Cwiczenia do wykladu FIZYKA IIA 2003/ Seria 4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Cwiczenia do wykladu FIZYKA IIA 2003/2004 - Seria 4"

Transkrypt

1 wici o wyklu FIZYK II / - Sri Zi Olicyc pojmosc kostor plskigo o powirchi oklk S, or olglosci miy oklkmi. Zi. Olicyc pojmosc kostor kulistgo o promiiu wwtrym i wtrym Zi Olicyc pojmosc stpc uklu wirjcgo iskoci wil kostorów o pojmosci ky, polcoych jk rysuku Zi. Kostory i lowo o potcjlu ky, l o prciwym ku. Nstpi polcoo rówolgl kostory - jk jst róic potcjlów miy puktmi i f, - jki s luki kostorch f f Zi 5 Zlc pojmosc stpc uklu kostorów ky o pojmosci. Zi 6. Dwi kul mtlic o promiich i polco s rutm. Do uklu oprowoo luk stpi olcoo rut. Jki luk juj si kj kul? Zi 7. Plytk mii o gruosci jst umisco okli w polowi olglosci miy oklkmi plskigo kostor o powirchi S i olglosci miy oklkmi. Jk jst pojmosc kostor pr i po umisciu plytki? Zi 8. Zlc prc, jk wykoo umiscjc mii plytk o gruosci miy oklkmi kostor plskigo o powirchi oklk S i olglosci miy oklkmi por. i 7.. Pryjc /, or - cost pr i po wprowiu plytki, - cost pr i po wprowiu plytki.

2 Zi Olicyc pojmosc kostor plskigo o powirchi oklk S, or olglosci miy oklkmi. owii Pojmosc kostor plskigo wyrmy jko r r l postwi S S S i popri j srii Pol miy wom prciwi lowymi powirchimi jst joro,,, s wktor l,y,, cyli s ilocy sklry l. Zi. Olicyc pojmosc kostor kulistgo o promiiu wwtrym i wtrym owii r r r r wgricy l r r Pooi jk w poprim iu wylicmy róic potcjlów miy oklkmi kostor w tym prypku sfrmi wspólsrokowymi. Zi Olicyc pojmosc stpc uklu wirjcgo iskoci wil kostorów o pojmosci ky, polcoych jk rysuku

3 owii Dostjmy ukl stpcy Zi. Kostory i lowo o potcjlu ky, l o prciwym ku. Nstpi polcoo rówolgl kostory - jk jst róic potcjlów miy puktmi i f, - jki s luki kostorch owii Olicmy róic potcjlów l kostor powstlgo po polciu i i prplyiciu luków, stpi wylicmy luki kostorch pry ym f f rowii wyirmy Dl 8 cyli Dl > ± ±

4 Zi 5 Zlc pojmosc stpc uklu kostorów ky o pojmosci. owii Poy ukl mo prrysowc stpujco N kostor, wic tk jky go i ylo Zi 6. Dwi kul mtlic o promiich i polco s rutm. Do uklu oprowoo luk stpi olcoo rut. Jki luk juj si kj kul? owii N postwi i pojmosc lowj kuli to, cyli Kostory s polco rówolgl, wic cyli or

5 Zi 7. Plytk mii o gruosci jst umisco okli w polowi olglosci miy oklkmi plskigo kostor o powirchi S i olglosci miy oklkmi. Jk jst pojmosc kostor pr i po umisciu plytki? owii Pojmosc kostor plskigo o powirchi S i olglosci miy oklkmi wyosi Po umisciu miij plytki o gruosci powstj m kostory plski o powirchi S i olglosci miy oklkmi /*-, cyli pojmosc kostor plytk to Zi 8. Zlc prc, jk wykoo umiscjc mii plytk o gruosci miy oklkmi kostor plskigo o powirchi oklk S i olglosci miy oklkmi por. i 7.. Pryjc /, or - cost pr i po wprowiu plytki, - cost pr i po wprowiu plytki. owii Dl / ostjmy, tm S S S cost p k cost p k

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu

Ankieta absolwenta ANKIETA ABSOLWENTA. Losy zawodowe absolwentów PWSZ w Raciborzu 24 mj 2012 r. Ankit solwnt Wyni I Sttus oowiązująy Symol Stron 1/5 ANKIETA ABSOLWENTA Losy zwoow solwntów PWSZ w Riorzu Dro Asolwntko, Droi Asolwni! HASŁO DO ANKIETY: Prosimy o okłn przzytni pytń i zznzni

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

Twoje zdrowie -isamopoczucie

Twoje zdrowie -isamopoczucie Twoje zdrowie -ismopoczucie Kidney Disese nd Qulity of Life (KDQOL-SF ) Poniższ nkiet zwier pytni dotyczące Pn/Pni opinii o włsnym zdrowiu. Informcje te pozwolą nm zorientowć się, jkie jest Pn/Pni smopoczucie

Bardziej szczegółowo

Prawo Coulomba i pole elektryczne

Prawo Coulomba i pole elektryczne Prwo Coulomb i pole elektryczne Mciej J. Mrowiński 4 pździernik 2010 Zdnie PE1 2R R Dwie młe kulki o msie m, posidjące ten sm łdunek, umieszczono w drewninym nczyniu, którego przekrój wygląd tk jk n rysunku

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9

ELEMENTY PROSTOKĄTNE Informacje techniczne 1 Kanały 2 Kolana 3 Trójniki 5 Odsadzki Czwórniki 7 Przejścia 8 ELEMENTY DACHOWE Podstawy dachowe 9 ELEMENTY PROSTOKĄTNE nomcj tcniczn 1 Knły 2 Koln 3 Tójniki 5 Oszki Czwóniki 7 Pzjści 8 ELEMENTY DACHOWE Postwy cow 9 Wyzutni 11 Czpni powitz 13 Wywitzki 15 Koln czpn 15 NOX STANLESS STEEL 58-512 St Kminic

Bardziej szczegółowo

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny!

Co można zrobić za pomocą maszyny Turinga? Wszystko! Maszyna Turinga potrafi rozwiązać każdy efektywnie rozwiązywalny problem algorytmiczny! TEZA CHURCHA-TURINGA Mzyn Turing: m końzenie wiele tnów zpiuje po jenym ymolu n liniowej tśmie Co możn zroić z pomoą mzyny Turing? Wzytko! Mzyn Turing potrfi rozwiązć kży efektywnie rozwiązywlny prolem

Bardziej szczegółowo

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i

1.1. Układy do zamiany kodów (dekodery, kodery, enkodery) i Ukły yrow (loizn) 1.1. Ukły o zminy koów (kory, kory, nkory) i Są to ukły kominyjn, zminiją sposó koowni lu przstwini ny yrowy. 1.1.1. kory kory to ukły kominyjn, zminiją n yrow, zpisn w owolnym kozi innym

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Rys.1. Rys.1. str.1. 19h 20h 21h 22h 23h 24h 0h 1h 2h 3h 4h 5h 6h. kopia. Nr1

Rys.1. Rys.1. str.1. 19h 20h 21h 22h 23h 24h 0h 1h 2h 3h 4h 5h 6h. kopia. Nr1 niewidoczny skrypt Romny (R) dl wszystkich ludzi świt NIESAMWITE MŻLIWŚCI SZABLNÓW LISTWWYCH: "A"; "B", "C" ZWIĄZANE Z ŁUKAMI, PDZIAŁEM RÓWNMIERNIE RZŁŻNYM. KPIA FRAGMENTU PLIKU: SKRYPT (R).001. STRNA

Bardziej szczegółowo

GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ.

GŁÓWNE PROMIENIE KRZYWIZNY, DŁUGOŚĆ ŁUKU POŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLEŻNIKA, POLE POWIERZCHNI I OBJĘTOŚĆ ELIPSOIDY OBROTOWEJ. Mtrił ktcn Goj gomtrcn Mrcin Ligs, Ktr Gomtki, Wił Goji Górnicj i Inżnirii Śroowisk GŁÓWN ROMINI KRZYWIZNY, DŁUGOŚĆ ŁUKU OŁUDNIKA, DŁUGOŚĆ ŁUKU RÓWNOLŻNIKA, OL OWIRZCHNI I OBJĘTOŚĆ LISOIDY OBROTOWJ rkrój

Bardziej szczegółowo

KATALOG PRODUKTÓW 2007

KATALOG PRODUKTÓW 2007 KTLOG PROUKTÓW 2007 30-063 Kraków, al. 3-go Maja 5, tel. 012 63 25 345; 032 798 3812, tel/fax 012 63 25 425 www.uchwyt.com.pl Wyroby zawarte w tym katalogu mogą ulegać modyfikacji. Zastrzega się również

Bardziej szczegółowo

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p

KARTA WZORÓW MATEMATYCZNYCH. (a + b) c = a c + b c. p% liczby a = p a 100 Liczba x, której p% jest równe a 100 a p KRT WZORÓW MTEMTYZNY WŁSNOŚI DZIŁŃ Pwo pzemiennośi dodwni + = + Pwo łąznośi dodwni + + = ( + ) + = + ( + ) Pwo zemiennośi mnoŝeni = Pwo łąznośi mnoŝeni = ( ) = ( ) Pwo ozdzielnośi mnoŝeni względem dodwni

Bardziej szczegółowo

Zadania do rozdziału 7.

Zadania do rozdziału 7. Zdni do ozdziłu 7. Zd.7.. wiezchołkch kwdtu o okch umieszczono ednkowe łdunku. Jki łdunek o znku pzeciwnym tze umieścić w śodku kwdtu y sił wypdkow dziłąc n kżdy łdunek ył ówn zeu? ozwiąznie: ozptzmy siły

Bardziej szczegółowo

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si

Bardziej szczegółowo

I C. Biologia. Chemia. Technika w produkcji cukierniczej. Technika w produkcji cukierniczej. Technologia produkcji cukierniczej

I C. Biologia. Chemia. Technika w produkcji cukierniczej. Technika w produkcji cukierniczej. Technologia produkcji cukierniczej Zsdnicz Szkoł Zwodow Rzemiosł i Przedsiębiorcz Bydgoszcz, ul. Kijowsk I C Wychowwc : Cichowsk Mgdlen :0 - : Mtemtyk Biologi Mtemtyk :00 - : Godzin wychowcz Chemi. Grup Informtyk GP. Grup Informtyk :0 -

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą

Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b

Bardziej szczegółowo

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU

ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU ZADANIE I OPIS PRZEDMIOTU ZAMÓWENIA SPECYFIKACJA TECHNICZNA (OPIS) OFEROWANEGO SPRZĘTU Nzw i rs Wykonwy:. I. Systm o ony i trningu koorynji nrwowo-mięśniowj i momntów sił mięśniowyh rozwijnyh w stwh końzyn

Bardziej szczegółowo

KSIÊGA ZNAKU. Logo Twojej firmy

KSIÊGA ZNAKU. Logo Twojej firmy KSIÊGA ZNAKU Opis nku. Logotyp i sygnet twor¹ rem logo, cyli Znk. Logotyp to tekstowe predstwienie nwy firmy. Sygnet to okreœlenie chrkterystycego elementu grficnego. W niektórych prypdkch sygnet mo e

Bardziej szczegółowo

Dodatkowa analiza wskaźnika z art. 243 na podstawie:

Dodatkowa analiza wskaźnika z art. 243 na podstawie: wykonanie wykonanie plan wykonanie n-3 n-2 n-1 4kw 2010 2011 2012 2012 2013 2014 59.063.056,54 63.099.718,93 63.829.275,56 63.863.731,42 65.496.070,97 305.148,63 432.734,47 1.302.703,00 3.922.000,00 400.000,00

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Znajdowanie analogii w geometrii płaskiej i przestrzennej

Znajdowanie analogii w geometrii płaskiej i przestrzennej Gimnzjum n 17 im. Atu Gottge w Kkowie ul. Litewsk 34, 30-014 Kków, Tel. (12) 633-59-12 Justyn Więcek, Atu Leśnik Znjdownie nlogii w geometii płskiej i pzestzennej opiekun pcy: mg Doot Szczepńsk Kków, mzec

Bardziej szczegółowo

ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ

ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZESPOŁU SZKÓŁ ANALIZA ANKIETY SKIEROWANEJ DO UCZNIÓW ZEOŁU SZKÓŁ Bni nkietowe zostły przeprowzono w rmh relizji projektu eukyjnego Nie wyrzuj jk lei. Celem tyh ń yło uzysknie informji n temt świomośi ekologiznej uzniów

Bardziej szczegółowo

TM 1 12A. data. piątek. 26.09.2015r. sobota. 27.09.2015r. niedziela. piątek. 3.10.2015r. sobota. 4.10.2015r. niedziela. godzina. 25.09.2015r.

TM 1 12A. data. piątek. 26.09.2015r. sobota. 27.09.2015r. niedziela. piątek. 3.10.2015r. sobota. 4.10.2015r. niedziela. godzina. 25.09.2015r. data 25.09.2015r. 26.09.2015r. niedziela 27.09.2015r. 2.10.2015r. 3.10.2015r. niedziela 4.10.2015r. L godzina TM 1 12A 1 16.00-16.45 BHP PD 2 16.45-17.30 BHP PD 3 17.30-18.15 BHP PD 4 18.15-19.00 BHP PD

Bardziej szczegółowo

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.

Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe. Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mteriły dydktyczne n zjęci wyrównwcze z mtemtyki dl studentów pierwszego roku kierunku zmwinego Biotechnologi w rmch projektu Er inżynier pewn lokt n przyszłość Projekt Er inżynier pewn lokt n przyszłość

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA

POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA Ćwiczenie 50 POMIAR OGNISKOWEJ SOCZEWEK METODĄ BESSELA 50.. Widomości ogólne Soczewką nzywmy ciło pzeźoczyste oczyste ogniczone dwiem powiezchnimi seycznymi. Post pzechodząc pzez śodki kzywizny ob powiezchni

Bardziej szczegółowo

Projektowanie konstrukcji z blach i profili

Projektowanie konstrukcji z blach i profili Projektownie konstrukji z lh i profili KAtlog 1.1 01/2011 zmówienie fksowe: +48 (0) 61 29 70 123 legend towr w opkowniu s Do prezentji n regłh z hkmi. W opkowniu typu skin i lister. opkownie hurtowe Pojedyńze

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

F u l l H D, I P S D, I P F u l l H D, I P 5 M P,

F u l l H D, I P S D, I P F u l l H D, I P 5 M P, Z a ł» c z n i k n r 6 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k ó w Z a m ó w i e n i a Z n a k s p r a w yg O S I R D Z P I 2 7 1 02 4 2 0 1 5 W Z Ó R U M O W Y z a w a r t a w G d y

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n

Bardziej szczegółowo

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy

Zestaw 11- Działania na wektorach i macierzach, wyznacznik i rząd macierzy Zestw - Dziłni n wektorch i mcierzch, wyzncznik i rząd mcierzy PRZYKŁADOWE ZADANIA Z ROZWIAZANIAMI Dodjąc( bądź odejmując) do siebie dw wektory (lub więcej), dodjemy (bądź odejmujemy) ich odpowiednie współrzędne

Bardziej szczegółowo

Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1

Errata do I i II wydania skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN 1993-1 Errt do I i II dni skrptu Konstrukcj stlo. Prkłd oblicń dług PN-EN 99- Rodił. W osttnim kpici pkt. dodno nstępującą inormcję: Uględniono min nikjąc prodni pr PKN crcu 009 r. poprk opublikonch normch, śld

Bardziej szczegółowo

Gra. The Antykoncepcja Game. Gra The Antykoncepcja Game rozpoczyna siæ od walki z plemnikami.

Gra. The Antykoncepcja Game. Gra The Antykoncepcja Game rozpoczyna siæ od walki z plemnikami. 2 Gr The Antykoncepcj Gme Gr The Antykoncepcj Gme rozpoczyn siæ od wlki z plemnikmi. Wcielj¹c siê w jedn¹ z wybrnych postci kobiecych toczymy zciek³¹ wlkê (strzelnkê) z tkuj¹c¹ nsz¹ komórkê jjow¹ chmr¹

Bardziej szczegółowo

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny

Grafy hamiltonowskie, problem komiwojażera algorytm optymalny 1 Grfy hmiltonowski, problm komiwojżr lgorytm optymlny Wykł oprcowny n postwi książki: M.M. Sysło, N.Do, J.S. Kowlik, Algorytmy optymlizcji yskrtnj z progrmmi w języku Pscl, Wywnictwo Nukow PWN, 1999 2

Bardziej szczegółowo

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Podsumowanie wyników ankiet dotyczących żywienia w sklepikach szkolnych.

Podsumowanie wyników ankiet dotyczących żywienia w sklepikach szkolnych. Posumowni wyników nkit otyząyh żywini w sklpikh szkolnyh. 1.Czy jsz posiłki z stołówki szkolnj? )tk - )ni - )zsmi - 4 6 4 3 tk ni zsmi 1.Czy jsz posiłki z stołówki szkolnj? 2.Il śrnio spożywsz posiłków

Bardziej szczegółowo

I C. 2. Grupa. Informatyka. Wychowanie fizyczne. Edukacja dla. Geografia. Godzina wychowacza PJ. Technologia produkcji cukierniczej.

I C. 2. Grupa. Informatyka. Wychowanie fizyczne. Edukacja dla. Geografia. Godzina wychowacza PJ. Technologia produkcji cukierniczej. Zsdncz Szkoł Zwodow Rzemosł Przedsęborcz Bydgoszcz, ul. Kjowsk I C Wychowwc : Jelenewsk Ptrycj :0 - : :00 - :. Grup. Grup :0 - : : - 0:0 0: - :0 Edukcj dl Relg Hstor Edukcj dl Fzyk Hstor : - :0 Relg Geogrf

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Pdsty Knstrukcji Msyn Wykłd 9 Prekłdnie ębte cęść Krekcje Dr inŝ. Jcek Crnigski Obróbk kół ębtych Metd biedni Pdcięcie ębó Pdcięcie stpy ęb Wstępuje gdy jest duŝ kąt dległść ębó, cyli pry ncinniu młej

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""

6. *21! 4 % rezerwy matematycznej. oraz (ii) $ :;! +!!4 oraz  % & !4!  )$!!4 1 1!4 )$$$  ' Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90

Bardziej szczegółowo

I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I

I 3 + d l a : B E, C H, C Y, C Z, ES, F R, G B, G R, I E, I T, L T, L U V, P T, S K, S I M G 6 6 5 v 1. 2 0 1 5 G R I L L G A Z O W Y T R Ó J P A L N I K O W Y M G 6 6 5 I N S T R U K C J A U 7 Y T K O W A N I A I B E Z P I E C Z E Ń S T W A S z a n o w n i P a s t w o, D z i ę k u j e m y

Bardziej szczegółowo

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN UEZPIECZENI GRUPOWE - sus srn sus łąngo żi i osnigo rżwągo UTORZY MICHŁ OCZEK MŁGORZT CZUPRYN Rowż gruę osób. Owiśi s lib nurlną więs od. Nih i on wi i osob dl i=,,... us gru sus łąngo żi sus osnigo rżwągo

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

Przekładnie morskie. Napędy pomp DPO 087

Przekładnie morskie. Napędy pomp DPO 087 Przekładnie morskie Napędy pomp DPO 087 Przekładnia hydrauliczna DPO 087 montowana jest do koła pasowego lub kołnierza silnika. Wyposażona jest w dwa osobne wały, które mogą napędzać niezależne od siebie

Bardziej szczegółowo

UMOWA ZLECENIE. zobowiązuje się wykonać wymienione w l czynności w okresie od 01.07.2009 do

UMOWA ZLECENIE. zobowiązuje się wykonać wymienione w l czynności w okresie od 01.07.2009 do Dinter Polsk Sp. z o. O. ul Grżyny 15 02-548 Wrszw REGON 010406268 UMOWA ZLECENIE N/P 521-10-03-920 Zwrt dni 30 czerwc 2009.w Kozietułch.pomiędzy: DINTER POLSKA SP Z O.O.z siedzibą w Wrszwie, ul. Grżyny

Bardziej szczegółowo

TM 1 PRZEDMIOT /miejsce zajęć :G- gimnazjum P-pracownia / data. piątek r. sobota r. niedziela. piątek r.

TM 1 PRZEDMIOT /miejsce zajęć :G- gimnazjum P-pracownia / data. piątek r. sobota r. niedziela. piątek r. data 25.09.2015r. 26.09.2015r. niedziela 27.09.2015r. 2.10.2015r. 3.10.2015r. niedziela 4.10.2015r. L godzina TM 1 PRZEDMIOT /miejsce zajęć :G- gimnazjum P-pracownia / 1 16.00-16.45 BHP PD 2 16.45-17.30

Bardziej szczegółowo

K a r l a Hronová ( P r a g a )

K a r l a Hronová ( P r a g a ) A C T A U N I V E R S I T A T I S L O D Z I E N S I S KSZTAŁCENIE POLONISTYCZNE CUDZOZIEMCÓW 2, 1989 K a r l a Hronová ( P r a g a ) DOBÓR I UKŁAD MATERIAŁU GRAMATYCZNEGO W PODRĘCZNIKACH KURSU PODSTAWOWEGO

Bardziej szczegółowo

NACIONALINIS EGZAMINŲ CENTRAS

NACIONALINIS EGZAMINŲ CENTRAS 2016 NACIONALINIS EGZAMINŲ CENTRAS Imię, nzwisko Kls Ko uzni DIAGNOSTINIS MOKYMOSI PASIEKIMŲ VERTINIMAS CZYTANIE Weług M. Kepenienė Mingiusis krokoils, Vilnius: FOLIUM, 1998. Posłuhjie, o się przyrzyło

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

Stereochemia. Izomeria konformacyjna obrót wokół wiązania pojedynczego etan projekcja Newmana

Stereochemia. Izomeria konformacyjna obrót wokół wiązania pojedynczego etan projekcja Newmana Uniwrsytt Jgilloński, Collgium Mdicum, Ktdr Chmii rgnicznj Strochmi Izomri konformcyjn obrót wokół wiązni pojdynczgo tn projkcj Nwmn konformcj: nprzminlgł nprzciwlgł kąt torsyjny w ukłdzi cztrch tomów

Bardziej szczegółowo

PAMIĘTAJ! Okładkę możesz też przygotować jako rozkładówki. Poszczególne strony należy rozmieścić wtedy w taki oto sposób:

PAMIĘTAJ! Okładkę możesz też przygotować jako rozkładówki. Poszczególne strony należy rozmieścić wtedy w taki oto sposób: Katalogi szyte A6 Katalogi szyte A6 109 mm brutto 105 mm netto 105 x 148 mm 109 x 152 mm : 3 mm A6 3 mm 105 mm 105 mm 105 mm 105 mm Katalogi szyte DL Katalogi szyte DL 103 mm brutto 99 mm netto 99 x 210

Bardziej szczegółowo

Podstawy układów logicznych

Podstawy układów logicznych Podstwy ukłdów logicznych Prw logiki /9 Alger Boole Prw logiki WyrŜeni i funkcje logiczne Brmki logiczne Alger Boole /9 Alger Boole' Powszechnie stosowne ukłdy cyfrowe (logiczne) prcują w oprciu o tzw.

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn

Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn Cezary Michalski, Larysa Głazyrina, Dorota Zarzeczna Wykorzystanie walorów turystycznych i rekreacyjnych gminy Olsztyn Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Kultura Fizyczna 7, 215-223

Bardziej szczegółowo

Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,

Mazurskie Centrum Kongresowo-Wypoczynkowe Zamek - Ryn Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax , R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1

Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami.

Droga Pani/Drogi Panie! Wakacje minęły szybko i znowu możemy się spotkać. oraz za zabawami z koleżankami i kolegami. KARTY PRACY 1 CZĘŚĆ KARTA PRACY NR 1 IMIĘ:... DATA: STRONA 1 1. Jkie są twoje oczekiwni i postnowieni związne z kolejnym rokiem szkolnym? Npisz list do nuczyciel, uzupełnijąc luki w tekście. miejscowość

Bardziej szczegółowo

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH

PROJEKT I WALIDACJA URZĄDZEŃ POMIAROWYCH M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X P R O J E K T I W A L I D A C J A U R Z Ą D Z E P O M I A R O W Y C H a S I Y W L I N I E I K Ą T A W Y C H Y L E N I A L I

Bardziej szczegółowo

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka]

Podstawa badania: VDE 0660 część 500/IEC 60 439 Przeprowadzone badanie: Znamionowa wytrzymałość na prąd udarowy I pk. Ip prąd zwarciowy udarowy [ka] Rozził moy Wykrsy wytrzymłośi zwriowj wług EC Wykrsy wytrzymłośi zwriowj wług EN 439-1/EC 439-1 Bni typu zgoni z EN 439-1 W trki ni typu systmu przprowzn zostją nstępują ni systmów szyn ziorzyh Rittl jk

Bardziej szczegółowo

WYNIKI EGZAMINU MATURALNEGO 2010 r.

WYNIKI EGZAMINU MATURALNEGO 2010 r. OKE Łomż 00 stron z 5 powt M. Olsztyn WYNIKI EGZAMINU MATURALNEGO 00 r. Powt M. Olsztyn CZĘŚĆ I Dn zmszczon w częśc I sprwozdn dotyczą mturlngo po rz prwszy. bsolwntów, którzy przystąpl do gzmnu. Ops populcj

Bardziej szczegółowo

PAMIĘTAJ! Okładkę możesz też przygotować jako rozkładówki. Poszczególne strony należy rozmieścić wtedy w taki oto sposób:

PAMIĘTAJ! Okładkę możesz też przygotować jako rozkładówki. Poszczególne strony należy rozmieścić wtedy w taki oto sposób: Broszury szyte A6 Broszury szyte A6 109 mm brutto 105 mm netto 105 x 148 mm 109 x 152 mm : 3 mm A6 3 mm 105 mm 105 mm 105 mm 105 mm Broszury szyte DL Broszury szyte DL 103 mm brutto 99 mm netto 99 x 210

Bardziej szczegółowo

P o d s t a w o w e d e f i n i c j e I S y s t e m e l e k t r o e n e r g e t y c z n y - s i e c i e l e k t r o e n e r g e t y c z n e w r a z z

P o d s t a w o w e d e f i n i c j e I S y s t e m e l e k t r o e n e r g e t y c z n y - s i e c i e l e k t r o e n e r g e t y c z n e w r a z z N i e z a w o d n om e l e k t r o e n e r g e t y c z n y c h s y s t e m ó w s i e c i o w y c h W y k ł a d 5. P o d s t a w o w e d e f i n i c j e I S y s t e m e l e k t r o e n e r g e t y c z n

Bardziej szczegółowo

wpust rowkowy 7,7 x 4,0 mm, wciskany

wpust rowkowy 7,7 x 4,0 mm, wciskany Ya rowek w profilu 5 wciskany wpust rowkowy 7,7 x 4,0 mm, wciskany rowek w profilu 5, z mostkiem i kulką sprężynową, stal Opis ruchomy wpust z noskiem prowadzącym i kulą sprężynową ateriał wpust: stal,

Bardziej szczegółowo

Symulacja czasu ładowania zasobnika C.W.U

Symulacja czasu ładowania zasobnika C.W.U Por Prybyc Syulacja casu łaoaa asobka C.W. Syulacja casu łaoaa asobka C.W. Do cgo służy Progra: Progra służy o sybkgo okrśla casu łaoaa asobka C.W. ry ałożoych arukach brgoych aruk brgo fuj rogra użykok

Bardziej szczegółowo

ANALIZA OBWODÓW RZĘDU ZEROWEGO PROSTE I SIECIOWE METODY ANALIZY OBWODÓW

ANALIZA OBWODÓW RZĘDU ZEROWEGO PROSTE I SIECIOWE METODY ANALIZY OBWODÓW ANALIZA OBWODÓW RZĘDU ZEROWEGO PROSTE I SIECIOWE METODY ANALIZY OBWODÓW Rezystancja zastępcza dwójnika bezźródłowego (m.b. i=0 i u=0) Równoważność dotyczy zewnętrznego zachowania się układów, lecz nie

Bardziej szczegółowo

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =

0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M = M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D

Bardziej szczegółowo

z d n i a 2 3. 0 4.2 0 1 5 r.

z d n i a 2 3. 0 4.2 0 1 5 r. C h o r ą g i e w D o l n o l ą s k a Z H P I. P o s t a n o w i e n i a p o c z ą t k o w e U c h w a ł a n r 1 5 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o l ą s k i e j Z H P z d n i a

Bardziej szczegółowo

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia. Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1,

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Zadanie domowe nr Odczytać zaszyfrowaną wiadomość (liczbę) jeżeli:

Zadanie domowe nr Odczytać zaszyfrowaną wiadomość (liczbę) jeżeli: Zadanie domowe nr 122127 pq = 14691650382719198277390958526325257, KJ = 263111515232459, T XT = 1550184024239249105328038418749504. 2. Obliczyć wielokrotność punktu krzywej eliptycznej 11P jeżeli, y 2

Bardziej szczegółowo

Kratownice Wieża Eiffel a

Kratownice Wieża Eiffel a Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,

Bardziej szczegółowo

2870 KonigStahl_RURY OKRAGLE:2048 KonigStahl_RURY OKRAGLE_v15 3/2/10 4:45 PM Page 1. Partner Twojego sukcesu

2870 KonigStahl_RURY OKRAGLE:2048 KonigStahl_RURY OKRAGLE_v15 3/2/10 4:45 PM Page 1. Partner Twojego sukcesu KonigStl_RURY OKRAGLE:48 KonigStl_RURY OKRAGLE_v15 3/2/1 4:45 PM Pge 1 Prtner Twojego sukcesu KonigStl_RURY OKRAGLE:48 KonigStl_RURY OKRAGLE_v15 3/2/1 4:45 PM Pge 3 Nsz rynek Wilno Kliningrd Gdyni Minsk

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty

guziny gwar i dialektów polskich nudle kónd Jak wykorzystać Mapę gwar i dialektów polskich na zajęciach? galanty sie c dzi uk, b łch n be rw n r ysk r cz cz yć p iec przód wiel któr ysik ś t m l by k c tmk w u r si f k glnty p m guziny bin u sz n kónd ek cz ć y s k nudle gwr i dilektów plskich Jk wykrzystć Mpę gwr

Bardziej szczegółowo

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI

BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI BADANIE MOBILNOŚCI KOMUNIKACYJNEJ LUDNOŚCI Kwestionriusz gospodrstw domowego Numer ewidencyjny: Dził 0. REALIZACJA WYWIADU. Łączn liczb wizyt nkieter w wylosownym mieszkniu. Wylosowne mieszknie Proszę

Bardziej szczegółowo

Zmiany pozycji techniki

Zmiany pozycji techniki ROZDZIAŁ 3 Zmiany pozycji techniki Jak zmieniać pozycje chorego w łóżku W celu zapewnienia choremu komfortu oraz w celu zapobieżenia odleżynom konieczne jest m.in. stosowanie zmian pozycji ciała chorego

Bardziej szczegółowo

1. Warunki. 2. Zakładanie konta. 3. Logowanie. 4. Korzystanie z portalu klienta 5. Subkonta 5.1Zakładanie subkonta. 5.

1. Warunki. 2. Zakładanie konta. 3. Logowanie. 4. Korzystanie z portalu klienta 5. Subkonta 5.1Zakładanie subkonta. 5. PL Instrukcj DROGA DO PORTALU KLIENTA TOLL COLLECT Spis treści 1. Wrunki 2. Zkłdnie kont 3. Logownie 4. Korzystnie z portlu klient 5. Subkont 5.1Zkłdnie subkont 5.2 Edycj subkont 5.3 Usuwnie subkont 1

Bardziej szczegółowo

LINY STALOWE OFERUJE:

LINY STALOWE OFERUJE: LINY STALOWE OFERUJE: - WSZYSTKIE RODZAJE ZAWIESI ŁAŃCUCHOWYCH, - ZAMÓWIENIA NIESTANDARDOWE - ŁAŃCUCHY W KLASIE 8 I 10 - SZEROKI ASORTYMENT AKCESORII DO ZAWIESI ŁAŃCUCHOWYCH Snro konfiurcj zisi ³ñcuchoych

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

symbol dodatkowy element graficzny kolorystyka typografia

symbol dodatkowy element graficzny kolorystyka typografia Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/00 Elementy podstwowe symbol dodtkowy element grficzny kolorystyk typogrfi Identyfikcj wizuln Fundcji n rzecz Nuki Polskiej 1/01 Elementy podstwowe /

Bardziej szczegółowo

Księga Identyfikacji Wizualnej. Polskie Sieci Elektroenergetyczne S.A.

Księga Identyfikacji Wizualnej. Polskie Sieci Elektroenergetyczne S.A. Księg Identyfikcji Wizulnej Polskie Sieci Elektroenergetyczne S.A. 1. Elementy bzowe 1.1. KONSTRUKCJA OPIS ZNAKU PSE 3 1.2. WERSJA PODSTAWOWA ZNAKU 4 1.3. WERSJE UZUPEŁNIAJĄCE 5 1.4. OPIS KOLORYSTYKI ZNAKU

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013

KONKURS MATEMATYCZNY dla uczniów szkół podstawowych w roku szkolnym 2013/2014. I stopień zawodów ( szkolny) 15 października 2013 KONKURS MTEMTYZNY dla uczniów szkół podstawowych w roku szkolnym 201/201 I stopień zawodów ( szkolny) 15 października 201 Propozycja punktowania rozwiązań zadań Uwaga: Za każde poprawne rozwiązanie inne

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA

ZADANIA DO SAMODZIELNEGO ROZWIĄZANIA ZNI SMZIELNE RZWIĄZNI łski ukłd sił zbieżnych Zdnie 1 Jednoodn poziom belk połączon jest pzegubowo n końcu z nieuchomą ściną oz zwieszon n końcu n cięgnie twozącym z poziomem kąt. Znleźć ekcję podpoy n

Bardziej szczegółowo

Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia.

Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia. Zastrzegamy sobie prawo do zmiany cen oraz asortymentu bez wcze niejszego zawiadomienia. Kod Rozmiar Bie nik LI SI RF FR Opony do samochodów osobowych - seria 80 13" 0362001000 135/80R13 rallye 680 70

Bardziej szczegółowo

T00o historyczne: Rozwój uk00adu okresowego pierwiastków 1 Storytelling Teaching Model: wiki.science-stories.org , Research Group

T00o historyczne: Rozwój uk00adu okresowego pierwiastków 1 Storytelling Teaching Model: wiki.science-stories.org , Research Group 13T 00 o h i s t o r y c z n Re o: z w ó j u k 00 a d u o k r e s o w e g o p i e r w i a s t k ó w W p r o w a d z e n i e I s t n i e j e w i e l e s u b s t a n c j i i m o g o n e r e a g o w a z e

Bardziej szczegółowo

Nasza Szesnastka. '' Święta, święta i po świętach '' WWW.JUNIORMEDIA.PL

Nasza Szesnastka. '' Święta, święta i po świętach '' WWW.JUNIORMEDIA.PL Ns Sesnstk Skoł Podstwow nr 16 Krkowskie Predmieście 11 97-300, Piotrków Trybunlski Numer 5 01/15 WWWJUNIORMEDIAPL ORGANIZATOR PROJEKTU PARTNER '' Święt, święt i po świętch '' Zim be śniegu: (prysłowie:

Bardziej szczegółowo

Specyfikacja produktu Złącze FC

Specyfikacja produktu Złącze FC www.bkte.pl Specyfikacja produktu Złącze FC Pakowanie: woreczki po 100 szt. Typ Indeks Złącze FC/PC MM czerwona osłonka 3 mm Złącze FC/PC MM czarna osłonka 3 mm 1040A011 1040A012 Złącze FC/PC MM czarna

Bardziej szczegółowo

Rzeszów, dnia 2 grudnia 2015 r. Poz. 3461 UCHWAŁA NR 160/XVI/2015 RADY MIASTA JAROSŁAWIA. z dnia 25 listopada 2015 r.

Rzeszów, dnia 2 grudnia 2015 r. Poz. 3461 UCHWAŁA NR 160/XVI/2015 RADY MIASTA JAROSŁAWIA. z dnia 25 listopada 2015 r. DZIENNIK URZĘDOWY WOJEWÓDZTWA PODKARPACKIEGO Rzeszów, dnia 2 grudnia 2015 r. Poz. 3461 UCHWAŁA NR 160/XVI/2015 RADY MIASTA JAROSŁAWIA z dnia 25 listopada 2015 r. w sprawie określenia wzorów formularzy

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstw wtrzmłości mteriłów IMiR - MiBM - Dodtek Nr 1 rkterstki geometrcze figur płskic Momet sttcze, środek ciężkości figur i jego wzczie, momet bezwłdości, główe cetrle osie bezwłdości, promieie bezwłdości,

Bardziej szczegółowo