = 3 df ala = 2 w ala,doc =w ala, doc3 = log log 3 2,58 w ala,doc2 = log 3 2 = 2

22 Vector Space Model Krok 2: każdy dokument przedstawiamy jako wektor w przestrzeni słów doc w ala,doc w kota,doc w lubi,doc w ma,doc w ola,doc w psa,doc ala kota lubi ma ola psa doc: Ala ma kota doc [,58,58,58 ] ala kota lubi ma ola psa 22

23 Vector Space Model Krok 2: każdy dokument przedstawiamy jako wektor w przestrzeni słów doc: Ala ma kota doc2: Ola ma psa doc3: Ala lubi psa doc [,58,58,58 ] doc2 [,58,58,58 ] doc3 [,58,58,58 ] ala kota lubi ma ola psa 23

24 Vector Space Model (Ranking) Krok 3: zapytanie przedstawiamy jako wektor w przestrzeni słów z: kota i psa z [,58,58 ] ala kota lubi ma ola psa 24

25 Vector Space Model (Ranking) Krok 4: liczymy odległość pomiędzy wektorem zapytania a wektorem dokumentu odległość Euklidesowa nie jest dobra: a b a b d a, b = a, b = d a, b = a, b = 25

26 Vector Space Model (Ranking) Krok 4: liczymy odległość pomiędzy wektorem zapytania a wektorem dokumentu jako miary odległości można użyć kąta między wektorami ale obliczanie kąta jest trudne (π!) zamiast samego kąta można policzyć jego cosinus: cos = cos9 = cos a, b = a b a b = i i a i 2 a i b i i b i 2 cosinus kąta między wektorami = odległość cosinusowa wektorów 26

27 Vector Space Model (Ranking). każde słowo w dokumencie dostaje wagę zależną od liczby wystąpień słowa w dokumencie i wartości informacyjnej słowa 2. każdy dokument przedstawiamy jako wektor w przestrzeni słów 3. zapytanie przedstawiamy jako wektor w przestrzeni słów 4. liczymy odległości cosinusowe pomiędzy wektorem zapytania a wektorami dokumentów 5. sortujemy dokumenty malejąco według odległości ich wektorów od wektora zapytania uproszczony wzór na score dokumentu: score q,d = s q s q d log tf s, q idf s log tf s, d idf s log tf s, q idf s 2 s d log tf s,d idf s 2 27

28 Vector Space Model w praktyce gdzie: scoring Lucene: score q,d = q d q querynorm q tf t,d idf 2 t boost s norm t, d t q querynorm(q) - czynnik normalizujący (stała), wprowadzony aby dało się porównać wyniki różnych typów zapytań, nie ma wpływu na pozycję dokumentu na liście tf zmodyfikowane term frequency idf zmodyfikowane inverse document frequency boost(s) dodatkowa waga słowa (termu) ustawiana w treści zapytania norm(t, d) norma dokumentu, liczba obliczana w trakcie indeksowania i zapisywana w indeksie: boost(d) dodatkowa waga dokumentu, ustawiana w czasie indeksowania field - długość pola (liczba słów) tf t, d := tf t,d N idf t := log df norm t,d =boost d boost field field boost(field) dodatkowa waga pola, ustawiana w czasie indeksowania 28

29 Vector Space Model w praktyce normy dokumentów 29

30 Vector Space Model w praktyce wartości tf dla każdego termu słownik + df dla każdego termu 3

31 Zasoby wiedzy Lucene Wiki: Luke Java User List: M. McCandless, E. Hatcher, O. Gospodnetić Lucene in Action, Second Edition Lucid Works:http://www.lucidworks.com/ C.D. Manning, P. Raghavan, H. Schutze Introduction to Information Retrieval 3

Wyszukiwanie dokumentów WWW bazujące na słowach kluczowych

Wyszukiwanie dokumentów WWW bazujące na słowach kluczowych Eksploracja zasobów internetowych Wykład 3 Wyszukiwanie dokumentów WWW bazujące na słowach kluczowych mgr inż. Maciej Kopczyński Białystok 2014 Wstęp Wyszukiwanie dokumentów za pomocą słów kluczowych bazujące

Bardziej szczegółowo

Wyszukiwanie dokumentów/informacji

Wyszukiwanie dokumentów/informacji Wyszukiwanie dokumentów/informacji Wyszukiwanie dokumentów (ang. document retrieval, text retrieval) polega na poszukiwaniu dokumentów tekstowych z pewnego zbioru, które pasują do zapytania. Wyszukiwanie

Bardziej szczegółowo

Wstęp do przetwarzania języka naturalnego

Wstęp do przetwarzania języka naturalnego Wstęp do przetwarzania języka naturalnego Wykład 9 Wektoryzacja dokumentów i podstawowe miary podobieństwa Wojciech Czarnecki 17 grudnia 2013 Section 1 Przypomnienie Bag of words model Podejście Przypomnienie

Bardziej szczegółowo

Wyszukiwanie tekstów

Wyszukiwanie tekstów Wyszukiwanie tekstów Dziedzina zastosowań Elektroniczne encyklopedie Wyszukiwanie aktów prawnych i patentów Automatyzacja bibliotek Szukanie informacji w Internecie Elektroniczne teksy Ksiązki e-book Artykuły

Bardziej szczegółowo

Wydział Elektrotechniki, Informatyki i Telekomunikacji. Instytut Informatyki i Elektroniki. Instrukcja do zajęć laboratoryjnych

Wydział Elektrotechniki, Informatyki i Telekomunikacji. Instytut Informatyki i Elektroniki. Instrukcja do zajęć laboratoryjnych Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Informatyki i Elektroniki Instrukcja do zajęć laboratoryjnych wersja: 1.0 Nr ćwiczenia: 12, 13 Temat: Cel ćwiczenia: Wymagane przygotowanie

Bardziej szczegółowo

Indeksowanie full text search w chmurze

Indeksowanie full text search w chmurze Prezentacja przygotowana dla: 5. Konferencja MIC w Poznaniu, 16.06.20111 Lucene.NET Indeksowanie full text search w chmurze K2 i Windows Azure dlaczego dla nas to możliwe? 1. Mamy unikalne połącznie kompetencji

Bardziej szczegółowo

Architektury Usług Internetowych. Wyszukiwanie usług w systemie BeesyCluster

Architektury Usług Internetowych. Wyszukiwanie usług w systemie BeesyCluster Architektury Usług Internetowych laboratorium nr 6: Wyszukiwanie usług w systemie BeesyCluster Jakub Kuryłowicz, dr inż. Paweł Czarnul jakub.kurylowicz@eti.pg.gda.pl, pczarnul@eti.pg.gda.pl Katedra Architektury

Bardziej szczegółowo

Bazy dokumentów tekstowych

Bazy dokumentów tekstowych Bazy dokumentów tekstowych Bazy dokumentów tekstowych Dziedzina zastosowań Automatyzacja bibliotek Elektroniczne encyklopedie Bazy aktów prawnych i patentów Szukanie informacji w Internecie Dokumenty tekstowe

Bardziej szczegółowo

Metody indeksowania dokumentów tekstowych

Metody indeksowania dokumentów tekstowych Metody indeksowania dokumentów tekstowych Paweł Szołtysek 21maja2009 Metody indeksowania dokumentów tekstowych 1/ 19 Metody indeksowania dokumentów tekstowych 2/ 19 Czym jest wyszukiwanie informacji? Wyszukiwanie

Bardziej szczegółowo

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Marcin Deptuła Julian Szymański, Henryk Krawczyk Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Architektury

Bardziej szczegółowo

Zastosowanie metod statystycznych do ekstrakcji słów kluczowych w kontekście projektu LT4eL. Łukasz Degórski

Zastosowanie metod statystycznych do ekstrakcji słów kluczowych w kontekście projektu LT4eL. Łukasz Degórski Zastosowanie metod statystycznych do ekstrakcji słów kluczowych w kontekście projektu LT4eL Łukasz Degórski LT4eL Language Technology for e-learning Wykorzystanie narzędzi językowych oraz technik sieci

Bardziej szczegółowo

27.03.2014 Warszawa. Indeksowanietreściwteoriipraktyce. warsztaty

27.03.2014 Warszawa. Indeksowanietreściwteoriipraktyce. warsztaty 27.03.2014 Warszawa Indeksowanietreściwteoriipraktyce warsztaty Rosnąca liczba informacji cyfrowej uniemożliwia osobiste zapoznanie się z każdym ważnym czy chociażby przydatnym dokumentem. W celu ułatwienia

Bardziej szczegółowo

Eksploracja tekstu. Wprowadzenie Wyszukiwanie dokumentów Reprezentacje tekstu. Eksploracja danych. Eksploracja tekstu wykład 1

Eksploracja tekstu. Wprowadzenie Wyszukiwanie dokumentów Reprezentacje tekstu. Eksploracja danych. Eksploracja tekstu wykład 1 Eksploracja tekstu Wprowadzenie Wyszukiwanie dokumentów Reprezentacje tekstu Eksploracja tekstu wykład 1 Tematem wykładu są zagadnienia związane z eksploracją tekstu. Rozpoczniemy od krótkiego wprowadzenia

Bardziej szczegółowo

EKSPLORACJA ZASOBÓW INTERNETU LAB 1 - MIŁOSZ KADZIŃSKI LABORATORIUM WSTĘPNE WYSZUKIWANIE INFORMACJI TEKSTOWYCH WEDŁUG PODOBIEŃSTWA

EKSPLORACJA ZASOBÓW INTERNETU LAB 1 - MIŁOSZ KADZIŃSKI LABORATORIUM WSTĘPNE WYSZUKIWANIE INFORMACJI TEKSTOWYCH WEDŁUG PODOBIEŃSTWA EKSPLORACJA ZASOBÓW INTERNETU LAB 1 - MIŁOSZ KADZIŃSKI LABORATORIUM WSTĘPNE WYSZUKIWANIE INFORMACJI TEKSTOWYCH WEDŁUG PODOBIEŃSTWA 1. Dane kontaktowe Miłosz Kadziński (milosz.kadzinski@cs.put.poznan.pl,

Bardziej szczegółowo

1. Dane punkty na płaszczyźnie. Trzeba narysować dendrogram centroidu

1. Dane punkty na płaszczyźnie. Trzeba narysować dendrogram centroidu 1. Dane punkty na płaszczyźnie. Trzeba narysować dendrogram centroidu Dendrogram obrazuje powiązania między klastrami. Liście obiekty Korzeń wynik grupowania Linia odcinająca pokazuje, w którym momencie

Bardziej szczegółowo

Przetwarzanie języka w praktyce. przykładzie problemu rozstrzygania wieloznaczności

Przetwarzanie języka w praktyce. przykładzie problemu rozstrzygania wieloznaczności , na przykładzie problemu rozstrzygania wieloznaczności Aleksander Pohl http://apohllo.pl Katedra Informatyki, Akademia Górniczo-Hutnicza SFI 8. marca 2008 Plan prezentacji Określenie celu Wymagania Ferret

Bardziej szczegółowo

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne:

Forma. Główny cel kursu. Umiejętności nabywane przez studentów. Wymagania wstępne: WYDOBYWANIE I WYSZUKIWANIE INFORMACJI Z INTERNETU Forma wykład: 30 godzin laboratorium: 30 godzin Główny cel kursu W ramach kursu studenci poznają podstawy stosowanych powszechnie metod wyszukiwania informacji

Bardziej szczegółowo

Wyszukiwanie informacji w internecie. Nguyen Hung Son

Wyszukiwanie informacji w internecie. Nguyen Hung Son Wyszukiwanie informacji w internecie Nguyen Hung Son Jak znaleźć informację w internecie? Wyszukiwarki internetowe: Potężne machiny wykorzystujące najnowsze metody z różnych dziedzin Architektura: trzy

Bardziej szczegółowo

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,

Bardziej szczegółowo

baton OR mars 282,000,000 241,000,000 baton OR mars 283,000,000 WYSZUKIWANIE BOOLOWSKIE

baton OR mars 282,000,000 241,000,000 baton OR mars 283,000,000 WYSZUKIWANIE BOOLOWSKIE WYSZUKIWANIE BOOLOWSKIE Wyszukiwanie boolowskie jest rozszerzeniem wyszukiwania prostego (opartego o słowa kluczowe) o operatory logiczne: AND, OR, NOT oraz ich kombinację. Większośd modeli wyszukiwania

Bardziej szczegółowo

Eksploracja złożonych typów danych Text i Web Mining

Eksploracja złożonych typów danych Text i Web Mining Eksploracja złożonych typów danych Text i Web Mining Jerzy Stefanowski Instytut Informatyki Politechniki Poznańskiej Wykład AiED, Poznań 2002 Co będzie? Eksploracja danych tekstowych Wyszukiwanie informacji

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl

Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl Text mining w programie RapidMiner Michał Bereta www.michalbereta.pl 1. Wstęp Aby skorzystać z możliwości RapidMinera w zakresie analizy tekstu, należy zainstalować Text Mining Extension. Wybierz: 1 Po

Bardziej szczegółowo

ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0

ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0 ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 5.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu ECDL/ICDL Użytkowanie baz danych. Sylabus opisuje zakres wiedzy

Bardziej szczegółowo

Technologie wyszukiwania pełnotekstowego

Technologie wyszukiwania pełnotekstowego Kod szkolenia: Tytuł szkolenia: FULLTEXT Technologie wyszukiwania pełnotekstowego Dni: 3 Opis: Adresaci szkolenia: Szkolenie adresowane jest do osób zainteresowanych funkcjonalnością wyszukiwania pełnotekstowego

Bardziej szczegółowo

Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych

Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych Zastosowania obliczeń inteligentnych do wyszukiwania w obrazowych bazach danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Istniejące systemy - Google Istniejące systemy - Google

Bardziej szczegółowo

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania

Bardziej szczegółowo

Wyszukiwanie binarne

Wyszukiwanie binarne Wyszukiwanie binarne Wyszukiwanie binarne to technika pozwalająca na przeszukanie jakiegoś posortowanego zbioru danych w czasie logarytmicznie zależnym od jego wielkości (co to dokładnie znaczy dowiecie

Bardziej szczegółowo

Numeryczne rozwiązywanie równań i układów równań

Numeryczne rozwiązywanie równań i układów równań Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:

Bardziej szczegółowo

OPTYMALIZACJA SCHEMATU WAŻENIA TERMINÓW DLA MODELU WEKTOROWEGO TERM FREQUENCY OPTIMIZATION FOR THE VECTOR SPACE MODEL

OPTYMALIZACJA SCHEMATU WAŻENIA TERMINÓW DLA MODELU WEKTOROWEGO TERM FREQUENCY OPTIMIZATION FOR THE VECTOR SPACE MODEL ARTUR IEWIAROWSKI * OPTYMALIZACJA SCHEMATU WAŻEIA TERMIÓW DLA MODELU WEKTOROWEGO TERM FREQUECY OPTIMIZATIO FOR THE VECTOR SPACE MODEL Streszczenie Abstract Artykuł opisuje wybrane metody ważenia terminów

Bardziej szczegółowo

Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym

Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym Hybrydowa metoda rekomendacji dokumentów w środowisku hipertekstowym Paweł Szołtysek 09 listopada 2009 1/46 metod metod 2/46 metod 199 stron, 2 cytowania własne 7rozdziałów Promotor: NT Nguyen 3/46 metod

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Rodzaje danych oraz ich przetwarzanie Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności January 29, 2014 1 Dane tabelaryczne 2 Dane tekstowe 3 Dane sensoryczne 4 Dane multimedialne 5 Podsumowanie

Bardziej szczegółowo

Aktualizacja baz danych systemu qs-stat

Aktualizacja baz danych systemu qs-stat Aktualizacja baz danych systemu qs-stat Copyright 2003 Q-DAS GmbH Eisleber Str. 2 D - 69469 Weinheim Tel.: ++49/6201/3941-0 Fax: ++49/6201/3941-24 E-Mail: q-das@q-das.de Internet: http://www.q-das.de Hotline:

Bardziej szczegółowo

POMOC. 1. Wybór Katalogu

POMOC. 1. Wybór Katalogu Bibliografia Regionalna obejmuje książki i czasopisma lokalne zawierające wszelkie wiadomości na temat Woli. Gromadzone informacje dotyczą najczęściej takich zagadnień jak życie społeczne, inwestycje,

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.3 Slajd 1 Excel Slajd 2 Adresy względne i bezwzględne Jedną z najważniejszych spraw jest tzw. adresacja. Mówiliśmy

Bardziej szczegółowo

TEORETYCZNE PODSTAWY INFORMATYKI

TEORETYCZNE PODSTAWY INFORMATYKI 1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 16 2 Data Science: Uczenie maszynowe Uczenie maszynowe: co to znaczy? Metody Regresja Klasyfikacja Klastering

Bardziej szczegółowo

Pobieranie i przetwarzanie treści stron WWW

Pobieranie i przetwarzanie treści stron WWW Eksploracja zasobów internetowych Wykład 2 Pobieranie i przetwarzanie treści stron WWW mgr inż. Maciej Kopczyński Białystok 2014 Wstęp Jedną z funkcji silników wyszukiwania danych, a właściwie ich modułów

Bardziej szczegółowo

Co wylicza Jasnopis? Bartosz Broda

Co wylicza Jasnopis? Bartosz Broda Co wylicza Jasnopis? Bartosz Broda Analiza języka polskiego Ekstrakcja tekstu Dokument narzędzie do mierzenia zrozumiałości Analiza morfologiczna Analiza morfosyntaktyczna Indeksy Klasa trudności:

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Informatyka wspomaga przedmioty ścisłe w szkole

Informatyka wspomaga przedmioty ścisłe w szkole Informatyka wspomaga przedmioty ścisłe w szkole Prezentuje : Dorota Roman - Jurdzińska W arkuszu I na obu poziomach występują dwa zadania związane z algorytmiką: Arkusz I bez komputera analiza algorytmów,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

REPREZENTACJA I WYSZUKIWANIE DOKUMENTÓW TEKSTOWYCH W BAZACH DANYCH

REPREZENTACJA I WYSZUKIWANIE DOKUMENTÓW TEKSTOWYCH W BAZACH DANYCH STUDIA INFORMATICA 2009 Volume 30 Number 2A (83) Jakub CIEŚLEWICZ, Adam PELIKANT Politechnika Łódzka, Instytut Mechatroniki i Systemów Informatycznych REPREZENTACJA I WYSZUKIWANIE DOKUMENTÓW TEKSTOWYCH

Bardziej szczegółowo

SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 2: Wprowadzenie cz. I Wrocław University of Technology SPOTKANIE 2: Wprowadzenie cz. I Piotr Klukowski Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.edu.pl 17.10.2016 UCZENIE MASZYNOWE 2/27 UCZENIE MASZYNOWE = Konstruowanie

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Administracja i programowanie pod Microsoft SQL Server 2000

Administracja i programowanie pod Microsoft SQL Server 2000 Administracja i programowanie pod Paweł Rajba pawel@ii.uni.wroc.pl http://www.kursy24.eu/ Zawartość modułu 9 Optymalizacja zapytań Pobieranie planu wykonania Indeksy i wydajność - 1 - Zadania optymalizatora

Bardziej szczegółowo

PętlaforwOctave. Roman Putanowicz 13 kwietnia 2008

PętlaforwOctave. Roman Putanowicz 13 kwietnia 2008 PętlaforwOctave Roman Putanowicz kwietnia 008 Zakresyioperator : Zakresy(ang. ranges) są wygodnym sposobem definiowania wektorów reprezentujących ciągi arytmetyczne, czyli ciągi w których różnica pomiędzy

Bardziej szczegółowo

Multiwyszukiwarka EBSCO Discovery Service - przewodnik

Multiwyszukiwarka EBSCO Discovery Service - przewodnik Multiwyszukiwarka EDS daje możliwość przeszukania większości baz udostępnianych przez Bibliotekę Główną Uniwersytetu Medycznego w Poznaniu. Odnajdziesz publikacje na potrzebny Ci temat szybko, łatwo i

Bardziej szczegółowo

Nowy wymiar jakości danych w ubezpieczeniach. Wojciech Partyka

Nowy wymiar jakości danych w ubezpieczeniach. Wojciech Partyka Nowy wymiar jakości danych w ubezpieczeniach Wojciech Partyka Znaczenie jakości danych Wymiana danych z podmiotami zewnętrznymi Integracja systemów informatycznych Zapewnienie możliwości uczestniczenia

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych:

Wymagania programowe na poszczególne oceny. Klasa 2. Potęgi o wykładnikach naturalnych i całkowitych. Poziom wymagań edukacyjnych: Wymagania programowe na poszczególne oceny Poziom wymagań edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) D dopełniający (ocena bardzo dobra)

Bardziej szczegółowo

Rozkład łatwości zadań

Rozkład łatwości zadań Klasa 2a średnia klasy: 9.40 pkt średnia szkoły: 10.26 pkt średnia ogólnopolska: 9.55 pkt Rozkład łatwości zadań 1 0.9 0.8 0.7 0.6 łatwość 0.5 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7a 7b 8 9 10 11 12 13 Numer

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Geometria analityczna - przykłady

Geometria analityczna - przykłady Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I. LICZBY I DZIAŁANIA Dopuszczający (K) Dostateczny (P) Dobry (R) bardzo dobry (D) Celujący (W) Uczeń:

Wymagania edukacyjne z matematyki Klasa I. LICZBY I DZIAŁANIA Dopuszczający (K) Dostateczny (P) Dobry (R) bardzo dobry (D) Celujący (W) Uczeń: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne umie zaznaczać liczbę wymierną na osi liczbowej umie zamieniać ułamek

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 6

Języki formalne i automaty Ćwiczenia 6 Języki formalne i automaty Ćwiczenia 6 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Wyrażenia regularne... 2 Standardy IEEE POSIX Basic Regular Expressions (BRE) oraz Extended

Bardziej szczegółowo

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 8: Wyszukiwarki internetowe Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 8 1 / 37 czyli jak znaleźć igłę w sieci Sieci komputerowe

Bardziej szczegółowo

Przetwarzanie Języka Naturalnego dr inż. Krzysztof Rzecki. Przetwarzanie Języka Naturalnego konspekt (30 godzin) Dr inż.

Przetwarzanie Języka Naturalnego dr inż. Krzysztof Rzecki. Przetwarzanie Języka Naturalnego konspekt (30 godzin) Dr inż. Przetwarzanie Języka Naturalnego konspekt (30 godzin) Dr inż. Krzysztof Rzecki Literatura: W. Lubaszewski, Słowniki komputerowe i automatyczna ekstrakcja informacji z tekstu, AGH Kraków 2009. Kłopotek

Bardziej szczegółowo

Excel - podstawa teoretyczna do ćwiczeń. 26 lutego 2013

Excel - podstawa teoretyczna do ćwiczeń. 26 lutego 2013 26 lutego 2013 Ćwiczenia 1-2 Częste błędy i problemy: 1 jeżeli użyjemy niewłaściwego znaku dziesiętnego Excel potraktuje liczbę jak tekst - aby uniknać takich sytuacji używaj klawiatury numerycznej, 2

Bardziej szczegółowo

POZYCJONOWANIE STRON PROGRAM >>>WIĘCEJ<<<

POZYCJONOWANIE STRON PROGRAM >>>WIĘCEJ<<< . Wszystko O Pozycjonowaniu I Marketingu. >>>OPTYMALIZACJA SERWISU POZYCJONOWANIE STRON PROGRAM >>>WIĘCEJ

Bardziej szczegółowo

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy)

opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje nazwy tabel lub widoków warunek (wybieranie wierszy) Zapytania SQL. Polecenie SELECT jest używane do pobierania danych z bazy danych (z tabel lub widoków). Struktura polecenia SELECT SELECT FROM WHERE opisuje nazwy kolumn, wyrażenia arytmetyczne, funkcje

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

DZIAŁ 1. LICZBY I DZIAŁANIA

DZIAŁ 1. LICZBY I DZIAŁANIA DZIAŁ 1. LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne umie zaznaczać liczbę wymierną na osi

Bardziej szczegółowo

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski : idea Indeksowanie: Drzewo decyzyjne, przeszukiwania binarnego: F = {5, 7, 10, 12, 13, 15, 17, 30, 34, 35, 37, 40, 45, 50, 60} 30 12 40 7 15 35 50 Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski

Bardziej szczegółowo

Tworzenie krzywych (curve) w module Geometry programu MSC.Patran można obywać się między innymi przy użyciu poniższych dwóch metod:

Tworzenie krzywych (curve) w module Geometry programu MSC.Patran można obywać się między innymi przy użyciu poniższych dwóch metod: Łukasz Byrski RM-2 Mes w dynamice konstrukcji instrukcja Tworzenie krzywych (curve) w module Geometry programu MSC.Patran można obywać się między innymi przy użyciu poniższych dwóch metod: 1.Metoda XYZ

Bardziej szczegółowo

Map Reduce Proste zliczanie słów i zapytania SQL

Map Reduce Proste zliczanie słów i zapytania SQL Map Reduce Proste zliczanie słów i zapytania SQL 15 maja 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Przygotowanie danych Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności December 5, 2016 1 Dane tabelaryczne 2 Dane tekstowe 3 Dane sensoryczne 4 Dane multimedialne Dane tabelaryczne ID data

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

SciFinder Podstawy wyszukiwania

SciFinder Podstawy wyszukiwania SciFinder Podstawy wyszukiwania Jeżeli szukasz... literatury na zadany temat publikacji określonego autora prac pracowników danej firmy lub instytucji artykułów z wybranego tytułu czasopisma patentu o

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

media Wyszukiwanie pełnotekstowe z wykorzystaniem Search Engine

media Wyszukiwanie pełnotekstowe z wykorzystaniem Search Engine Wyszukiwanie pełnotekstowe z wykorzystaniem Search Engine Wyszukiwanie pełnotekstowe (ang. full-text search) - co to jest? Jest sposobem przeszukiwania danych tekstowych, który bazuje na analizie poszczególnych

Bardziej szczegółowo

Czytnik kart SIM instrukcja obsługi

Czytnik kart SIM instrukcja obsługi Czytnik kart SIM instrukcja obsługi Spis treści I. Zawartość opakowania II. III. IV. Wymagania sprzętowe Instalacja Funkcje V. Podstawy VI. VII. VIII. IX. X. Języki XI. Edycja Książki Adresowej Edycja

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

Kolekcje. Na podstawie:

Kolekcje. Na podstawie: Kolekcje Na podstawie: http://wazniak.mimuw.edu.pl Kolekcje w Javie Kolekcja (kontener) to po prostu obiekt, który grupuje wiele elementów w jeden twór. Pozwala na zapis, odczyt, korzystanie z danych oraz

Bardziej szczegółowo

zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński

zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński zajęcia 1. Bartosz Górski, Tomasz Kulczyński, Błażej Osiński Geometria dla informatyka wyłacznie obliczenia wszystko oparte na liczbach, współrzędnych, miarach programista i/lub użytkownik musi przełożyć

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

ŚLĄSKA WYŻSZA SZKOŁA MEDYCZNA BIBLIOTECZNE CZ. 2

ŚLĄSKA WYŻSZA SZKOŁA MEDYCZNA BIBLIOTECZNE CZ. 2 ŚLĄSKA WYŻSZA SZKOŁA MEDYCZNA W KATOWICACH PRZYSPOSOBIENIE BIBLIOTECZNE CZ. 2 WYSZUKIWANIE I ZAMAWIANIE WYSZUKIWANIE KATALOG PRZEGLĄDAĆ MOŻESZ BEZ LOGOWANIA. DOPIERO GDY CHCESZ COŚ ZAMÓWIĆ MUSISZ SIĘ ZALOGOWAĆ

Bardziej szczegółowo

KARTOTEKA ZAGADNIENIOWA Pedagogicznej Biblioteki Wojewódzkiej w Słupsku Krok po kroku. Jolanta Janonis, Pedagogiczna Biblioteka Wojewódzka w Słupsku

KARTOTEKA ZAGADNIENIOWA Pedagogicznej Biblioteki Wojewódzkiej w Słupsku Krok po kroku. Jolanta Janonis, Pedagogiczna Biblioteka Wojewódzka w Słupsku KARTOTEKA ZAGADNIENIOWA Pedagogicznej Biblioteki Wojewódzkiej w Słupsku Krok po kroku Jolanta Janonis, Pedagogiczna Biblioteka Wojewódzka w Słupsku Wartość i społeczna użyteczność działalności informacyjnej

Bardziej szczegółowo

Scoring w oparciu o Big Data. 8 kwietnia 2014 roku

Scoring w oparciu o Big Data. 8 kwietnia 2014 roku Scoring w oparciu o Big Data 8 kwietnia 2014 roku Od początków ludzkości do roku 2003 wygenerowano 5 eksabajtów informacji tyle samo ludzkość generuje dziś co dwa dni. - Eric Schmidt, Google CEO 2 Dlaczego

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach

Bardziej szczegółowo

STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf

STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_TYT\MEPGI1_001tyt.pdf STRONA DO WSTAWIENIA: STR_RED\MEPGI1_002red.pdf Spis treści Od autorek (s. 7) 1. Statystyka (s. 9) 1.1. Wędrówki po krajach Unii Europejskiej. Wyszukiwanie

Bardziej szczegółowo

sprowadza się od razu kilka stron!

sprowadza się od razu kilka stron! Bazy danych Strona 1 Struktura fizyczna 29 stycznia 2010 10:29 Model fizyczny bazy danych jest oparty na pojęciu pliku i rekordu. Plikskłada się z rekordów w tym samym formacie. Format rekordujest listą

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo

Learning to rank: RankLib. Krzysztof Pawlak, Jakub Sobieski

Learning to rank: RankLib. Krzysztof Pawlak, Jakub Sobieski Learning to rank: RankLib Krzysztof Pawlak, Jakub Sobieski Spis Treści 1) Wprowadzenie Machine learning, Learning to rank 2) Lemur Project 3) RankLib 4) Omówienie algorytmu AdaRank 5) Przykład działania

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy I gimnazjum wg programu Matematyka z plusem pojęcie liczby naturalnej, całkowitej, wymiernej rozszerzenie osi liczbowej na liczby ujemne sposób i potrzebę zaokrąglania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Maciej Piotr Jankowski

Maciej Piotr Jankowski Reduced Adder Graph Implementacja algorytmu RAG Maciej Piotr Jankowski 2005.12.22 Maciej Piotr Jankowski 1 Plan prezentacji 1. Wstęp 2. Implementacja 3. Usprawnienia optymalizacyjne 3.1. Tablica ekspansji

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline.

Wstęp do sieci neuronowych, wykład 03 Warstwy RBF, jednostka Adaline. Wstęp do sieci neuronowych, wykład 3 Warstwy, jednostka Adaline. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 211-1-18 1 Pomysł Przykłady Zastosowanie 2

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

REFERAT PRACY DYPLOMOWEJ

REFERAT PRACY DYPLOMOWEJ REFERAT PRACY DYPLOMOWEJ Temat pracy: Projekt i implementacja aplikacji internetowej do wyszukiwania promocji Autor: Sylwester Wiśniewski Promotor: dr Jadwiga Bakonyi Kategorie: aplikacja webowa Słowa

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo