Struktury systemów mechatronicznych 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Struktury systemów mechatronicznych 2"

Transkrypt

1 Jakub Wierciak Struktury systemów 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

2 Powody integrowania mikroprocesorów z maszynami (Gawrysiak 1997) 1. Poprawienie charakterystyk 2. Poszerzenie charakterystyk 3. Uproszczenie złożonych mechanizmów 4. Innowacyjność (nowe rozwiązania) 5....

3 Mechatronika jako synergiczne połączenie różnych dyscyplin (Isermann 2005) mikroelektronika energoelektronika czujniki siłowniki Elektronika Mechatronika Informatyka teoria systemów modelowanie automatyzacja oprogramowanie sztuczna inteligencja elementy mechaniczne maszyny mechanika precyzyjna elektrotechnika Mechanika i elektromechanika

4 Założenia użytkowe opis podsystemów (Wierciak 1996)

5 Analiza funkcji urządzenia (Wierciak 2007) Układy wykonawcze Układy pomiarowe

6 Powiązanie struktury mechanicznej przez strumienie materiału, energii i informacji (Gawrysiak 2003)

7 Uniwersalny schemat urządzenia mechatronicznego (Gawrysiak 1997)

8 Wielopoziomowa architektura sterowania (Gawrysiak 1997, Bishop 2008)

9 Płaszczyzny przetwarzania informacji w systemach mechanicznych (Gawrysiak 1997)

10 Wielopoziomowa architektura sterowania - komunikacja (Gawrysiak 1997, Bishop 2008)

11 Typowa topologia sieci w samochodach wyższej klasy (Bosch 2008)

12 Siłownik liniowy LA34C2xN6x1,0 (Kowalski, Oleksiuk, Czerwiec, Wierciak 2004) Uszczelniacz Stojan silnika Tuleja podpierająca Wirnik silnika Łożysko specjalne Wpust Tuleja specjalna Gwintowana część popychacza Gładka część popychacza Mikrowyłącznik Łożysko kulkowe Układ antyzakleszczeniowy Obudowa Wałek drążony Nakrętka

13 Katalogowe charakterystyki siłownika liniowego (HSI 2003)

14 Obszar pracy rozruchowej siłownika skokowego (Wierciak 2016) F f częstotliwość taktowania silnika skokowego f g graniczna częstotliwość silnika F siła obciążająca siłownik Prędkość v popychacza v s P f 2 P skok gwintu s skok silnika napędowego f g f (v)

15 Obszar pracy rozruchowej siłownika skokowego (Wierciak 2016) F F max f częstotliwość taktowania silnika skokowego f g graniczna częstotliwość silnika F siła obciążająca siłownik Prędkość v popychacza v s P f 2 P skok gwintu s skok silnika napędowego f g f (v)

16 Obszar pracy rozruchowej siłownika skokowego (Wierciak 2016) F F max f częstotliwość taktowania silnika skokowego f g graniczna częstotliwość silnika F siła obciążająca siłownik Prędkość v popychacza v s P f 2 P skok gwintu s skok silnika napędowego f gm f g f (v)

17 Obszar pracy rozruchowej siłownika skokowego (Wierciak 2016) F F max f częstotliwość taktowania silnika skokowego f g graniczna częstotliwość silnika F siła obciążająca siłownik Prędkość v popychacza v s P f 2 P skok gwintu s skok silnika napędowego F real f gm f g f (v)

18 Obszar pracy rozruchowej siłownika skokowego (Wierciak 2016) F F max f częstotliwość taktowania silnika skokowego f g graniczna częstotliwość silnika F siła obciążająca siłownik Prędkość v popychacza v s P f 2 P skok gwintu s skok silnika napędowego F real f gm f g f (v)

19 Obszar pracy rozruchowej siłownika skokowego (Wierciak 2016) F F max f częstotliwość taktowania silnika skokowego f g graniczna częstotliwość silnika F siła obciążająca siłownik Prędkość v popychacza v s P f 2 P skok gwintu s skok silnika napędowego F real f gm f gr f g f (v)

20 Nowa koncepcja sterowania (sterowanie adaptacyjne) F (Wierciak 2003) 1. Pomiar chwilowej wartości siły obciążenia F F i F F i-1 2. Wyznaczenie granicznej częstotliwości taktowania f g dla siły F F i f F f g(i) f 3. Zmiana częstotliwości taktowania na poziom dopuszczalny f max z założonym przyspieszeniem a f F i F i-1 f max(i) f g(i) f g(i-1) f

21 Schemat blokowy zmodyfikowanego siłownika (Wierciak 2003) f Algorytm obliczania częstotliwości taktowania Tor sterowania siłownika Tor pomiaru siły Stojan silnika M Wirnik (nakrętka) Popychacz (śruba) F Napędzany obiekt F zmierzona siła obciążająca f częstotliwość taktowania M moment silnika

22 Prawidłowe odpowiedzi siłownika (Wierciak 2005) *x-4.64*10^-6*x^2 Prędkość popychacza Siła obciążenia

23 Adaptacja (Gausemeier 2008) Dostosowanie parametrów sterowania do przejściowych stanów systemu

24 Wielopoziomowa architektura sterowania - poziomy automatyzacji (Gawrysiak 1997, Bishop 2008)

25 Wielopoziomowa architektura sterowania - system podejmujący decyzje (Gawrysiak 1997, Bishop 2008)

26 Samo optymalizacja

27 Ewolucja strategii sterowania (Gausemeier 2008) Samo optymalizacja Dostosowanie celów w oparciu o doświadczenie/badanie prowadzi do adaptacji systemu poprzez zmianę jego parametrów lub struktury Sterowanie adaptacyjne Sterowanie ze sprzężeniem zwrotnym Dostosowanie parametrów sterowania do przejściowych stanów systemu

28 Czy siłownik może stać się systemem samo optymalizującym? (Wierciak 2010) Stojan silnika Wirnik silnika B Łożysko toczne specjalne F Układ zabezpieczający popychacz przed obrotem A C Gwintowana część popychacza Popychacz Łożysko toczne zwykłe D Nakrętka robocza Osłona śruby Wałek drążony Siłownik z mechanizmem śrubowym niesamohamownym

29 Samooptymalizacja (Gausmeier 2008) Systemy samo optymalizujące to takie systemy, które samodzielnie zmieniają swoje cele w odpowiedzi na zmieniające się warunki zewnętrzne. Zmiana celów pociąga za sobą samoczynną adaptację parametrów i/lub struktury systemu, a w konsekwencji prowadzi do dostosowania zachowania się systemu do nowych warunków zewnętrznych. Samo optymalizacja wykracza poza sterowanie adaptacyjne. Adaptacja sterowania polega na optymalizacji parametrów sterowania po kątem ustalonego celu, podczas gdy systemy samo optymalizujące mogą dodatkowo zmieniać swoje cele, dzięki czemu potrafią reagować bardziej elastycznie na zmieniające się warunki pracy.

30 Proces samooptymalizacji (Gausmeier 2008) 1. Analiza bieżącej sytuacji 2. Określenie celów systemu 3. Adaptacja zachowania systemu

31 Klasyfikacja adaptacji zachowania w systemach samo optymalizujących (Gausmeier 2008) Adaptacja zachowania Zmiana konfiguracji i zależności między elementami systemu Dostosowanie parametrów Dostosowanie struktury Adaptacja parametrów systemu Adaptacja komponentowa Dodanie lub usunięcie elementów struktury Rekonfiguracja Zmiana powiązań między ustalonymi elementami struktury

32 Adaptacja zachowania (Gausmeier 2008) Dostosowanie parametrów zmiana parametrów systemu np. parametrów regulatora. Dostosowanie struktury zmiana układu lub zależności między elementami systemu: rekonfiguracja zmiana zależności między ustaloną liczbą elementów. adaptacja komponentowa dołączenie nowych elementów do istniejącej struktury lub usunięcie elementów ze struktury.

33 Self optimizing mechatronic systems Design the Future - zbiór artykułów (Gausemeier, Rammig, Shäfer 2008)

34 System transportu kolejowego Neue Bahntechnik Paderborn/RailCab (Gausemeier 2008)

35 Model V projektowania urządzeń (VDI 2004) System Układy funkcjonalne Elementy Projektowanie w dziedzinach: mechanika, elektronika, oprogramowanie

36 Koncepcyjne projektowanie systemów samo optymalizujących (Gausemeier 2008) planowanie i określanie zadania projektowego projektowanie koncepcyjne na poziomie systemu projektowanie koncepcyjne na poziomie modułu integracja koncepcji

37 Etapy projektowania koncepcyjnego Struktury systemów (Gausemeier 2008) Projektowanie koncepcyjne dekompozycja Moduł n Moduł 2 Moduł 1 Planowanie i analiza zadania projektowego Projektowanie koncepcyjne na poziomie systemu Lista wymagań Scenariusze zachowań Projektowanie koncepcyjne na poziomie modułu Koncepcja budowy na poziomie systemu Integracja koncepcji Koncepcja budowy na poziomie modułu Kompletna koncepcja budowy

38 Modele cząstkowe służące do opisu systemów samo optymalizujących (Gausemeier 2010) Wymagania Scenariusze aplikacji Funkcje Środowisko System spójnych modeli cząstkowych Zachowanie System celów Aktywna struktura Kształt

39 Projektowanie systemu samo-optymalizującego na przykładzie robota ortotycznego

40 Urządzenie wspomagające poruszanie się osób z bezwładem nóg (ECO-V 2009) Sprawna górna część ciała Urządzenie Mocowane do tułowia Bezwładne mięśnie kończyn dolnych Zdrowy układ kostny kończyn dolnych Programowo napędzane kończyny dolne Użytkownik Obciążenia przenoszone przez układ kostny

41 Roboty ortotyczne (Argo Medical Technologies Ltd., Berkeley 2011) ReWalk elegs

42 Struktura funkcjonalna robota ortotycznego (Wierciak 2013) Zestaw sytuacji Ukłąd porównujący Kod sytuacji Jednostka decyzyjna System bezpieczeństwa Sygnały z systemu i z otoczenia Panel użytkownika Układy pomiarowe Żądanie ruchu Aprobat a Układy wykonawcze systemu bezpieczeństwa Profile ruchu: standardowe i awaryjne System realizacji ruchów Sygnały nastawcze Sterownik ruchów Układy wykonawcze systemu ruchowego Układy pomiarowe ruchów Sygnały diagnostyczne

43 Modele cząstkowe przykład systemu autonomicznych pojazdów szynowych (Gausemeier 2010) Wymagania Scenariusze aplikacji Funkcje Środowisko System spójnych modeli cząstkowych Zachowanie System celów Aktywna struktura Forma przemysłowa

44 Główna funkcja robota - profile ruchu (Syczewska, Bagiński, Wierciak 2011) Funkcje

45 Cele systemu samo optymalizującego (Gausemeier 2008) Cele zewnętrzne pochodzą od użytkownika lub innego systemu. Cele właściwe wynikają w sposób naturalny z przeznaczenia systemu i zapewniają spełnienie jego funkcji, są określane w trakcie projektowania. Cele wewnętrzne te, którym jest aktualnie podporządkowane sterowanie systemu mechatronicznego (podlega im bieżąca optymalizacja). Powstają one przez wybór i dostosowanie celów zewnętrznych lub właściwych lub też przez tworzenie nowych celów.

46 Hierarchia zewnętrznych i właściwych celów robota ortotycznego (Wierciak 2013) System celów zewnętrznych System celów właściwych System celów Bezpieczeństwo Wygoda Koszty eksploatacji Bezpieczeństwo użytkownika Dokładne odwzorowanie ruchów Małe zużycie energii

47 Schody jako element środowiska (Roys 2001) Środowisko

48 Środowisko techniczne - nowa infrastruktura (Getko, Sikorski 2010) Środowisko

49 Schemat funkcjonalny robota (jedna noga) (Wierciak 2001) Aktywna struktura

50 Możliwe zdarzenie - upadek, jako wynik zaniku zasilania (Wierciak 2012) Scenariusze aplikacji

51 Dwa warianty konstrukcyjne układu wykonawczego ruchu kolana (Strojnowski 2012, Credo 2012) Aktywna struktura

52 Struktura wewnętrznych celów robota ortotycznego (Wierciak 2013) System celów

53 Techniczny model robota (ECO 2013) Układy wykonawcze Forma przemysłowa Wygląd

54 Model zachowania systemu (Gausemeier 2008) Stanowi zbiór modeli cząstkowych opisujących w różnych aspektach zachowanie się systemu. To, co w każdym samo optymalizującym systemie powinno być zamodelowane, to stany systemu wraz z procesami, które w danym stanie zachodzą oraz przejścia między stanami wraz z procesami adaptacyjnymi towarzyszącymi danemu przejściu. Procesy adaptacyjne stanowią realizację procesu samo optymalizacji. Jeżeli w procesie samo optymalizacji uczestniczy kilka systemów, to wzajemne oddziaływania między nimi muszą być zamodelowane.

55 Model zachowania systemu - elementy składowe (Gausemeier 2008) Model zachowania stany określa stany, w jakich system może się znajdować, przejścia między tymi stanami oraz zdarzenia, które te przejścia wywołują. Reprezentowany jest poprzez graf stanów i przejść. Model zachowania działania opisuje procesy operacyjne, który prowadzi system w poszczególnych stanach oraz procesy adaptacyjne związane z przejściami między stanami. Procesy te składają się z elementarnych działań takich jak np. określenie stopnia spełnienia bieżących celów. Model zachowania sekwencja reprezentuje interakcję między systemami biorącymi udział w procesie samo optymalizacji. Działania podejmowane przez systemy podczas interakcji oraz informacje wymieniane między nimi są modelowane porządku chronologicznym.

56 Modele cząstkowe służące do opisania robota ortotycznego (Gausemeier 2010) Wymagania nia Scenariusze aplikacji Funkcje Funkcje Środowisko SYSTEM SPÓJNYCH MODELI CZĄSTKOWYCH Zachowanie nie System celów Aktywna Aktywna struktura struktura Kształt Forma przemysłowa

57 Współdziałanie modeli cząstkowych - proces samo-optymalizacji (Gausemeier 2008) Zachowanie stany Zachowanie działania Aktywna struktura element systemu działanie stan zdarzenie grupa logiczna powiązanie wyznaczony do alternatywa analiza bieżącej sytuacji określanie celów systemu adaptacja zachowania systemu

58 Nowe źródła (Springer 2014)

59 Systemy samo optymalizujące -wykaz źródeł (Wierciak 2015) Gawrysiak M.: Mechatronika i projektowanie mechatroniczne. Politechnika Białostocka. Rozprawy Naukowe Nr 44. Białystok 1997 Gausemeier, J., Donoth, J. and Pook, S., "Conceptual Design of Self-Optimizing Mechatronic Systems," Self-optimizing Mechatronic Systems. Design the Future, HNI-Verlagsschriftenreihe 223, (2008) Gausemeier, J., Kahl, S. and Pook, S., "From Mechatronics to Self-Optimizing Systems," Self-optimizing Mechatronic Systems. Design the Future, HNI- Verlagsschriftenreihe 223, 3-32 (2008) Dependability of Self Optimizing Mechatronic Systems. Eds.: Gausemeier J., Rammig F. J., Shaeffer W., Sextro W.

60 Hierarchiczna struktura systemu mechatronicznego

61 Hierarchiczna struktura systemu mechatronicznego (Gawrysiak 2003)

62 Hierarchiczna struktura systemów (Lückel 2001)

63 Struktury systemów Projekty miejskiego transportu napowietrznego (Grabarek, Choromański 2008)

64 Struktury systemów Zjednoczone Emiraty Arabskie Masdar, Norman Foster (Grabarek, Choromański 2008)

65 ULTRA Wielka Brytania (Grabarek, Choromański 2008)

66 Indywidualny transport naziemny Grabarek, Choromański 2008) Szwajcaria Szwecja

67 Projekt pojazdu (Grabarek, Choromański 2008) a) b) b) a) a) Politechnika Warszawska, b) firma Fama

68 Koncepcja sieci dróg (Grabarek, Choromański 2008)

69 4 1 Projekt układu jezdnego - patent (Madej, Choromański 2006)

70 Ośrodek badawczy w Ząbkach (Grabarek, Choromański 2008)

71 Struktury systemów Lokalizacja ośrodka badawczego (Grabarek, Choromański 2008)

72 Analiza struktury systemu PRT (Grabarek, Choromański, Wierciak 2008) Informatyczny system zarządzania Inteligentne pojazdy Systemy stacyjne Struktura toru Infrastruktura

73 Baza wiedzy Poziomy automatyzacji Mechanizm wnioskowania Komunikacja Kanały komunikacyjne Decyzje dla diagnostyki zakłóceń Komunikacja zewnętrzna Decyzje dla sterowania Komunikacja wewnętrzna Cechy optymalne/normalne Nadzór Projekt regulatora Adaptacja Ocena parametrów i stanu Sterowanie, regulowanie u Układ wykonawczy Proces Układ pomiarowy y

Struktury systemów mechatronicznych - 1

Struktury systemów mechatronicznych - 1 Jakub Wierciak Struktury systemów - 1 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mechatronika (Gawrysiak 1997) Mechatronika

Bardziej szczegółowo

Uwagi wstępne, organizacja zajęć

Uwagi wstępne, organizacja zajęć Jakub Wierciak Uwagi wstępne, Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozwój systemów technicznych (Gawrysiak 1997) Mechatronika

Bardziej szczegółowo

Uwagi wstępne, organizacja zajęć

Uwagi wstępne, organizacja zajęć Jakub Wierciak Uwagi wstępne, Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Systemy mechatroniczne - wykładowcy (2013) dr inż.

Bardziej szczegółowo

Model procesu projektowania urządzeń mechatronicznych cz. 2

Model procesu projektowania urządzeń mechatronicznych cz. 2 Jakub Wierciak Model procesu projektowania cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Analiza funkcji systemu (Wierciak

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl Mechatronika i inteligentne systemy produkcyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, cel i zastosowania mechatroniki Urządzenie mechatroniczne - przykłady

Bardziej szczegółowo

Model procesu projektowania urządzeń mechatronicznych cz. 2

Model procesu projektowania urządzeń mechatronicznych cz. 2 Jakub Wierciak Model procesu projektowania cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Analiza funkcji systemu (Wierciak

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego magisterskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Materiały używane w budowie urządzeń precyzyjnych. 2. Rodzaje stali węglowych i stopowych, 3. Granica sprężystości

Bardziej szczegółowo

Mechatronika i szybkie prototypowanie układów sterowania

Mechatronika i szybkie prototypowanie układów sterowania Mechatronika i szybkie prototypowanie układów sterowania Rozwój systemów technicznych Funkcje operacyjne Dostarczanie energii Wprowadzanie danych sterujących Generacje systemów technicznych prymitywny

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym Napędy urządzeń mechatronicznych - projektowanie Dobór silnika skokowego do pracy w obszarze rozruchowym Precyzyjne pozycjonowanie (Velmix 2007) Temat ćwiczenia - stolik urządzenia technologicznego (Szykiedans,

Bardziej szczegółowo

Słowo mechatronika powstało z połączenia części słów angielskich MECHAnism i electronics. Za datę powstania słowa mechatronika można przyjąć rok

Słowo mechatronika powstało z połączenia części słów angielskich MECHAnism i electronics. Za datę powstania słowa mechatronika można przyjąć rok Słowo mechatronika powstało z połączenia części słów angielskich MECHAnism i electronics. Za datę powstania słowa mechatronika można przyjąć rok 1969, gdy w firmie Yasakawa Electronic z Japonii wszczęto

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany

Bardziej szczegółowo

Robot ortotyczny jako system mechatroniczny

Robot ortotyczny jako system mechatroniczny Danuta Jasińska-Choromańska, Jakub Wierciak Ksawery Szykiedans i inni Robot ortotyczny jako system mechatroniczny ECO-MOBILITY innovative systems, constructions and advanced material technologies Osoby

Bardziej szczegółowo

PROJEKTOWANIE MECHATRONICZNE

PROJEKTOWANIE MECHATRONICZNE Przedmiot: PROJEKTOWANIE MECHATRONICZNE Prowadzący: Prof. dr hab. inż. Krzysztof J. Kaliński, prof. zw. PG Katedra Mechaniki i Mechatroniki 108 WM, kkalinsk@o2.pl Konsultacje: wtorek 14:00 15:00 czwartek

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne. laboratoryjne projektowe.

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne. laboratoryjne projektowe. Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Niestacjonarne Rocznik: 017/018 Język wykładowy: Polski Semestr 1 Fizyka

Bardziej szczegółowo

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113 Spis treści Wstęp 11 1. Rozwój robotyki 15 Rys historyczny rozwoju robotyki 15 Dane statystyczne ilustrujące rozwój robotyki przemysłowej 18 Czynniki stymulujące rozwój robotyki 23 Zakres i problematyka

Bardziej szczegółowo

Spis treści Zespół autorski Część I Wprowadzenie 1. Podstawowe problemy transportu miejskiego.transport zrównoważony

Spis treści Zespół autorski Część I Wprowadzenie 1. Podstawowe problemy transportu miejskiego.transport zrównoważony Spis treści Zespół autorski 11 Część I Wprowadzenie 15 1. Podstawowe problemy transportu miejskiego.transport zrównoważony 17 1.1. Uwagi wstępne 17 1.2. Analiza przydatności zastosowań rozwiązań technicznych

Bardziej szczegółowo

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy

Bardziej szczegółowo

INSTYTUT NAUK TECHNICZNYCH PWSW w Przemyślu

INSTYTUT NAUK TECHNICZNYCH PWSW w Przemyślu INSTYTUT NAUK TECHNICZNYCH PWSW w Przemyślu PROGRAM STUDIÓW KIERUNEK: Mechatronika profil praktyczny Specjalność I: Projektowanie systemów mechatronicznych Specjalność II: Mechatronika samochodowa (cykl

Bardziej szczegółowo

ECTS - program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 2015/2016

ECTS - program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 2015/2016 - program studiów kierunku Automatyka i robotyka, Studia I stopnia, rok akademicki 20/206 Automatyka i robotyka Profil ogólnoakademicki studia stacjonarne I stopnia w c l p w c l p w c l p w c l p w c

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Głogowie Instytut Politechniczny mgr Ireneusz Podolski MECHATRONIKA

Państwowa Wyższa Szkoła Zawodowa w Głogowie Instytut Politechniczny mgr Ireneusz Podolski MECHATRONIKA Państwowa Wyższa Szkoła Zawodowa w Głogowie Instytut Politechniczny mgr Ireneusz Podolski MECHATRONIKA WPROWADZENIE Produkt mechatroniczny lub system mechatroniczny: Integracja komponentów mechanicznych,

Bardziej szczegółowo

Pytania egzaminacyjne dla Kierunku Elektrotechnika. studia II stopnia stacjonarne i niestacjonarne

Pytania egzaminacyjne dla Kierunku Elektrotechnika. studia II stopnia stacjonarne i niestacjonarne A. Pytania wspólne dla Kierunku Pytania egzaminacyjne dla Kierunku Elektrotechnika studia II stopnia stacjonarne i niestacjonarne 1. Metody analizy nieliniowych obwodów elektrycznych. 2. Obwód elektryczny

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2016/2017 Język wykładowy: Polski Semestr 1 Fizyka

Bardziej szczegółowo

Podstawy Mechatroniki Literatura

Podstawy Mechatroniki Literatura Podstawy Mechatroniki Literatura 1. B. Heimann, W. Gerth, K. Popp.: Mechatronika komponenty, metody, przykłady. PWN 2001. 2. M. Gawrysiak: Mechatronika i projektowanie mechatroniczne. Wyd. Politechniki

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA. Wydział Budowy Maszyn i Zarządzania MECHATRONIKA. Profile dyplomowania Konstrukcje Mechatroniczne

POLITECHNIKA POZNAŃSKA. Wydział Budowy Maszyn i Zarządzania MECHATRONIKA. Profile dyplomowania Konstrukcje Mechatroniczne POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania MECHATRONIKA Profile dyplomowania Konstrukcje Mechatroniczne Prof. dr hab. inż. Andrzej Milecki Kształcenie Profile dyplomowania: Konstrukcje

Bardziej szczegółowo

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl

Katedra Systemów Decyzyjnych. Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl Katedra Systemów Decyzyjnych Kierownik: prof. dr hab. inż. Zdzisław Kowalczuk ksd@eti.pg.gda.pl 2010 Kadra KSD profesor zwyczajny 6 adiunktów, w tym 1 z habilitacją 4 asystentów 7 doktorantów Wydział Elektroniki,

Bardziej szczegółowo

AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH

AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH kierunek Automatyka i Robotyka Studia II stopnia specjalności Automatyka Dr inż. Zbigniew Ogonowski Instytut Automatyki, Politechnika Śląska Plan wykładu pojęcia

Bardziej szczegółowo

Napęd elektryczny. Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie

Napęd elektryczny. Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie Napęd elektryczny Główną funkcją jest sterowane przetwarzanie energii elektrycznej na mechaniczną i odwrotnie Podstawowe elementy napędu: maszyna elektryczna, przekształtnik, czujniki, sterownik z oprogramowaniem,

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Przykłady napędów bezpośrednich - twardy

Bardziej szczegółowo

Identyfikacja cieplnych modeli elektrycznych układów napędowych

Identyfikacja cieplnych modeli elektrycznych układów napędowych Jakub Wierciak Identyfikacja cieplnych modeli elektrycznych układów napędowych Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. laboratoryjne projektowe.

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. laboratoryjne projektowe. Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 17/18 Język wykładowy: Polski Semestr 1 Fizyka RAR-1-1-s

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: S Y L A B U S P R Z E D

Bardziej szczegółowo

Plan studiów na kierunku: MECHATRONIKA

Plan studiów na kierunku: MECHATRONIKA Plan studiów na kierunku: Rok studiów I Katedra LUB przedmiotu ECTS udziałem praca ECTS EGZ obligatoryjny (O) godzin Razem godzin w tym: zajęcia zorganizowane ZEWN Przedmiot akademckiego praktyczne ZAL

Bardziej szczegółowo

Struktura manipulatorów

Struktura manipulatorów Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od

Bardziej szczegółowo

Plan studiów na kierunku: MECHATRONIKA

Plan studiów na kierunku: MECHATRONIKA Plan studiów na kierunku: MECHATRONIKA Rok studiów I Katedra LUB przedmiotu ECTS udziałem praca ECTS EGZ obligatoryjny (O) godzin Razem godzin w tym: zajęcia zorganizowane ZEWN Przedmiot akademckiego praktyczne

Bardziej szczegółowo

Alternator. Elektrotechnika w środkach transportu 125

Alternator. Elektrotechnika w środkach transportu 125 y Elektrotechnika w środkach transportu 125 Elektrotechnika w środkach transportu 126 Zadania alternatora: Dostarczanie energii elektrycznej o określonej wartości napięcia (ogranicznik napięcia) Zapewnienie

Bardziej szczegółowo

Tabela odniesień efektów kierunkowych do efektów obszarowych

Tabela odniesień efektów kierunkowych do efektów obszarowych Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów automatyka i robotyka należy do obszaru kształcenia w zakresie nauk technicznych i jest powiązany z takimi kierunkami studiów jak: mechanika

Bardziej szczegółowo

Oferta badawcza Politechniki Gdańskiej dla przedsiębiorstw

Oferta badawcza Politechniki Gdańskiej dla przedsiębiorstw KATEDRA AUTOMATYKI kierownik katedry: dr hab. inż. Kazimierz Kosmowski, prof. nadzw. PG tel.: 058 347-24-39 e-mail: kazkos@ely.pg.gda.pl adres www: http://www.ely.pg.gda.pl/kaut/ Systemy sterowania w obiektach

Bardziej szczegółowo

Siłownik liniowy z serwonapędem

Siłownik liniowy z serwonapędem Siłownik liniowy z serwonapędem Zastosowanie: przemysłowe systemy automatyki oraz wszelkie aplikacje wymagające bardzo dużych prędkości przy jednoczesnym zastosowaniu dokładnego pozycjonowania. www.linearmech.it

Bardziej szczegółowo

Informacje ogólne. ABS ESP ASR Wspomaganie układu kierowniczego Aktywne zawieszenie Inteligentne światła Inteligentne wycieraczki

Informacje ogólne. ABS ESP ASR Wspomaganie układu kierowniczego Aktywne zawieszenie Inteligentne światła Inteligentne wycieraczki Mechatronika w środkach transportu Informacje ogólne Celem kształcenia na profilu dyplomowania Mechatronika w środkach transportu jest przekazanie wiedzy z zakresu budowy, projektowania, diagnostyki i

Bardziej szczegółowo

PLAN STUDIÓW NIESTACJONARNYCH STOPNIA II. kierunek TRANSPORT - przedmioty wspólne (krk) w tym sem. I sem.ii sem. III

PLAN STUDIÓW NIESTACJONARNYCH STOPNIA II. kierunek TRANSPORT - przedmioty wspólne (krk) w tym sem. I sem.ii sem. III - przedmioty wspólne (krk) w tym sem. I sem.ii sem. III NMK2 1 Mechanika stosowana 1 27 9 18 1 E 2 5 2 Filozofia 2 18 18 2 2 3 Język obcy (nie język angielski) 3,4 36 36 2 2 2 2 4 Komunikacja społeczna

Bardziej szczegółowo

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego do układu pozycjonującego Precyzyjne pozycjonowanie robot chirurgiczny (2009) 39 silników prądu stałego

Bardziej szczegółowo

Zasady doboru mikrosilników prądu stałego

Zasady doboru mikrosilników prądu stałego Jakub Wierciak Zasady doboru Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Typowy profil prędkości w układzie napędowym (Wierciak

Bardziej szczegółowo

Zestaw 1 1. Rodzaje ruchu punktu materialnego i metody ich opisu. 2. Mikrokontrolery architektura, zastosowania. 3. Silniki krokowe budowa, zasada działania, sterowanie pracą. Zestaw 2 1. Na czym polega

Bardziej szczegółowo

PRODZIEKAN WYDZIAŁ MECHANICZNEGO DR. HAB. INŻ. WITOLD PAWŁOWSKI PROF. NADZW.

PRODZIEKAN WYDZIAŁ MECHANICZNEGO DR. HAB. INŻ. WITOLD PAWŁOWSKI PROF. NADZW. PRODZIEKAN WYDZIAŁ MECHANICZNEGO DR. HAB. INŻ. WITOLD PAWŁOWSKI PROF. NADZW. 1 Sprzężenie zapisanych danych pomiarowych wydolności ruchowej z doborem typu i zakresu ćwiczeń Spersonifikowane predefiniowane

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U. Urządzenia wykonawcze Actuators, design and function

S Y L A B U S P R Z E D M I O T U. Urządzenia wykonawcze Actuators, design and function "Z A T W I E R D Z A M" Dziekan Wydziału Mechatroniki Prof. dr hab. inż. Radosław TRĘBIŃSKI Warszawa, dnia... NAZWA PRZEDMIOTU: Wersja anglojęzyczna: Kod przedmiotu: Podstawowa jednostka organizacyjna

Bardziej szczegółowo

Zarządzanie wiedzą. Cechy informacji. Globalna Przestrzeń Informacyjna

Zarządzanie wiedzą. Cechy informacji. Globalna Przestrzeń Informacyjna Zarządzanie wiedzą dr Janusz Sasak janusz.sasak@uj.edu.pl Globalna Przestrzeń Informacyjna Org. Komerc Inne Org. Jednostki Org. Publ. Cechy informacji dokładność, rzetelność, aktualność i terminowość,

Bardziej szczegółowo

Kierunki i specjalności studiów niestacjonarnych 2017/2018

Kierunki i specjalności studiów niestacjonarnych 2017/2018 Kierunki i specjalności studiów niestacjonarnych 2017/2018 Kierunki studiów prowadzone w Warszawie Kierunek ADMINISTRCAJA Administacji i Nauk Społecznych 6 semestrów 4 semestry Bez specjalności Bez specjalności

Bardziej szczegółowo

nr projektu w Politechnice Śląskiej 11/030/FSD18/0222 KARTA PRZEDMIOTU

nr projektu w Politechnice Śląskiej 11/030/FSD18/0222 KARTA PRZEDMIOTU Z1-PU7 WYDANIE N3 Strona: 1 z 5 (pieczęć jednostki organizacyjnej) KARTA PRZEDMIOTU 1) Nazwa przedmiotu: AUTOMATYZACJA I ROBOTYZACJA PROCESÓW 3) Karta przedmiotu ważna od roku akademickiego: 2018/2019

Bardziej szczegółowo

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy:

Bardziej szczegółowo

Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, Spis treści

Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, Spis treści Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, 2017 Spis treści Przedmowa 11 ROZDZIAŁ 1 Wstęp 13 1.1. Rys historyczny 14 1.2. Norma IEC 61131 19 1.2.1. Cele i

Bardziej szczegółowo

Zaawansowane, innowacyjne rozwiązania dla transportu miejskiego

Zaawansowane, innowacyjne rozwiązania dla transportu miejskiego H2020 Transport 2016 call Zaawansowane, innowacyjne rozwiązania dla transportu miejskiego Brokerage event 5 November 2015 KPK 23 października 2015 Prezentują: W. Choromański - Politechnika Warszawska J.

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH STOPNIA II. kierunek TRANSPORT - przedmioty wspólne (krk) rozdział zajęć programowych na semestry

PLAN STUDIÓW STACJONARNYCH STOPNIA II. kierunek TRANSPORT - przedmioty wspólne (krk) rozdział zajęć programowych na semestry - przedmioty wspólne (krk) w tym sem. I sem.ii sem. III MK2 1 Dynamika maszyn 1 45 15 30 1 E 2 4 2 Filozofia 2 30 30 2 2 3 Język obcy (nie język angielski) 3,4 60 60 2 2 2 2 4 Komunikacja społeczna 5 30

Bardziej szczegółowo

UCHWAŁA NR 26/2016. SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku

UCHWAŁA NR 26/2016. SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku UCHWAŁA NR 26/2016 SENATU AKADEMII MARYNARKI WOJENNEJ im. Bohaterów Westerplatte z dnia 02 czerwca 2016 roku w sprawie: określenia efektów kształcenia dla kierunku Mechatronika studia II stopnia o profilu

Bardziej szczegółowo

Próby ruchowe dźwigu osobowego

Próby ruchowe dźwigu osobowego INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT PRZEDMIOT: SYSTEMY I URZĄDZENIA TRANSPORTU BLISKIEGO Laboratorium Próby ruchowe dźwigu osobowego Functional research of hydraulic elevators Cel i zakres

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR

ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR TECHNIK MECHATRONIK ZESPÓŁ SZKÓŁ ELEKTRYCZNYCH NR 2 os. SZKOLNE 26 31-977 KRAKÓW www.elektryk2.i365.pl Spis treści: 1. Charakterystyka zawodu 3 2. Dlaczego technik mechatronik? 5 3. Jakie warunki musisz

Bardziej szczegółowo

Uchwała Nr 34/2012/V Senatu Politechniki Lubelskiej z dnia 21 czerwca 2012 r.

Uchwała Nr 34/2012/V Senatu Politechniki Lubelskiej z dnia 21 czerwca 2012 r. Uchwała Nr 34/2012/V Senatu Politechniki Lubelskiej z dnia 21 czerwca 2012 r. w sprawie określenia efektów kształcenia dla studiów drugiego stopnia na kierunku mechatronika, prowadzonych wspólnie przez

Bardziej szczegółowo

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji

Dr hab. inż. Jan Duda. Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Automatyzacja i Robotyzacja Procesów Produkcyjnych Dr hab. inż. Jan Duda Wykład dla studentów kierunku Zarządzanie i Inżynieria Produkcji Podstawowe pojęcia Automatyka Nauka o metodach i układach sterowania

Bardziej szczegółowo

ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE "PRZEMYSŁ 4.0"

ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE PRZEMYSŁ 4.0 ROZWÓJ SYSTEMÓW SZTUCZNEJ INTELIGENCJI W PERSPEKTYWIE "PRZEMYSŁ 4.0" Dr inż. Andrzej KAMIŃSKI Instytut Informatyki i Gospodarki Cyfrowej Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie

Bardziej szczegółowo

Automatyka i sterowania

Automatyka i sterowania Automatyka i sterowania Układy regulacji Regulacja i sterowanie Przykłady regulacji i sterowania Funkcje realizowane przez automatykę: regulacja sterowanie zabezpieczenie optymalizacja Automatyka i sterowanie

Bardziej szczegółowo

PLAN STUDIÓW NIESTACJONARNYCH I-go stopnia dla kierunku Mechanika i Budowa Maszyn Etap podstawowy

PLAN STUDIÓW NIESTACJONARNYCH I-go stopnia dla kierunku Mechanika i Budowa Maszyn Etap podstawowy ydział Mechaniczny 06.1-M-MiBM-N1-EP-000_13 Ć L P/S Ć L P/S Ć L P/S Ć L P/S Ć L P/S Ć L P/S Ć L P/S 441 60 rupa Treści Podstawowych 1. ykład monograficzny 36 2 18 1 18 1 2. Język obcy I* 36 4 18 2 18 2

Bardziej szczegółowo

Przetwornik wilgotności względnej i entalpii

Przetwornik wilgotności względnej i entalpii 1 899 1899P01 Przetwornik wilgotności względnej i entalpii AQF61.1 ikroprocesorowy przetwornik służący do obliczania wilgotności względnej, entalpii i różnicy entalpii. Zastosowanie W instalacjach wentylacji

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania MECHATRONIKA SPECJALNOŚĆ Konstrukcje Mechatroniczne Prof. dr hab. inż. Andrzej Milecki Kształcenie Specjalności: Konstrukcje Mechatroniczne Inżynieria

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Aktory

Mechatronika i inteligentne systemy produkcyjne. Aktory Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację

Bardziej szczegółowo

Nazwa przedmiotu. Załącznik nr 1 do Uchwały nr 70/2016/2017 Rady Wydziału Elektrycznego Politechniki Częstochowskiej z dnia r.

Nazwa przedmiotu. Załącznik nr 1 do Uchwały nr 70/2016/2017 Rady Wydziału Elektrycznego Politechniki Częstochowskiej z dnia r. Plan studiów dla kierunku: INFORMATYKA Specjalności: Bezpieczeństwo sieciowych systemów informatycznych, Informatyka techniczna, Technologie internetowe i techniki multimedialne Ogółem Semestr 1 Semestr

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: EAR n Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2030/2031 Kod: EAR n Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Aparatura Automatyzacji Rok akademicki: 2030/2031 Kod: EAR-1-505-n Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Automatyka i Robotyka

Bardziej szczegółowo

MT 2 N _0 Rok: 1 Semestr: 1 Forma studiów:

MT 2 N _0 Rok: 1 Semestr: 1 Forma studiów: Mechatronika Studia drugiego stopnia Przedmiot: Diagnostyka maszyn Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT N 0 1 1-0_0 Rok: 1 Semestr: 1 Forma studiów: Studia niestacjonarne Rodzaj zajęć i liczba

Bardziej szczegółowo

Napędy urządzeń mechatronicznych

Napędy urządzeń mechatronicznych 1. Na rysunku przedstawiono schemat blokowy układu wykonawczego z napędem elektrycznym. W poszczególne bloki schematu wpisać nazwy jego elementów oraz wskazanych sygnałów. Napędy urządzeń mechatronicznych

Bardziej szczegółowo

Załącznik nr 1 do Zapytania ofertowego: Opis przedmiotu zamówienia

Załącznik nr 1 do Zapytania ofertowego: Opis przedmiotu zamówienia Załącznik nr 1 do Zapytania ofertowego: Opis przedmiotu zamówienia Postępowanie na świadczenie usług badawczo-rozwojowych referencyjny Zamawiającego: ZO CERTA 1/2017 Celem Projektu jest opracowanie wielokryterialnych

Bardziej szczegółowo

Tabela odniesień efektów kierunkowych do efektów obszarowych

Tabela odniesień efektów kierunkowych do efektów obszarowych Umiejscowienie kierunku w obszarze kształcenia Kierunek automatyka i robotyka należy do obszaru kształcenia w zakresie nauk technicznych i jest powiązany z takimi kierunkami studiów jak: mechanika i budowa

Bardziej szczegółowo

2012/2013. PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki

2012/2013. PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki PLANY STUDIÓW stacjonarnych i niestacjonarnych I-go stopnia prowadzonych na Wydziale Elektrotechniki, Automatyki i Informatyki rok akademicki 2012/2013 Opole, styczeń 2013 r. Tekst jednolity po zmianach

Bardziej szczegółowo

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: automatyka i robotyka

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: automatyka i robotyka semestralny wymiar godzin PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: automatyka i robotyka Semestr 1 1 Algebra liniowa 20 20 40 4 egz. 2 Analiza matematyczna 40 40 80 8 egz. 3 Ergonomia i BHP

Bardziej szczegółowo

PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: automatyka i robotyka. semestralny wymiar godzin. Semestr 1. Semestr 2. Semestr 3.

PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: automatyka i robotyka. semestralny wymiar godzin. Semestr 1. Semestr 2. Semestr 3. semestralny wymiar godzin PLAN STUDIÓW - STUDIA NIESTACJONARNE I STOPNIA kierunek: automatyka i robotyka Semestr 1 1 Algebra liniowa 12 12 24 4 egz. 2 Analiza matematyczna 24 24 48 8 egz. 3 Ergonomia i

Bardziej szczegółowo

Załącznik nr 9b Plan studiów dla kierunku: ELEKTROTECHNIKA (1/6) Studia niestacjonarne inżynierskie

Załącznik nr 9b Plan studiów dla kierunku: ELEKTROTECHNIKA (1/6) Studia niestacjonarne inżynierskie Załącznik nr 9b Plan studiów dla kierunku: ELEKTROTECHNIKA (1/6) Ogółem Semestr 1 Semestr 2 Semestr 3 Semestr 4 1W Matematyka 1 4 72 36 36 0 0 0 18 18 6 18 18 6 2W Fizyka 1 3 36 18 18 0 0 0 18 18 6 3W

Bardziej szczegółowo

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: automatyka i robotyka

PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: automatyka i robotyka semestralny wymiar godzin PLAN STUDIÓW - STUDIA STACJONARNE I STOPNIA kierunek: automatyka i robotyka Semestr 1 1 Algebra liniowa 20 20 40 4 egz. 2 Analiza matematyczna 40 40 80 8 egz. 3 Ergonomia i BHP

Bardziej szczegółowo

1/2019/2020 j. polski. 2/2019/2020 j. angielski. 3/2019/2020 j. niemiecki. 4/2019/2020 wiedza o kulturze. 5/2019/2020 historia

1/2019/2020 j. polski. 2/2019/2020 j. angielski. 3/2019/2020 j. niemiecki. 4/2019/2020 wiedza o kulturze. 5/2019/2020 historia SZKOLNY ZESTAW PROGRAMÓW NAUCZANIA W ZESPOLE SZKÓŁ ELEKTRONICZNYCH W RADOMIU PRZEDMIOTY OGÓLNOKSZTAŁCĄCE DLA TECHNIKUM CZTEROLETNIEGO W ROKU SZKOLNYM 2019/2020 NUMER PROGRAMU ZAJĘCIA EDUKACYJNE 1/2019/2020

Bardziej szczegółowo

Kierunek: Mechatronika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Kierunek: Mechatronika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Rocznik: 2015/2016 Język wykładowy: Polski Semestr 1 RME-1-103-s Podstawy

Bardziej szczegółowo

Załącznik nr 9a Plan studiów dla kierunku: ELEKTROTECHNIKA (1/6) Studia stacjonarne inżynierskie

Załącznik nr 9a Plan studiów dla kierunku: ELEKTROTECHNIKA (1/6) Studia stacjonarne inżynierskie Załącznik nr 9a Plan studiów dla kierunku: ELEKTROTECHNIKA (1/6) Ogółem Semestr 1 Semestr 2 Semestr 3 Semestr 4 W C L S P ECTS 1W Matematyka 1 4 120 60 60 0 0 0 30 30 6 30 30 6 2W Fizyka 1 3 90 30 30 30

Bardziej szczegółowo

Bogdan ŻÓŁTOWSKI Marcin ŁUKASIEWICZ

Bogdan ŻÓŁTOWSKI Marcin ŁUKASIEWICZ Bogdan ŻÓŁTOWSKI Bogdan ŻÓŁTOWSKI DIAGNOSTYKA DRGANIOWA MASZYN pamięci Stanisława BYDGOSZCZ 2012 Prof. dr hab. inż. Bogdan ŻÓŁTOWSKI UTP WIM Bydgoszcz Dr inż. UTP WIM Bydgoszcz DIAGNOSTYKA DRGANIOWA MASZYN

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: CHWYTAKI, NAPĘDY I CZUJNIKI URZĄDZEŃ MECHATRONICZNYCH Grippers, driver and sensors of mechatronic devices Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy na specjalności: SYSTEMY

Bardziej szczegółowo

Informacje ogólne. ABS ESP ASR Wspomaganie układu kierowniczego Aktywne zawieszenie Inteligentne światła Inteligentne wycieraczki

Informacje ogólne. ABS ESP ASR Wspomaganie układu kierowniczego Aktywne zawieszenie Inteligentne światła Inteligentne wycieraczki Mechatronika w środkach transportu Informacje ogólne Celem kształcenia na profilu dyplomowania Mechatronika w środkach transportu jest przekazanie wiedzy z zakresu budowy, projektowania, diagnostyki i

Bardziej szczegółowo

Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Elektrotechnika I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Urządzenia automatyki przemysłowej Kod przedmiotu

Urządzenia automatyki przemysłowej Kod przedmiotu Urządzenia automatyki przemysłowej - opis przedmiotu Informacje ogólne Nazwa przedmiotu Urządzenia automatyki przemysłowej Kod przedmiotu 06.0-WE-AiRP-UAP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH STOPNIA I kierunek TRANSPORT - przedmioty wspólne

PLAN STUDIÓW STACJONARNYCH STOPNIA I kierunek TRANSPORT - przedmioty wspólne - przedmioty wspólne 1 Język angielski * 1 1 2 1 2 1 2 1 E 2 2 2 Przedmiot humanistyczny I * 30 30 2 3 3 Przedmiot humanistyczny II * 30 30 2 2 Wychowanie fizyczne * 1 1 2 0 2 0 2 0 2 0 5 Matematyka 150

Bardziej szczegółowo

(przedmioty przeznaczone do realizacji są oznaczone kolorem żółtym)

(przedmioty przeznaczone do realizacji są oznaczone kolorem żółtym) ENERGETYKA S1 ENE_1A_S_2018_2019_1 3 Zimowy Blok 06 Podstawy spawalnictwa 8 Technologie spajania 1 ENE_1A_S_2018_2019_1 3 Zimowy Blok 09 Rurociągi przemysłowe 0 Sieci ciepłownicze 9 ENE_1A_S_2018_2019_1

Bardziej szczegółowo

DOKUMENTACJA PROGRAMU KSZTAŁCENIA DLA KIERUNKU STUDIÓW: MECHATRONIKA

DOKUMENTACJA PROGRAMU KSZTAŁCENIA DLA KIERUNKU STUDIÓW: MECHATRONIKA DOKUMENTACJA PROGRAMU KSZTAŁCENIA DLA KIERUNKU STUDIÓW: MECHATRONIKA Spis treści: 1. Ogólna charakterystyka prowadzonych studiów 2. Efekty kształcenia 3. Program studiów 4. Warunki realizacji programu

Bardziej szczegółowo

[1] [2] [3] [4] [5] [6] Wiedza

[1] [2] [3] [4] [5] [6] Wiedza Efekty dla studiów pierwszego stopnia profil ogólnoakademicki na kierunku Inżynieria Biomedyczna prowadzonym przez Wydział Elektroniki i Technik Informacyjnych Użyte w poniższej tabeli: 1) w kolumnie 4

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH I-go stopnia dla kierunku Mechanika i Budowa Maszyn Etap podstawowy

PLAN STUDIÓW STACJONARNYCH I-go stopnia dla kierunku Mechanika i Budowa Maszyn Etap podstawowy S TP,2 P 06.-M-MiBM-S-EP-000_2 PD TK,0 I P Ć L P/S 735 59 rupa Treści Podstawowych S I. ychowanie fizyczne 60 2 30 30 S I 2. Język obcy I* 60 4 2 2 S I 3. Język obcy II** 60 4 30 2 30 2 S I 4. Informatyka

Bardziej szczegółowo

PLAN STUDIÓW NIESTACJONARNYCH I-go stopnia dla kierunku Mechanika i Budowa Maszyn Etap podstawowy

PLAN STUDIÓW NIESTACJONARNYCH I-go stopnia dla kierunku Mechanika i Budowa Maszyn Etap podstawowy S TP 1,2 P 06.1-M-MiBM-N1-EP-000_12 PD TK I P Ć L P/S 441 59 rupa Treści Podstawowych S I 1 1. ykład monograficzny 36 2 18 1 18 1 S I 1 2. Język obcy I* 36 4 2 2 18 18 S I 1 3. Język obcy II** 36 4 18

Bardziej szczegółowo

Stanowiskowe badania samochodów Kod przedmiotu

Stanowiskowe badania samochodów Kod przedmiotu Stanowiskowe badania samochodów - opis przedmiotu Informacje ogólne Nazwa przedmiotu Stanowiskowe badania samochodów Kod przedmiotu 06.1-WM-MiBM-KiEP-P-08_15 Wydział Kierunek Wydział Mechaniczny Mechanika

Bardziej szczegółowo

PLAN STUDÓW STACJONARNYCH II-GO STOPNIA dla kierunku Mechanika i Budowa Maszyn Etap podstawowy. Uniwersytet Zielonogórski Wydział Mechaniczny

PLAN STUDÓW STACJONARNYCH II-GO STOPNIA dla kierunku Mechanika i Budowa Maszyn Etap podstawowy. Uniwersytet Zielonogórski Wydział Mechaniczny ydział Mechaniczny PLAN STUDÓ STACJONARNYCH II-GO STOPNIA Etap podstawowy Zatwierdzono Uchwałą Rady Instytutu BiEM z dnia 2.05.204 Zatwierdzono Uchwałą Rady ydziału Mechanicznego z dnia z dnia 2.05.204

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH STOPNIA I kierunek TRANSPORT - przedmioty wspólne (krk)

PLAN STUDIÓW STACJONARNYCH STOPNIA I kierunek TRANSPORT - przedmioty wspólne (krk) - przedmioty wspólne (krk) MK 1 Automatyka 1,2 60 30 30 2 2 2 1 2 Badania operacyjne 3 45 30 15 2 1 4 3 Ekonomia 4 30 30 2 3 4 Ekonomika transportu 5 45 30 15 2 1 3 5 Elektronika 6,7 60 30 30 2 3 2 3 6

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 2

Mikrosilniki prądu stałego cz. 2 Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,

Bardziej szczegółowo

Zał. nr 3 do ZW 33/2012 Zał. Nr 1 do Programu studiów. Obowiązuje od 01.10.2012 r. *niepotrzebne skreślić

Zał. nr 3 do ZW 33/2012 Zał. Nr 1 do Programu studiów. Obowiązuje od 01.10.2012 r. *niepotrzebne skreślić Zał. nr 3 do ZW 33/2012 Zał. Nr 1 do Programu studiów PLAN STUDIÓW WYDZIAŁ: ELEKTRYCZNY KIERUNEK: AUTOMATYKA I ROBOTYKA POZIOM KSZTAŁCENIA: I / II * stopień, studia licencjackie / inżynierskie / magisterskie*

Bardziej szczegółowo

Podzespoły i układy scalone mocy część II

Podzespoły i układy scalone mocy część II Podzespoły i układy scalone mocy część II dr inż. Łukasz Starzak Katedra Mikroelektroniki Technik Informatycznych ul. Wólczańska 221/223 bud. B18 pok. 51 http://neo.dmcs.p.lodz.pl/~starzak http://neo.dmcs.p.lodz.pl/uep

Bardziej szczegółowo

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego inżynierskiego Kierunek: Mechatronika

Lista zagadnień kierunkowych pomocniczych w przygotowaniu do egzaminu dyplomowego inżynierskiego Kierunek: Mechatronika Lista zagadnień kierunkowych pomocniczych w przygotowaniu do Kierunek: Mechatronika 1. Sprzętowe i programowe składniki sieci komputerowych. 2. Routing w sieciach komputerowych. 3. Siedmiowarstwowy model

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

PLAN STUDIÓW STACJONARNYCH STOPNIA II. kierunek TRANSPORT - przedmioty wspólne

PLAN STUDIÓW STACJONARNYCH STOPNIA II. kierunek TRANSPORT - przedmioty wspólne - przedmioty wspólne w tym mod. I mod. II mod. III A. Przedmioty podstawowe 135 30 30 15 1 Matematyka stosowana 45 15 30 1 E 5 Fizyka współczesna 30 15 15 1 1 3 3 Język obcy (do wyboru, nie j.ang.) 60

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo