STATYSTYKA EKONOMICZNA w LOGISTYCE. Metody statystyczne w analizie procesów produkcji

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "STATYSTYKA EKONOMICZNA w LOGISTYCE. Metody statystyczne w analizie procesów produkcji"

Transkrypt

1 SAYSYKA EKONOMICZNA w LOGISYCE Meody saysyczne w analizie procesów produkcji

2 Pomiar poziomu produkcji Produkcja jes maerialnym efekem działalności przedsiębiorswa przemysłowego. Do produkcji zalicza się wyworzone przez przedsiębiorswo wyroby przeznaczone na sprzedaż oraz usługi świadczone odpłanie innym jednoskom gospodarczym. Wyroby przedsiębiorswa, w zależności od sopnia przeworzenia, dzieli się na: wyroby goowe produky nie podlegające dalszemu przewarzaniu w obrębie danego przedsiębiorswa, półfabrykay wyroby orzymane z zakończonej fazy procesu produkcyjnego, przekazane do magazynu półfabrykaów, przeznaczone do dalszego przerobu lub monażu, a niekiedy sprzedaży na zewnąrz, produkcja w oku produkcja niezakończona, znajdująca w danym momencie w określonej fazie procesu produkcyjnego.

3 Pomiar poziomu produkcji 2 Ważnym elemenem oceny działalności przedsiębiorswa przemysłowego jes pomiar poziomu produkcji przy zasosowaniu odpowiednich mierników. Mierniki produkcji dzieli się na: Mierniki ilościowe nauralne - są najprosszym sposobem pomiaru wielkości produkcji. Związane są z fizycznymi właściwościami produkowanych wyrobów i służą do pomiaru produkcji jednorodnej, umowne służą do pomiaru produkcji różnorodnej w ramach ych samych grup asorymenowych, przeliczenia można dokonywać z punku widzenia danej cechy użykowej lub nakładu pracy żywej w wyrobie ( mierniki pracochłonności )

4 Pomiar poziomu produkcji 3 Mierniki warościowe bruo obejmują całą warość wyworzonych wyrobów i usług produkcja owarowa obejmuje produkcję zakończoną przeznaczoną na sprzedaż ( wyroby goowe, półfabrykay i części przeznaczone na sprzedaż oraz usługi świadczone przez przedsiębiorswo na zewnąrz lub na porzeby własne, produkcja globalna składa się z produkcji owarowej oraz salda zapasów produkcji niezakończonej ( wyrażając ją w cenach zbyu, sosuje się do analizy dynamiki produkcji przedsiębiorswa oraz obliczania warościowych mierników neo )

5 Pomiar poziomu produkcji 4 Mierniki warościowe neo obejmują warość nowo wyworzoną w procesie produkcji produkcja czysa obliczana jes przez odjęcie od warości produkcji globalnej w cenach zbyu koszów maerialnych produkcji globalnej, obejmuje koszy niemaerialne : wynagrodzenia wraz ze świadczeniami na rzecz pracowników, podaki, opłay i koszy usług niemaerialnych, podaek akcyzowy i zysk ze sprzedaży produków, produkcja sprzedana obliczana jes przez odjęcie od warości sprzedaży w cenach zbyu (skorygowanej o podaek akcyzowy, doacje przedmioowe oraz rozliczenia wyrównawcze w eksporcie) koszów maerialnych bez amoryzacji, obejmuje: zysk ze sprzedaży, koszy wynagrodzeń wraz ze świadczeniami na rzecz pracowników i koszy amoryzacji. Wyraża syneyczny efek działalności przedsiębiorswa.

6 Analiza dynamiki produkcji Analizę dynamiki produkcji przeprowadza się na podsawie szeregów czasowych, najczęściej szeregów okresów miesięcznych, kwaralnych, rocznych. W przypadku produkcji jednorodnej, wyrażonej w jednoskach nauralnych dynamikę badamy za pomocą przyrosów absolunych i względnych, indeksów indywidualnych i średniego empa wzrosu. Dynamikę wielkości produkcji niejednorodnej, przedsawionej w jednoskach warościowych, analizuje się za pomocą indeksów agregaowych. Agregaowy indeks produkcji wyraża zmiany zarówno w ilości produków, jak i w poziomie cen. Najszersze zasosowanie w analizie dynamiki warości produkcji mają agregaowe indeksy produkcji Laspeyresa. Przy analizie szeregu czasowego warości produkcji, składającego się z kilku lub więcej okresów, sosuje się indeksy łańcuchowe, ponieważ warość produkcji obliczana jes w ych samych cenach ylko dla dwóch sąsiednich okresów.

7 Analiza dynamiki produkcji 2 Ważnym zagadnieniem w analizie dynamiki produkcji jes określenie ogólnych prawidłowości zmian poziomu produkcji w czasie, kóre można przedsawić za pomocą modelu endencji rozwojowej. Do najczęściej sosowanych posaci analiycznych funkcji rendu wielkości (warości) należą: funkcja liniowa Q Gdzie: Q - wielkośc (warość) produkcji w okresie, - zmienna czasowa (numer okresu), ξ - składnik losowy 0

8 Analiza dynamiki produkcji 3 funkcja wykładnicza Q 0e lub Q 00 gdzie: α 0 - wielkość (warość) produkcji w pierwszym okresie, α - roczna sopa wzrosu produkcji.

9 Analiza dynamiki produkcji 4 Klasyczny model endencji rozwojowej o ekonomeryczny model jednorównaniowy, kórego posać analiyczna jes sała w czasie, a jedyną zmienną objaśniającą jes zmienna czasowa lub jej funkcje. Zmienna czasowa nie wysępuje w związku przyczynowo-skukowym ze zmienną endogeniczną i jes rakowana jako syneyczny wskaźnik zmieniających się warunków deerminujących rozwój analizowanego zjawiska. Predykcja na podsawie klasycznego modelu endencji rozwojowej wymaga: oszacowania posaci analiycznej funkcji rendu na podsawie zebranych danych saysycznych można o zrobić za pomocą KMNK dla modeli liniowych i sprowadzalnych do nich

10 Załóżmy, że poszukiwana jes liniowa funkcja rendu posaci: Wykorzysując zapis macierzowy mamy: gdzie: Analiza dynamiki produkcji 5 0 y Y n 2 0 n 2...,, n , y... y y y

11 Analiza dynamiki produkcji 6 W ym przypadku układ równań orzymany w wyniku zasosowania KMNK ma posać: gdzie: a y n, 2 y y y, a a a 0, de( ) 0 kórego rozwiązaniem jes wekor o składowych danych wzorem: a ( ) - y

12 Analiza dynamiki produkcji 7 esymacji paramerów srukury sochasycznej modelu, kóre pozwalają wnioskować o dobroci dopasowania modelu do posiadanych danych empirycznych. Są o:. Wariancja składnika reszowego: S 2 e n - k ( y ŷ ) y - y a) 2. Odchylenie sandardowe składnika reszowego: 2 (y n - k 2 Se S e

13 Analiza dynamiki produkcji 8 3. Macierz wariancji i kowariancji esymaorów: D 2 (a) S 2 e ( ) - 4. Współczynnik deerminacji : R 2 - (y - y - y) a (y - y) 5. Współczynnik zmienności losowej: y y V S e y 00%

14 6. Bezwzględne (średnie) błędy szacunku paramerów srukuralnych: lub gdzie : c ii - elemeny głównej przekąnej macierzy ( ) - Analiza dynamiki produkcji 9 n 2 n 2 e 0 ) - ( n S ) D(a n 2 e ) - ( S ) D(a ii e i c S ) D(a

15 Analiza dynamiki produkcji 9 7. Względne średnie błędy szacunku paramerów srukuralnych: D ' (a 0 ) D(a a 0 0 ) D ' (a ) D(a a ) Błędy przekraczające 50% przekreślają warość poznawczą orzymanych ocen. Przyczynami powodującymi orzymanie dużych błędów szacunku paramerów mogą być:. mała liczebność próby wykorzysywana do esymacji paramerów funkcji rendu, 2. niewłaściwa meoda esymacji paramerów funkcji rendu, 3. przyjęcie niewłaściwej analiycznej posaci funkcji rendu.

16 Analiza dynamiki produkcji 0 Jakość oszacowanej funkcji rendu można ocenić weryfikując hipoezy zerowe o isoności każdego parameru: H 0 : α i = 0 H : α i 0 Do weryfikacji H 0 wykorzysujemy saysykę posaci: (a i ) a i D(a i ) kóra posiada rozkład -Sudena 0 n-k sopniach swobody, jeżeli: (a ) - nie ma podsaw do odrzucenia hipoezy zerowej i (a i ) - hipoezę zerową odrzucamy na korzyść hipoezy alernaywnej

17 Analiza dynamiki produkcji oszacowania błędu prognozy: w przypadku prognozy punkowej bezwzględny (średni) błąd prognozy jes posaci: p S a błąd względny: ( - n ( ) - 2 ) 2 n S 2 e S 'p S y p p 00%

18 Analiza dynamiki produkcji 2 w przypadku prognozy przedziałowej posaci: P{y p u S p y y p u } - bezwzględny (średni) błąd prognozy wyznaczamy nasępująco: p S p u Jeśli odchylenia losowe funkcji rendu mają rozkład normalny o warość u α w przypadku dużej próby odczyujemy z ablic dysrybuany rozkładu normalnego. Jeśli próba jes mała o u α zasępujemy zmienną α,s, kórej warość odczyujemy z ablic rozkładu -Sudena. Gdy odchylenia losowe funkcji rendu nie S posiadają rozkładu normalnego, warość u wyznacza się z relacji: p S p u

19 Funkcja produkcji Proces produkcyjny polega na przekszałceniu przedmioów pracy w wyroby goowe przy zasosowaniu określonej echnologii i organizacji pracy, maszyn i urządzeń oraz pracy ludzkiej. Ilościową ilusracją relacji między wielkością (warością) produkcji a czynnikami, kóre na nią oddziałują, jes funkcja produkcji nasępującej posaci: Q f ( x, x,..., x 2 k, ) gdzie: Q - wielkość (warość) produkcji, x, x 2,..., x k czynniki produkcji niezbędne do jej wyworzenia, ξ - składnik losowy.

20 Zmiennymi objaśniającymi są najważniejsze czynniki wpływające na wielkość produkcji :. Nakłady pracy żywej liczba zarudnionych, liczba godzin przepracowanych przez zarudnionych. 2. Mająek produkcyjny środki rwałe o o bezpośrednio produkcyjne (maszyny i urządzenia bezpośrednio uczesniczące w procesie produkcji) pozosałe (np. budynki) przedmioy pracy (surowce, maeriały, energia) Uwzględnienie składnika losowego świadczy o sochasycznym charakerze relacji między wielkością produkcji a czynnikami ją kszałującymi. Wyraża on efek oddziaływania na wielkość produkcji czynników nie uwzględnionych w modelu, błędy pomiaru id.. Funkcja produkcji 2

21 Funkcja produkcji 3 eoria ekonomii opisuje w sposób przyczynowy wiele procesów gospodarczych, określając ym samym zbiór zmiennych diagnosycznych. Niekiedy jes on zby szeroki, a bywają również przypadki, gdy eoria ekonomii niezby jasno precyzuje, kóre zmienne należy brać pod uwagę aby jak najdokładniej opisać badane zjawisko. Można wówczas wykorzysać odpowiednie meody saysyczne. W modelu opisowym powinny znaleźć się zmienne silnie skorelowane ze zmienną objaśnianą i jednocześnie słabo skorelowane między sobą. Współliniowość zmiennych objaśniających (bezwzględne warości współczynników korelacji między zmiennymi objaśniającymi są bliskie jedności) prowadzi do wielu niekorzysnych efeków modelowania ekonomerycznego. Redukcji zbioru zmiennych diagnosycznych można dokonać za pomocą meody Hellwiga.

22 Meoda Hellwiga składa się z nasępujących kroków: Krok Określenie wszyskich zesawów zmiennych objaśniających, ich liczba jes równa ilości kombinacji możliwych do uworzenia. Jeżeli liczba zmiennych objaśniających jes równa m, o można uworzyć 2 m - ich kombinacji. Krok 2 Obliczenie dla każdej zmiennej w każdej kombinacji indywidualnej pojemności nośnika informacji według wzoru: 2 roj hkj rij gdzie: ii k I i : X K - zbiór indeksów (numerów) zmiennych wchodzących w skład k h kj r oj i k k-ej kombinacji, Funkcja produkcji 4 - indywidualna pojemność j-ej zmiennej w k-ej kombinacji, - współczynnik korelacji j-ej zmiennej objaśniającej ze zmienną objaśnianą, i I k r kj - suma bezwzględnych warości współczynników korelacji j-ej zmiennej objaśniającej z pozosałymi zmiennymi objaśniającymi w danej kombinacji.

23 Krok 3 Obliczenie inegralnej pojemności nośników informacji jako sumy pojemności indywidualnych w ramach każdej z kombinacji: gdzie: H k h kj j H k Krok 4 - inegralna pojemność nośników informacji, pozosałe oznaczenia jak poprzednio. Usalanie siły korelacji za pomocą esu isoności: H o : r oj 0 2 H : roj 0 r kr n 2 Jeżeli: roj r kr - należy przyjąć H 0, Funkcja produkcji 5 kr 2 roj r kr - H 0 należy odrzucić na korzyść H

24 Funkcja produkcji 6 Krok 5 Wybieramy zesaw zmiennych objaśniających najlepiej opisujących zmienną objaśnianą na podsawie wyników esu i warości inegralnych pojemności poszczególnych kombinacji.

25 Funkcja produkcji 7 Najczęściej spoykanymi posaciami funkcji produkcji są liniowa i poęgowa. Liniowa funkcja produkcji ma posać: Q 0 x 2x 2... kx k Paramery srukuralne funkcji produkcji są miernikami wpływu zmiennych objaśniających na wielkość produkcji. W liniowej funkcji produkcji są one równe produkom krańcowym, kóre można wyrazić nasępująco: Q Pi i,2,...,k x i Produk krańcowy wzglądem i-ego czynnika określa zmianę wielkości produkcji spowodowaną zmianą i-ego czynnika produkcji o jednoskę przy usalonym poziomie pozosałych czynników.

26 Funkcja produkcji 8 Poęgowa funkcja produkcji (Cobba-Douglasa) ma posać: Q x 0 x 2 2,..., x k k Zlogarymowana posać modelu jes liniowa względem paramerów srukuralnych i może być oszacowana KMNK. Paramery srukuralne ej funkcji są elasycznościami produkcji względem poszczególnych czynników. Elasyczność produkcji jes względną miarą wrażliwości produkcji na zmianę warości danej zmiennej objaśniającej i można ją wyrazić nasępująco: e E i Q x i x i Q

27 Elasyczność Q względem x i mówi o ile procen wzrośnie wielkość (warość) Q jeżeli wielkość (warość) x i wzrośnie o %, przy założeniu, że warości pozosałych zmiennych objaśniających nie ulegną zmianie. Miernik będący sumą produkcji względem wszyskich czynników produkcji ujęych w modelu nazywamy miernikiem efeku skali produkcji i obliczamy nasępująco: Miernik efeku skali produkcji informuje o ile procen wzrośnie wielkość produkcji jeżeli wielkość wszyskich czynników produkcji wzrośnie jednocześnie o %. Jeżeli: Funkcja produkcji 9 E i E= - wysępuje sała wydajność czynników produkcji (produkcja rośnie w ym samym empie jak czynniki ją kszałujące), E< - malejąca wydajność czynników produkcji, E> rosnąca wydajność czynników produkcji. k E i

28 ypowe modele przepływów produkcyjnych Zarządzanie przepływami srumieni rzeczowych przez przedsiębiorswo ulega ciągłym przeobrażeniom. Osanią fazą ej ewolucji jes zarządzanie kanałowe, nazywane akże łańcuchem dosaw. Jednakże sopień wykorzysania zinegrowanego logisycznego podejścia do zarządzania produkcją jes uzależniony od rodzaju wykonywanej produkcji. Z punku widzenia procesów logisycznych produkcji i sopnia złożoności serowania nimi możemy wyróżnić procesy produkcyjne: aparaurowe ( różnicujące asorymen produków ) z niewielkiej liczby surowców w kolejnych fazach produkcji wywarza się dużą różnorodność wyrobów, obróbczo-monażowe (scalające asorymen produków) z wielu maeriałów wywarza się ograniczony rodzajowo zesaw produków finalnych.

29 ypowe modele przepływów produkcyjnych 2 Zasosowanie logisyki w procesie zarządzania procesami produkcji o charakerze aparaurowym jes ograniczone, gdyż logisyką w ym przypadku seruje wykorzysywana echnologia. W procesach produkcyjnych o charakerze obróbczo-monażowym oprócz licznych srumieni przepływów isnieją różne rodzaje zapasów produkcji w oku, co sprawia, że zarządzanie akimi przepływami jes skomplikowane. Najczęściej spoykanymi rozwiązaniami organizacji przepływów produkcyjnych o ym charakerze są: linie pookowe sałe zsynchronizowane grupa sanowisk, na kórych wywarzany jes jeden rodzaj wyrobu, przy czym każde z gniazd służy do wykonania jednej operacji o czasie rwania równym w przybliżeniu akowi produkcji,

30 ypowe modele przepływów produkcyjnych 3 linie pookowe sałe nie zsynchronizowane brak synchronizacji pracy sanowisk, linie pookowe zmienne na jednej linii- po uprzednim jej przezbrojeniu - można wywarzać różne produky, gniazda przedmioowe o produkcji powarzalnej praca przebiega według wzorcowych harmonogramów obciążeń sanowisk o powarzalnej i usabilizowanej produkcji, gniazda o produkcji niepowarzalnej brak ścisłych powiązań między sanowiskami wynikające z dużej zmienności wykonywanych prac i niewysępowania sałych przydziałów poszczególnych operacji do konkrenych sanowisk.

31 ypowe modele przepływów produkcyjnych 4 W logisyce produkcji wysępują procesy rzeczowe (fizyczne), kóre obejmują ranspor wewnęrzny surowców, maeriałów ip., czynności manipulacyjne i worzenie zapasów produkcji w oku i informacyjne, do kórych zaliczamy planowanie, serowanie i regulowanie przepływów produkcji. Newralgicznym punkem serowania przepływami rzeczowymi produkcji są zapasy produkcji w oku, kórych minimalizacja przyczynia się do zmniejszania zamrożonego kapiału obroowego i zaporzebowania na powierzchnię składową. Zapasy produkcji w oku dzielimy na:. Zapasy międzykomórkowe (Z m ) służą wyrównywaniu różnic w zaporzebowaniu, wynikających ze zmieniającej się inensywności pracy w poszczególnych komórkach. zapasy bieżące (Z mb ) zapasy zabezpieczające (Z mz )

32 ypowe modele przepływów produkcyjnych 5 2. Zapasy wewnąrzkomórkowe (Z w ) zapasy cykliczne ( echnologiczne) - (Z wc ) o zapasy operacyjne (Z op ) wyroby obrabiane na danym sanowisku, o zapasy międzyoperacyjne (Z mop ) zapasy obroowe (Z o ) urzymywane w celu synchronizacji czasów wykonania kolejnych operacji, zapasy ransporowe (Z ) zapasy pozosające w ransporcie lub na niego oczekujące, zapasy kompensacyjne (Z k ) worzone w celu wyrównywania różnic między rzeczywisą wydajnością prac a wydajnością normowaną, zapasy awaryjne (Z a ) gromadzone w przypadku dużej awaryjności danego sanowiska pracy. zapasy pozacykliczne (Z wp ) urzymywane na wypadek wysąpienia nieprzewidzianych zakłóceń.

33 ypowe modele przepływów produkcyjnych 6 W serowaniu przepływami produkcji rozróżnia się :. Serowanie wewnąrzkomórkowe usalanie i konrola wykonania zadań podsawowych komórek organizacyjnych, przy zachowaniu jakości produkcji, erminowości zakończenia prac, skracania cykli produkcji i minimalizacji czasów przygoowawczo zakończeniowych 2. Serowanie międzykomórkowe według meody: aku produkcji wykorzysuje ak produkcji i wydajność jednoskową linii, okresu powarzalności produkcji jes o harmonogram przebiegu produkcji, programu i zapasów jes sosowana gdy nie można zsynchronizować pracy dwóch komórek (worzenie magazynu międzykomórkowego) poziomów minimum-maksimum zapasów usala się normy zapasów, poziomu zapasu kryycznego sosuje się gdy porzeby pojawiają się nieregularnie, wyprzedzeń sosuje się do produkcji jednoskowej o długim cyklu.

34 Nowoczesne meody serowania przepływami Jednym z nowoczesnych kierunków usprawniania procesów logisycznych jes sysem Jus-in-ime, kórego węższą wersją, doyczącą głównie przepływu produkcji w przedsiębiorswie przemysłowym, jes japoński sysem kanban. Celem ych sysemów jes eliminowanie sra powsających na skuek okresowej nadprodukcji, oczekiwania, opóźnień ransporowych, braków produkcyjnych, długorwałego magazynowania ip., kóre powodują nadmierne zaangażowanie kapiału i zwolnienie szybkości jego ruchu okrężnego. Podsawowymi założeniami sysemu kanban są: konieczność dorzymania wysokiej jakości, maksymalne skracanie czasów przygoowawczo-zakończeniowych, minimalizacja liczebności parii produkcyjnych.

35 Opymalna paria produkcji Jeżeli chcemy zasosować podejście minimalizujące koszy worzenia i urzymania zapasu do dosawy z własnej produkcji (dokonywanej sukcesywnie do magazynu zbyu), o opymalną parię produkcji wyznaczamy nasępująco: gdzie: Y inensywność popyu, X maksymalna inensywność produkcji, P popy, Q K z kosz zakupu ( w ym przypadku kosz produkcji i ransporu wewnęrznego), K u kosz urzymania zapasu ' op. K 2PK u ( z Y ) X

36 Opymalna paria produkcji 2 Opymalną parię produkcji zasilającą sukcesywnie magazyn zbyu można uzależnić od opymalnej parii zakupu: Q ' op. Q op. Y X gdzie: Q op. - opymalna paria zakupu Pozosałe oznaczenia jak poprzednio.

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek Meody rachunku koszów Meoda rachunku koszu Podsawowe pojęcia meody ABC Kalkulacja obieków koszowych meodą ABC Zasobowy rachunek koszów Kalkulacja koszów meodą ABC podsawową informacja dla rachunkowości

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

Analiza opłacalności inwestycji logistycznej Wyszczególnienie

Analiza opłacalności inwestycji logistycznej Wyszczególnienie inwesycji logisycznej Wyszczególnienie Laa Dane w ys. zł 2 3 4 5 6 7 8 Przedsięwzięcie I Program rozwoju łańcucha (kanału) dysrybucji przewiduje realizację inwesycji cenrum dysrybucyjnego. Do oceny przyjęo

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Kaedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW Sposoby usalania płac w gospodarce Jednym z głównych powodów, dla kórych na rynku pracy obserwujemy poziom bezrobocia wyższy

Bardziej szczegółowo

MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY

MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY Sysemy Logisyczne Wojsk nr 44/06 MODELOWANIE I PROGNOZOWANIE EKONOMETRYCZNE W LOGISTYCE PRZEDSIĘBIORSTWA MODELING AND ECONOMETRIC PREDICTION IN LOGISTICS COMPANY Agnieszka DUDA a.duda@aon.edu.pl Akademia

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE

Natalia Iwaszczuk, Piotr Drygaś, Piotr Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Naalia Iwaszczuk, Pior Drygaś, Pior Pusz, Radosław Pusz PROGNOZOWANIE GOSPODARCZE Wyd-wo, Rzeszów 03 dr hab., prof. nadzw. Naalia Iwaszczuk, AGH Akademia Górniczo-Hunicza im. Sanisława Saszica w Krakowie

Bardziej szczegółowo

Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak

Inwestycje. Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak Inwesycje Makroekonomia II Dr hab. Joanna Siwińska-Gorzelak CIASTECZOWY ZAWRÓT GŁOWY o akcja mająca miejsce w najbliższą środę (30 lisopada) na naszym Wydziale. Wydarzenie o związane jes z rwającym od

Bardziej szczegółowo

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena

Finanse. cov. * i. 1. Premia za ryzyko. 2. Wskaźnik Treynora. 3. Wskaźnik Jensena Finanse 1. Premia za ryzyko PR r m r f. Wskaźnik Treynora T r r f 3. Wskaźnik Jensena r [ rf ( rm rf ] 4. Porfel o minimalnej wariancji (ile procen danej spółki powinno znaleźć się w porfelu w a w cov,

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X ROZWIĄZANIA ZADAO Zadanie EKONOMETRIA_dw_.xls Na podsawie danych zamieszczonych w arkuszu Zadanie. Podad posad analiyczną modelu ekonomerycznego wielkości produkcji w przemyśle od PO - liczby pracujących

Bardziej szczegółowo

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne

Dr hab. Jerzy Czesław Ossowski Wybrane elementy ekonometrii stosowanej cz. II Istotność zmiennych modelu, autokorelacja i modele multiplikatywne Dr hab. Jerzy Czesław Ossowski Wybrane elemeny ekonomerii sosowanej cz. II Isoność zmiennych modelu, auokorelacja i modele muliplikaywne Ekonomeria-ćw.cz-SSW dr hab. Jerzy Czesław Ossowski Kaedra Nauk

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności)

Różnica bilansowa dla Operatorów Systemów Dystrybucyjnych na lata (którzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Różnica bilansowa dla Operaorów Sysemów Dysrybucyjnych na laa 2016-2020 (kórzy dokonali z dniem 1 lipca 2007 r. rozdzielenia działalności) Deparamen Rynków Energii Elekrycznej i Ciepła Warszawa 201 Spis

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO

ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO ZARZĄDZANIE KOSZTAMI UTRZYMANIA GOTÓWKI W ODDZIAŁACH BANKU KOMERCYJNEGO Sreszczenie Michał Barnicki Poliechnika Śląska, Wydział Oranizacji i Zarządzania Monika Odlanicka-Poczobu Poliechnika Śląska, Wydział

Bardziej szczegółowo

ZAŁOŻENIA NEOKLASYCZNEJ TEORII WZROSTU EKOLOGICZNIE UWARUNKOWANEGO W MODELOWANIU ZRÓWNOWAŻONEGO ROZWOJU REGIONU. Henryk J. Wnorowski, Dorota Perło

ZAŁOŻENIA NEOKLASYCZNEJ TEORII WZROSTU EKOLOGICZNIE UWARUNKOWANEGO W MODELOWANIU ZRÓWNOWAŻONEGO ROZWOJU REGIONU. Henryk J. Wnorowski, Dorota Perło 0-0-0 ZAŁOŻENIA NEOKLASYCZNEJ TEORII WZROSTU EKOLOGICZNIE UWARUNKOWANEGO W MODELOWANIU ZRÓWNOWAŻONEGO ROZWOJU REGIONU Henryk J. Wnorowski, Doroa Perło Plan wysąpienia Cel referau. Kluczowe założenia neoklasycznej

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

Analiza szeregów czasowych w Gretlu (zajęcia 8)

Analiza szeregów czasowych w Gretlu (zajęcia 8) Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych

Bardziej szczegółowo

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA

Wykład 3 POLITYKA PIENIĘŻNA POLITYKA FISKALNA Makroekonomia II Wykład 3 POLITKA PIENIĘŻNA POLITKA FISKALNA PLAN POLITKA PIENIĘŻNA. Podaż pieniądza. Sysem rezerwy ułamkowej i podaż pieniądza.2 Insrumeny poliyki pieniężnej 2. Popy na pieniądz 3. Prowadzenie

Bardziej szczegółowo

z n o c o r p a s o w a n n F i z ę Commercial Union Polska należy do międzynarodowej Grupy

z n o c o r p a s o w a n n F i z ę Commercial Union Polska należy do międzynarodowej Grupy R o c z n y o r p a R C z ę ś ć n F i a n a s o w Commercial Union Polska należy do międzynarodowej Grupy CU Życie Bilans Akywa (w złoych) San na roku San na roku A. Warości niemaerialne i prawne 9 485

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji

Metody badania wpływu zmian kursu walutowego na wskaźnik inflacji Agnieszka Przybylska-Mazur * Meody badania wpływu zmian kursu waluowego na wskaźnik inflacji Wsęp Do oceny łącznego efeku przenoszenia zmian czynników zewnęrznych, akich jak zmiany cen zewnęrznych (szoki

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie lub uniknięcie emisji dwulenku węgla

Bardziej szczegółowo

Mariusz Plich. Spis treści:

Mariusz Plich. Spis treści: Spis reści: Modele wielorównaniowe - mnożniki i symulacje. Podsawowe pojęcia i klasyfikacje. Czynniki modelowania i sposoby wykorzysania modelu 3. ypy i posacie modeli wielorównaniowych 4. Przykłady modeli

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA. Prof. dr hab. Eugeniusz Gatnar. EKONOMETRIA Prof. dr hab. Eugeniusz Gatnar egatnar@mail.wz.uw.edu.pl Sprawy organizacyjne Wykłady - prezentacja zagadnień dotyczących: budowy i weryfikacji modelu ekonometrycznego, doboru zmiennych, estymacji

Bardziej szczegółowo

WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU ODPOWIEDZIALNOŚCI

WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU ODPOWIEDZIALNOŚCI ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 668 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 41 2011 BARTŁOMIEJ NITA Uniwersye Ekonomiczny we Wrocławiu WYKORZYSTANIE MIERNIKÓW KREOWANIA WARTOŚCI W RACHUNKU

Bardziej szczegółowo

System zielonych inwestycji (GIS Green Investment Scheme)

System zielonych inwestycji (GIS Green Investment Scheme) PROGRAM PRIORYTETOWY Tyuł programu: Sysem zielonych inwesycji (GIS Green Invesmen Scheme) Część 6) SOWA Energooszczędne oświelenie uliczne. 1. Cel programu Ograniczenie emisji dwulenku węgla poprzez dofinansowanie

Bardziej szczegółowo

KOSZTOWA OCENA OPŁACALNOŚCI EKSPLOATACJI WĘGLA BRUNATNEGO ZE ZŁOŻA LEGNICA ZACHÓD **

KOSZTOWA OCENA OPŁACALNOŚCI EKSPLOATACJI WĘGLA BRUNATNEGO ZE ZŁOŻA LEGNICA ZACHÓD ** Górnicwo i Geoinżynieria Rok 31 Zeszy 2 2007 Kazimierz Czopek* KOSZTOWA OCENA OPŁACALNOŚCI EKSPLOATACJI WĘGLA BRUNATNEGO ZE ZŁOŻA LEGNICA ZACHÓD ** 1. Wprowadzenie Uwzględniając ylko prosy bilans energii

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 1 Wojciech Waloszek wowal@ei.pg.gda.pl Teresa Zawadzka egra@ei.pg.gda.pl Kaedra Inżyrii Oprogramowania Wydział Elekroniki, Telekomunikacji i Informayki Poliechnika

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Analiza współzależności zjawisk

Analiza współzależności zjawisk Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

Makroekonomia II. Plan

Makroekonomia II. Plan Makroekonomia II Wykład 5 INWESTYCJE Wyk. 5 Plan Inwesycje 1. Wsęp 2. Inwesycje w modelu akceleraora 2.1 Prosy model akceleraora 2.2 Niedosaki prosego modelu akceleraora 3. Neoklasyczna eoria inwesycji

Bardziej szczegółowo

Wpływ przestępczości na wzrost gospodarczy

Wpływ przestępczości na wzrost gospodarczy Magdalena Paszkiewicz Uniwersye Łódzki magpasz@wp.pl Wpływ przesępczości na wzros gospodarczy Myśl o dobrobycie jes bliska każdemu z nas. Chcielibyśmy być obywaelami bogaego, praworządnego pańswa, w kórego

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Model segmentowy bezzatrudnieniowego wzrostu gospodarczego

Model segmentowy bezzatrudnieniowego wzrostu gospodarczego Maria Jadamus-Hacura * Krysyna Melich-Iwanek ** Model segmenowy bezzarudnieniowego wzrosu gospodarczego Wsęp Wzros gospodarczy jes jednym z podsawowych czynników kszałujących rynek pracy. Rynek en jes

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak

MAKROEKONOMIA 2. Wykład 3. Dynamiczny model DAD/DAS, część 2. Dagmara Mycielska Joanna Siwińska - Gorzelak MAKROEKONOMIA 2 Wykład 3. Dynamiczny model DAD/DAS, część 2 Dagmara Mycielska Joanna Siwińska - Gorzelak ( ) ( ) ( ) i E E E i r r = = = = = θ θ ρ ν φ ε ρ α * 1 1 1 ) ( R. popyu R. Fishera Krzywa Phillipsa

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

ZESTAW VI. ε, są składnikami losowymi. Oba modele są nieliniowe. Model (1) Y X Y = = Y X NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI

ZESTAW VI. ε, są składnikami losowymi. Oba modele są nieliniowe. Model (1) Y X Y = = Y X NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI NIELINIOWE MODELE EKONOMETRYCZNE, FUNKCJA PRODUKCJI ZESTAW VI Przykład: Weźmy pod uwagę dwa modele ednorównaniowe: () Y = a+ b + c, () Y = + g + g Z + ξ, Gdzie,Y,Z oznaczaą zmienne, a,b,c,,g paramery srukuralne

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

Model logistycznego wsparcia systemu eksploatacji środków transportu

Model logistycznego wsparcia systemu eksploatacji środków transportu Poliechnika Wrocławska Insyu Konsrukcji i Eksploaacji Maszyn Zakład Logisyki i Sysemów Transporowych Rozprawa dokorska Model logisycznego wsparcia sysemu eksploaacji środków ransporu Rapor serii: PRE nr

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

NAPRAWY POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO ELEMENT AUTORYZOWANEGO SYSTEMU DYSTRYBUCJI

NAPRAWY POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO ELEMENT AUTORYZOWANEGO SYSTEMU DYSTRYBUCJI Inżynieria Rolnicza 8(117)/2009 NAPRAWY POGWARANCYJNE CIĄGNIKÓW ROLNICZYCH JAKO ELEMENT AUTORYZOWANEGO SYSTEMU DYSTRYBUCJI Sławomir Juściński, Wiesław Piekarski Kaedra Energeyki i Pojazdów, Uniwersye Przyrodniczy

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz

EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH. dr inż. Robert Stachniewicz EFEKTYWNOŚĆ INWESTYCJI MODERNIZACYJNYCH dr inż. Rober Sachniewicz METODY OCENY EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH Jednymi z licznych celów i zadań przedsiębiorswa są: - wzros warości przedsiębiorswa

Bardziej szczegółowo

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak

Analiza i Zarządzanie Portfelem cz. 6 R = Ocena wyników zarządzania portfelem. Pomiar wyników zarządzania portfelem. Dr Katarzyna Kuziak Ocena wyników zarządzania porelem Analiza i Zarządzanie Porelem cz. 6 Dr Kaarzyna Kuziak Eapy oceny wyników zarządzania porelem: - (porolio perormance measuremen) - Przypisanie wyników zarządzania porelem

Bardziej szczegółowo

POTENCJAŁ KONKURENCYJNY PRZEMYSŁU SPOŻYWCZEGO W POLSCE

POTENCJAŁ KONKURENCYJNY PRZEMYSŁU SPOŻYWCZEGO W POLSCE MAŁGORZATA JUCHNIEWICZ ATARZYNA ŁUIEWSA Uniwersye Warmińsko-Mazurski Olszyn POTENCJAŁ ONURENCYJNY PRZEMYSŁU SPOŻYWCZEGO W POSCE Wprowadzenie Wielowymiarowe podejście do konkurencyjności powoduje, że w

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH

WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO W PROGNOZOWANIU KROKOWYM ROCZNEGO ZUŻYCIA ENERGII ELEKTRYCZNEJ PRZEZ ODBIORCÓW WIEJSKICH INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH Nr 2/2005, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 121 128 Komisja Technicznej Infrasrukury Wsi Małgorzaa Trojanowska WYKORZYSTANIE TEORII CHAOSU ZDETERMINOWANEGO

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999. Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę

Bardziej szczegółowo

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI

Ćw. S-II.2 CHARAKTERYSTYKI SKOKOWE ELEMENTÓW AUTOMATYKI Dr inż. Michał Chłędowski PODSAWY AUOMAYKI I ROBOYKI LABORAORIUM Ćw. S-II. CHARAKERYSYKI SKOKOWE ELEMENÓW AUOMAYKI Cel ćwiczenia Celem ćwiczenia jes zapoznanie się z pojęciem charakerysyki skokowej h(),

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część I Napięcie, naężenie i moc prądu elekrycznego Sygnały elekryczne i ich klasyfikacja Rodzaje układów elekronicznych Janusz Brzychczyk IF UJ Elekronika Dziedzina nauki i echniki

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo