WYBRANE METODY SZACOWANIA STAWEK SK ADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYBRANE METODY SZACOWANIA STAWEK SK ADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC"

Transkrypt

1 A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 27, 22 Anna Szymasa WYBRANE METODY SZACOWANIA STAWEK SKADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC Srszzni. Podsaw dziaalnoi ubzpizniowj js prawidow szaowani sad ubzpizniowyh. Sadi powinny by a oszaowan, aby owarzyswo ni ponosio sra finansowyh, naomias ubzpizony ni pai za duo lub za mao. W pray przdsawiono dwi mody symaji saw sadi dla sad no wyznazanyh mod zrowj uyznoi. W pirwszj modzi do szaowania saw sadi wyorzysano symaory baysowsi. W modzi drugij sawi sadi oszaowano masymalizuj funj uyznoi, órj argumnm js rónia midzy sad i paramrm szodowo- i, przy warunu zahowania równowagi finansowj ubzpizyila. Badani przprowadzono na danyh rzzywisyh, pohodzyh z ódzigo owarzyswa ubzpizniowgo. Sowa luzow: sawa sadi, sysm bonus-malus, symaja baysowsa. I. WSTP W ubzpizniah omuniayjnyh OC lasyfiaja ubzpizonyh do grup aryfowyh odbywa si na podsawi zynniów a priori (obsrwowalnyh zynniów ryzya aih, ja na przyad rodzaj i ro produji samohodu, pojmno silnia, wi i p irowy) oraz zynniów a posriori (hisoria szodowoi irowy). Dlago sadi w ubzpizniah omuniayjnyh OC s wyznazan w dwóh apah. Pirwszy o oblizni sadi podsawowj na podsawi zynniów a priori, drugi ap o aryfiaja a posriori (por. Lmair (995)). W pray sonnrujmy si na drugim api nazywanym sysmm bonusmalus. Sysmm bonus-malus bdzimy nazywa mody wyznazania indywidualnyh sad, uwzgldniaj lizb szód spowodowanyh przz irow w przszoi. W adym sysmi bonus-malus musi by usalona lasa sarowa, do órj rafiaj ubzpizni bz hisorii szodowoi, wor saw sadi podsawowj oraz zasady przj midzy lasami. Rozna sada no js wyznazana jao ilozyn sadi podsawowj obowizujj w lasi aryfowj (aryfiaja a priori) oraz wspózynnia, bdgo szaowan pronow saw sadi. Dr, Kadra Mod Saysyznyh, Uniwrsy ódzi. [93]

2 94 Anna Szymasa W pray ni uwzgldnia si dodaowyh zwy i zni, hararysyznyh dla poszzgólnyh ubzpizyili. W ubzpizniah omuniayjnyh zaada si, lizba szód K w jdnorodnym porflu js zminn losow o rozadzi Poissona posai P( K ), (=,, 2,...) ()! gdzi nazywamy paramrm innsywnoi szód (por.hossa (999)). Jli porfl js nijdnorodny, o paramr innsywnoi szód js zminn losow o rozadzi gamma z paramrami i, o funji gsoi posai f ( ),,, (2) ( ) 2 przy zym E i D. Wówzas lizba szód w porflu ma 2 rozad ujmny dwumianowy posai p P K,,,... (3) Esymaory paramrów i, wyznazon mod momnów (por. Domasi, Prusa(2)) s posai: i (4) 2 S S 2 W ubzpizniowym sysmi bonus-malus wyznaza si sad a priori, a naspni uwzgldnia si indywidualny paramr ryzya nazywany saw sadi (por. Lmair (995)). W pray do wyznazania indywidualnyh paramrów ryzya zasosowano dwi mody: mod I- wyorzysuj symaory baysowsi oraz mod II- Frriry. 2

3 Wybran mody szaowania saw sadi no 95 II. SZACOWANIE STAWEK SKADKI ZA POMOC METODY I Nih K j bdzi zminn losow oznazaj lizb szód w rou j dla danj polisy; (, 2,, ) worm obsrwaji lizby szód przz la dla danj polisy; F() bdzi dysrybuan zminnj losowj ; (, 2,..., ) bdzi niznanym paramrm szodowoi w rou + dla polisy opisanj worm obsrwaji (, 2,, ). Niznany paramr (, 2,..., ) mona oszaowa za pomo symaora baysowsigo na podsawi wora obsrwaji (, 2,, ). Jli funja sray js wadraowa o symaor baysowsi paramru js warunow waroi oziwan rozadu a posriori i ma posa (,..., ) E [,, ] df,, (5) ( gdzi F,, ) js dysrybuan warunow zminnj losowj przy zaobsrwowanyh waroiah (, 2,, ). Zaómy, rozad lizby szód w porflu js ujmny dwumianowy. Paramr innsywnoi szód ma rozad a priori gamma z paramrami i. Z wirdznia Bays a d ( )! P,... df j J df(,... ) = ( ) P,... df d! ( ) ( ) ( ) J d ˆ ˆ ˆ d j ˆ Zam rozad a posriori paramru js rozadm gamma z paramrami ˆ orazˆ. Esymaor baysowsi paramru ma posa ˆ d (6) ˆ (,..., ) (7) ˆ

4 96 Anna Szymasa Paramry i mona wyznazy z wzoru (4). W ubzpizniah omuniayjnyh OC indywidualna sada no w orsi + wynosi: P (,..., ) EX E b (,..., ) (8) gdzi P (,..., ) -indywidualna sada no w orsi +, (EX ) -waro oziwana pojdynzj szody, ( E) -waro oziwana lizby szód, (,..., ) -sawa szaowanj sadi. b Przyjmijmy, (EX) = oraz (E ). Wówzas równani (8) ma posa P (,..., ) b (,..., ) (9) Sd irowa, óry po laah zgosi szód, powinin pai saw szaowanj sadi równ b (,..., ) P (,..., ) % () Do szaowania indywidualnj sadi no zasosujmy zasad zrowj uyznoi. Zasada zrowj uyznoi opira si na zaoniu, oziwana uyzno zarobu ubzpizyila, gdy ryzyo zosani ubzpizon za n P, równa si uyznoi pozowj rzrwy R ubzpizyila, zyli u ( R) E[ u( R P)]. Nih funja u() bdzi wyadniz funj uyznoi posai u( ) () gdzi > js paramrm orlajym awrsj do ryzya owarzyswa ubzpizniowgo. Im wisza js awrsja, ym wisza js sada. Jli funja uyznoi ma posa orlon wzorm (), o sada no wynosi gdzi P ln M( ) (2) M ( ) E js funj worz momny zminnj losowj.

5 Wybran mody szaowania saw sadi no 97 W przypadu ujmngo dwumianowgo rozadu lizby szód w porflu sada no wynosi P ln M ln df ln dla ( ) d (3) Uwzgldniaj, ˆ orazˆ, szaowana wdug zasady uyznoi indywidualna sada no wynosi P (,..., ) ln (4) Na podsawi równa () i (4) sawa szaowanj w sysmi bonus- malus sadi irowy, óry po laah zgosi szód, wynosi b (,..., ) ln % (5) III. SZACOWANIE STAWEK SKADKI ZA POMOC METODY II Moda a js opara na wyadnizj funji uyznoi i zaoniu, ubzpizyil ma awrsj do arania nadmirnymi sadami wszysih irowów w danj grupi porfla. Uwaa, przszaowana sawa sadi js wiszym bdm ni nidoszaowana sawa sadi pod warunim, równowaga finansowa ubzpizyila zosani zahowana. Sawi sadi szauj wi masymalizuj funj uyznoi, órj argumnm js rónia midzy sad i paramrm szodowoi, przy warunu zahowania równowagi finansowj. Nih dla dango lizba m+ oznaza lizb grup aryfowyh w porflu (=,...,m); N oznaza zn lizb roszz w -j grupi aryfowj; N zn sum roszz w porflu, zyli N m N p P (,..., ) indywidualn sad no w orsi +.. Oznazmy przz

6 98 Anna Szymasa Moda II opira si na wyznazniu przyszyh sad no p jao masimum funji przy warunu m p Z( p ) N df,..., N (6) m N p (7) N gdzi js paramrm wyraajym awrsj do ryzya ubzpizyila. Wyorzysuj funj Lagrang a m m p L( p, ) N df,..., N p N N (8) orzymujmy m L N p N (9) L p N N p,..., N, m df,..., N (2) Nih M (x) oznaza funj worz momny rozadu a posriori paramru, orlon wzorm M x ( x) df,..., (2) Uwzgldniaj wzory (2) i (2) mamy p M ( ) (22) Wyznazaj p z równania (22) orzymujmy indywidualn sad no w orsi + p ln ln M (23)

7 Wybran mody szaowania saw sadi no 99 Uwzgldniaj wzory () i (23) sawa szaowanj sadi mod II wynosi b (,..., ) ln ln M % (24) W przypadu ujmngo dwumianowgo rozadu lizby szód w porflu sawa szaowanj mod II sadi wynosi (,..., ) b ln( ) ( )ln % (25) IV. ZASTOSOWANIA Przdsawion mody zasosowano do wyznazania szaowanj sawi sadi na podsawi danyh doyzyh hisorii szodowoi, pohodzyh z owarzyswa ubzpizniowgo dziaajgo na ódzim rynu. W abliah i 2 oszaowano sawi sad mod I (uywaj wzoru (5)) oraz mod II (uywaj wzoru (25)). Paramry i rozadu innsywnoi szód oszaowano za pomo wzoru (4). Tablia. Sawi sadi (w %) szaowan mod I (M I) oraz mod II (M II) dla =, i wij M I M II M I M II M I M II M I M II ródo: Obliznia wasn. Tablia 2. Sawi sadi (w %) szaowan mod I (M I) oraz mod II (M II) dla =, i wij M I M II M I M II M I M II M I M II ródo: Obliznia wasn.

8 2 Anna Szymasa V. WNIOSKI Szaowan sawi sadi podsawowj róni si znazni. Moda I js ryyowana, poniwa wraz z wzrosm i oraz bardzij przszaowuj sadi. Ma równi ograniznia doyz paramru. Moda II zaburza symri midzy nadpa i nidopa. Obia irowów ago porfla niwil wyszymi sadami, ni obiaj a doliwi irowów w lasah o duj lizbi szód. BIBLIOGRAFIA Domasi Cz., Prusa K., (2), Nilasyzn mody saysyzn, PWE, Warszawa. Hossa I.B., Pollard J.H., Zhnwirh B., (999), Inroduory saisis wih appliaions in gnral insuran, Cambridg. Lmair J., (995), Bonus-Malus Sysms in Auomobil Insuran, Kluwr Nijhoff, Boson. Anna Szymasa CHOSEN METHODS OF ESTIMATING NET PREMIUMS IN CIVIL RESPONSIBILITY CAR INSURANCE Absra Th foundaion of insuran aiviy is h orr simaion of insuran prmiums. Th prmiums should b simad so ha h insuring ompany would no inur losss and h insurd would no pay oo muh or oo lil. In h papr wo mhods of simaing ras of prmiums for n prmiums dfind by zrouiliy mhod ar prsnd. In h firs mhod o simaing prmiums bays simaors ar usd. In h sond mhod ras of prmium ar simad by maximum uiliy funion whos argumn is diffrn bwn h prmium and h paramr of damag wih h ondiion o prsrv insurr s finan balan. Th invsigaion was arrid on ral daa from a ód insuran ompany.

FUNKCJA NIEZAWODNOŚCI I CZAS BEZAWARYJNEJ PRACY ODPOWIADAJĄCY EKSPONENCJALNEJ INTENSYWNOŚCI USZKODZEŃ

FUNKCJA NIEZAWODNOŚCI I CZAS BEZAWARYJNEJ PRACY ODPOWIADAJĄCY EKSPONENCJALNEJ INTENSYWNOŚCI USZKODZEŃ CZSOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISK I RCHIEKURY JOURNL OF CIVIL ENGINEERING, ENVIRONMEN ND RCHIECURE JCEE,. XXXII, z. 62 (3/I/5), lipi-wrzsiń 25, s. 3-327 Lszk OPYRCHŁ FUNKCJ NIEZWODNOŚCI I CZS EZWRYJNEJ

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 12.10.2002 r.

Matematyka ubezpieczeń majątkowych 12.10.2002 r. Matematya ubezpieczeń majątowych.0.00 r. Zadanie. W pewnym portfelu ryzy ubezpieczycielowi udaje się reompensować sobie jedną trzecią wartości pierwotnie wypłaconych odszodowań w formie regresów. Oczywiście

Bardziej szczegółowo

TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA

TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 8/8 Komisja Inżynirii Budowlanj Oddział Polskij Akadmii Nauk w Kaowicach TERMOMECHANICZNY OPIS PROCESU PEŁZANIA DREWNA Kamil PAWLIK Polichnika Opolska, Opol. Wprowadzni

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 259, 2011. Anna Szymańska *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 259, 2011. Anna Szymańska * A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 59, * WPŁYW TYPU ROZKŁADU WIELKOŚCI SZKÓD NA WARTOŚĆ SKŁADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC. TEORETYCZNE ZASADY KALKULACJI

Bardziej szczegółowo

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska

Jerzy Czesław Ossowski Katedra Ekonomii i Zarzdzania Przedsibiorstwem Wydział Zarzdzania i Ekonomii Politechnika Gdaska Jrzy Czsław Ossowski Kadra Ekonomii i Zarzdzania Przdsibiorswm Wydział Zarzdzania i Ekonomii Polichnika Gdaska I Sminarium Naukow Kadry Ekonomii i Zarzdzania Przdsibiorswm Polichniki Gdaskij n.: GOSPODARKA

Bardziej szczegółowo

7 4 / m S t a n d a r d w y m a g a ± û e g z a m i n m i s t r z o w s k i dla zawodu K U C H A R Z * * (dla absolwent¾w szk¾ ponadzasadniczych) K o d z k l a s y f i k a c j i z a w o d ¾ w i s p e c

Bardziej szczegółowo

9 7 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu F O T O G R A F Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

Bardziej szczegółowo

1 0 2 / m S t a n d a r d w y m a g a ñ - e g z a m i n m i s t r z o w s k i dla zawodu R A D I E S T E T A Kod z klasyfikacji zawodów i sp e cjaln o ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji

Bardziej szczegółowo

Teoria struktury kapitału

Teoria struktury kapitału Toria strutury apitału Dr Tomasz Słońsi Toria strutury apitału, Moigliani-Millr (MM), Nobl w zizini onomii Powaliny nowoczsnj torii strutury apitału zostały położon w rou 1958 w molu, tóry opirał się o

Bardziej szczegółowo

1 0 0 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu K O S M E T Y C Z K A * * (dla absolwentów szkół ponadzasadniczych) Kod z klasyfikacji zawodów i sp e cjaln oś ci

Bardziej szczegółowo

Relaksacja. Chem. Fiz. TCH II/19 1

Relaksacja. Chem. Fiz. TCH II/19 1 Relasaja Relasaja oznaza powrót uładu do stanu równowagi po zaburzeniu równowagi pierwotnej jaimś bodźem (wielośią zewnętrzną zmieniająą swoją wartość soowo, np. stężenie jednego z reagentów, iśnienie

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 244, 2010. Anna Szyma ska *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 244, 2010. Anna Szyma ska * A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 44, 010 * WPŁYW PARAMETRÓW ROZKŁADU WIELKO CI SZKÓD NA WYSOKOS SKŁADKI NETTO W UBEZPIECZENIACH KOMUNKACYJNYCH OC 1. TEORETYCZNE ZASADY

Bardziej szczegółowo

1 9 / c S t a n d a r d w y m a g a ń - e g z a m i n c z e l a d n i c z y dla zawodu M E C H A N I K P O J A Z D Ó W S A M O C H O D O W Y C H Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r

Bardziej szczegółowo

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki Taryfikacja w ubezpieczeniach

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 5 4 EWA DZIAWGO Uniwersye Miołaa Kopernia w Toruniu ANALIZA WRA LIWO CI CENY KOSZYKOWEJ OPCJI KUPNA WPROWADZENIE

Bardziej szczegółowo

6 0 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu K R A W I E C Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

Bardziej szczegółowo

Optymalizacja reguł przejścia systemu bonus-malus

Optymalizacja reguł przejścia systemu bonus-malus Optymalizaca rguł przścia systmu onus-malus Dr Marcin Topolwski Dr Michał Brnardlli Instytut Ekonomtrii Szkoła Główna Handlowa w Warszawi Plan: Inspiraca, motywaca, cl i zakrs adania Ryzyko Systm onus-malus

Bardziej szczegółowo

1 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu B L A C H A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

Bardziej szczegółowo

Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź

Bardziej szczegółowo

Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó

Bardziej szczegółowo

ć ż ź ć ć Ń ć ż ż ż ż ż ć ż ż ć ż Ź ż ż ż ż ź ź ż ż ń ż ćż ż ź ć ń ć Ń Ą ż ń ż ż ż ż ć ż ć ż ż Ń ż ż ń ż ć ż ń ż ń ż Ź ż ż ń ż ć ć ź ż ż ż ź ż ń ź ż ń ż Ń ć Ą Ę ż ż ć ń ć ż ż ń ż ż ż ć ć ć ń ż Ź ć ż ć

Bardziej szczegółowo

Ą Ł ń Ź Ź Ą Ą ź ć Ź ń ź Ę Ł Ę Ł ż ć ć ć ż ż ż ć Ż ń ć ń ć Ń Ę ż Ż Ż Ż ć Ń Ż Ż Ą ń Ż Ż Ą Ą ń ż ń Ż Ź ż ż Ź ń ć ć Ą ć ć ć Ż ć ć ż ć ć Ż Ą ć Ż ć Ż ż ń ż ń ć Ż ć ć Ż Ł Ż Ż ć ż ć ć Ń Ń ż Ą ć ć ć ń ć ź ć ż ć

Bardziej szczegółowo

Ś ź ź Ś Ś Ź ć ź Ń ź Ś Ś ć ć Ź Ś ź Ź Ź Ń ź Ś ć Ł ź ź ć Ś ć ć ć ć Ś ź ź Ź Ń ź ź Ś ć Ś ź ć ź ź ć ź ź ć Ł Ź ź ź ź ź ź ć ź ź ć ź ć ć Ź ź ź Ń ź ź ć ź ź ć Ń Ś Ś Ź Ń Ś ź ć Ś ź ź ź ć Ś Ź Ń ź ź Ś ć Ź ź ć ć ź Ł ć

Bardziej szczegółowo

Ą ż ń ń ń ń ż Ą ń ń ż ć ń ś ż ż ż ś ż ż ż ż ć ć ś Ą ż ń ż ż ć ń ś ź ń ś ż ś ś ń ś ń ś ś ś Ń ś ż ń ś ń ń ść ż Ę ń ś ń ń ń ś ż ć Ą ś ż Ń żń ś ż ż ń ś Ę ŁÓ Ą ż ń ń ś ń ń ż ć ż Ś ź Ń ś Ń ż ń ś ń ż ź

Bardziej szczegółowo

ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń

Bardziej szczegółowo

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym

Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana

Bardziej szczegółowo

WYKORZYSTANIE METOD PL DO ROZWIĄZYWANIA PROBLEMÓW DECYZYJNYCH Z NIELINIOWĄ FUNKCJĄ CELU

WYKORZYSTANIE METOD PL DO ROZWIĄZYWANIA PROBLEMÓW DECYZYJNYCH Z NIELINIOWĄ FUNKCJĄ CELU M.Miszzyńsi KBO UŁ, Badania perayjne I (wyład 7A 7) [] WYKORZYSANIE MEOD PL DO ROZWIĄZYWANIA PROBLEMÓW DECYZYJNYCH Z NIELINIOWĄ FUNKCJĄ CELU Omówimy tutaj dwa prste warianty nieliniwyh mdeli deyzyjnyh,

Bardziej szczegółowo

Ł Ą Ą Ń ć ź Ł Ł Ł Ś Ł ź Ź ć ź ć Ź ć Ź ć ć Ź ź ć ć Ó Ś Ę Ś Ś Ń ć ć ć ć Ś Ź Ź ć ć ć ć Ź ź Ę ć ć Ę ć ć ć ć Ź ć ć Ć ć Ę ź ź ć ź ć Ź Ę Ź ź ź Ę Ź Ę Ś Ą ć Ź ź ć ź ć Ę Ę ć Ę ć Ń Ś Ę Ó Ó ć Ó Ę Ź Ę Ę ź ć ć ć Ć

Bardziej szczegółowo

Zawód: z d u n I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z a k r e s w i a d o m o ś c i i u m i e j ę t n o ś c i w ł a ś c i w

Zawód: z d u n I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z a k r e s w i a d o m o ś c i i u m i e j ę t n o ś c i w ł a ś c i w 9 4 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu Z D U N Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów szkoln

Bardziej szczegółowo

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Szkoła z przyszłością. szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Szkoła z przyszłośią szkolenie współfinansowane przez Unię Europejską w ramah Europejskiego Funduszu Społeznego Narodowe Cenrum Badań Jądrowyh, ul. Andrzeja Sołana 7, 05-400 Owok-Świerk ĆWICZENIE a L A

Bardziej szczegółowo

Zawód: złotnik-j u b il e r I Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z a kr e s w ia d om oś c i i u m ie j ę tnoś c i w ła ś c i

Zawód: złotnik-j u b il e r I Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: Z a kr e s w ia d om oś c i i u m ie j ę tnoś c i w ła ś c i 1 5 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i Z Ł O dla zawodu T N I K -J U B I L E R K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z

Bardziej szczegółowo

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE

ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE

Bardziej szczegółowo

1 8 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M E C H A N I K - O P E R A T O R P O J A Z D Ó W I M A S Z Y N R O L N I C Z Y C H K o d z k l a s y f i k a c j i

Bardziej szczegółowo

Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż

Bardziej szczegółowo

WOJEWÓDZKI IN S P EKT OR A T OC H R ON Y ŚR ODOWIS KA W KR A KOWIE M 2 0 0 2 U RAPORT O STANIE ŚRODOWISK A W WOJ EWÓ DZ TWIE AŁ OPOL SK IM W ROK BIBLIOTEKA MON ITOR IN G U ŚR OD OW IS KA K r a k ó w 2003

Bardziej szczegółowo

8 7 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu M O N T E R I N S T A L A C J I G A Z O W Y C H K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś

Bardziej szczegółowo

2 3 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu L A K I E R N I K S A M O C H O D O W Y Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy

Bardziej szczegółowo

Ł Ś Óń Ź ń Ń ż ż ć ż ć ć ż ż Ą ż ć Ó Ó ż ż ć ń ń ń Óń Ó ń ń Óć ć ć ń ń ń ń ń Ś ń ń ń ż ć ć Ś Ł ż ń ż ż Ś Ó Ó ń ń ń Ś Ś ć Ó ń Ś ż Ó Ó Ś Ó Ó ż ń Ś Ó Ę ń ń Ó Ó ń ń Ś ż ń Óń Ó Ś ń Ó Ś ń ż ń ż Ó ć ń ń ń ż Ó

Bardziej szczegółowo

2. Podstawy Mathcada. 2.1. Dlaczego Mathcad?

2. Podstawy Mathcada. 2.1. Dlaczego Mathcad? Wyłady z Inf - MKE. Podsawy Mahcada. Podsawy Mahcada.. Dlaczgo Mahcad? Spośród wilu programów ompurowych wspomagaących rozwiązywani róŝngo rodzau zagadniń lrochnicznych Mahcad wyróŝnia się względną prosoą,

Bardziej szczegółowo

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej

Bardziej szczegółowo

Ś Ś Ś ż Ł Ą Ą Ń Ś ż Ś ż Ą ż ż Ó Ź Ź ć ć ż ć Ą ć ć Ś ć ŚÓ ć ć ć ż ź Ł ż Ś Ł Ą Ó ż Ź ż ć Ś Ą Ó ż ć ż ź ż ć Ś ć Ź ż Ń Ł Ł ż ż Ą Ś ź ż ć ć Ł Ą Ą Ś Ś ż ć Ó Ó Ś Ź ź ź ż Ą ż ż ć Ść Ó ż ć Ś ź Ś Ś Ł Ś Ł Ł Ł Ł Ł

Bardziej szczegółowo

Ń ŚÓ Ź Ś ź Ś Ś ć Ą ć Ź ć ć Ś ć Ś ź ć Ś ź Ś ć ź ć Ś ź Ę ć ć Ś Ś Ą ź Ś Ś Ś Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ż ć Ś Ć ć ć ź ć Ś Ś Ś ŚĆ Ś ź Ś Ś ć ć ć Ś Ć ć ć Ć Ś Ś Ś ŚĆ Ś Ś Ś ć ć ź Ś Ż Ś Ś Ś Ś Ś Ś Ą Ż Ś Ś Ś Ś Ś ć ć Ó ź

Bardziej szczegółowo

ń ń ś Ś Ó Ó ń ń ść ś ś ś ś ś ś ś ś ć ś ść ś ś ć ś Ż ć ś ś ś ść ć ś ń ć Ź Ż ń ń ś Ż Ą ć ń ń ś śó Ż ś ć Ź ś Ó ś Ż ś Ź ś ś ś Ż ś ś ś Ź ś ń ś Ę ć ś ś ń ś ś ś ń Ż Ż ś ś ś ń ć ć Ż ś ń Ż ś ń Ą ś ś ć ś ś Ż ś ś

Bardziej szczegółowo

Ó ź Ó ź Ź Ó Ź Ó Ó Ę Ź Ą Ć Ó Ó Ź Ś Ź ź Ę Ź ŚÓ Ś Ó ź Ó Ę Ź Ó Ó Ó ŚÓ Ź Ó ź ź Ź ź ź Ę Ś ź Ą Ś Ź ź Ę Ł Ś Ź Ś ź ź Ł Ś ź Ś Ś Ś Ę Ę Ł Ł Ą Ś Ę Ą Ę Ź Ę Ę Ó Ś Ę Ń Ś Ć Ś Ś Ó Ś Ę Ę Ł Ą Ę Ą Ś Ź Ć Ó Ł ź Ń Ź Ą ź Ę Ź Ź

Bardziej szczegółowo

ó ś ń Ś Ó Ó Ó Ó ś Ó ż Ó Ś Ę Ó ó Ó ó Ś Ó óó Ś ś Ó ć Ź Ó ś ś ż ó ó ś Ó Ó ń Ś ś Ó ń ż ś ś Ó Ę Ó Ó Ó ś ó ś Ó Ś Ó Ś ń ń Ó ó ń ż ś Ó Ó ż ń Ś ó ż ń Ó Ś ż ń Ś ść ż ó ń ż Ś ż Ś Ś Ś Ó ń ś Ś Ó ń Ó Ą Ó Ą ć ż Ą ś ń

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Instytut Elektroenergetyki, Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHIA WARSZAWSA Insyu Elkronrgyki, Zakład Elkrowni i Gospodarki Elkronrgycznj Ekonomika wywarzania, przwarzania i uŝykowania nrgii lkrycznj - laboraorium Insrukcja do ćwicznia p.: Obliczani koszów

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

Michał Brzozowski Wykład 40 h Makrokonomia zaawansowana Część I: Ekonomia Montarna Dyżur: onidziałki.30 2.45, p. 409 E-mail: brzozowski@wn.uw.du.pl http://coin.wn.uw.du.pl/brzozowski lan wykładu. Czym

Bardziej szczegółowo

8 6 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu E L E K T R Y K K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z e b r y n k

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i

Bardziej szczegółowo

1 0 2 / c S t a n d a r d w y m a g a ń e g z a m i n c z e l a d n i c z y dla zawodu R A D I E S T E T A Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników

Bardziej szczegółowo

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016

Bardziej szczegółowo

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Anna Szymańska Wydział Ekonomiczno-Socjologiczny Uniwersytet Łódzki Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Streszczenie Towarzystwa ubezpieczeniowe konkurują

Bardziej szczegółowo

WYBRANE METODY OCENY BEZPIECZEŃSTWA W LOTNICTWIE

WYBRANE METODY OCENY BEZPIECZEŃSTWA W LOTNICTWIE 4-9 ROBLEMY EKSLOATACJI 6 Józf ŻUREK Insyu Tchniczny Wojsk Loniczych, Waszawa WYBRANE METODY OCENY BEZIECZEŃSTWA W LOTNICTWIE Słowa kluczow Bzpiczńswo, anspo loniczy, yzyko zagożń. Sszczni W aykul pzdsawiono

Bardziej szczegółowo

Zawód: s t o l a r z I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: r e s m o ś c i i u m i e j ę t n o ś c i c i c h k i f i k j i m

Zawód: s t o l a r z I. Etap teoretyczny (część pisemna i ustna) egzaminu obejmuje: r e s m o ś c i i u m i e j ę t n o ś c i c i c h k i f i k j i m 4 3 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu S T O L A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów

Bardziej szczegółowo

Badania kompozytu wytworzonego w wyniku reakcji ciekłego Al ze stałym Ti

Badania kompozytu wytworzonego w wyniku reakcji ciekłego Al ze stałym Ti AMME 2002 11th Badania kompozytu wytworzonego w wyniku reakcji ciekłego Al ze stałym Ti P. Zagierski University of Oslo, Centre for Materials Science Gaustadalleen 21, 0349 Oslo, Norwegia Dla potrzeb norweskiego

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-chniczn aspky wykorzysania gazu w nrgyc anusz oowicz Wydział Inżynirii i Ochrony Środowiska Polichnika Częsochowska zacowani nakładów inwsycyjnych na projky wykorzysania gazu w nrgyc anusz

Bardziej szczegółowo

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN

UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN UEZPIECZENI GRUPOWE - sus srn sus łąngo żi i osnigo rżwągo UTORZY MICHŁ OCZEK MŁGORZT CZUPRYN Rowż gruę osób. Owiśi s lib nurlną więs od. Nih i on wi i osob dl i=,,... us gru sus łąngo żi sus osnigo rżwągo

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H

Bardziej szczegółowo

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,...,

2... Pˆ - teoretyczna wielkość produkcji (wynikająca z modelu). X X,..., b b,..., Główne zynniki produkji w teorii ekonoii: praa żywa (oznazenia: L, ), praa uprzediotowiona (kapitał) (oznazenia: K, ), zieia (zwłaszza w rolnitwie). Funkja produkji Cobba-Douglasa: b b b P ˆ b... k 0 k

Bardziej szczegółowo

Symulacja czasu ładowania zasobnika C.W.U

Symulacja czasu ładowania zasobnika C.W.U Por Prybyc Syulacja casu łaoaa asobka C.W. Syulacja casu łaoaa asobka C.W. Do cgo służy Progra: Progra służy o sybkgo okrśla casu łaoaa asobka C.W. ry ałożoych arukach brgoych aruk brgo fuj rogra użykok

Bardziej szczegółowo

A = ε c l. T = I x I o. A=log 1 T =log I o I x

A = ε c l. T = I x I o. A=log 1 T =log I o I x Podstawowym prawem wykorzystywanym w analizie opartej na metodah optyznyh (spektrometrii) jest prawo Lamberta (zwane też prawem Lamberta-Beera-Waltera). Chodzi tu o zależność absorbanji od stężenia i grubośi

Bardziej szczegółowo

STU Ergo Hestia SA 81-731 Sopot, ul. Hestii 1

STU Ergo Hestia SA 81-731 Sopot, ul. Hestii 1 STU Ergo Hestia SA 81-731 Sopot, ul. Hestii 1 2014-04-07 Sopot data i miejsce wystawienia Date and place of confirmation issue 311862 L.dz. Confirmation No. Zaświadczenie o przebiegu ubezpieczenia w ubezpieczeniach

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Ń Ż Ó Ó Ó Ż Ę Ó Ś Ó Ę Ś Ś Ó ż Ó Ó Ż Ś Ś Ó Ó Ś Ś Ś Ó Ść Ó ż Ść Ę Ó Ń Ś Ó Ś Ó Ż Ż Ż ć Ż Ó Ó Ż Ś Ó Ś ć Ń ć Ó Ó Ś ż Ś Ż Ż Ść Ó Ś ż ćż ć Ó Ż Ś Ć Ó Ż Ó Ó Ż Ś Ó Ó Ś Ó ż Ó Ż Ź Ś ż Ń Ó Ó Ś ż Ś Ó Ó Ś ż Ś Ś Ś Ć Ż

Bardziej szczegółowo

Stanowisko laboratoryjne do badań przesuwników fazowych

Stanowisko laboratoryjne do badań przesuwników fazowych Polichnika Śląska Wydział Elkryczny Insyu Mrologii i Auomayki Elkrochniczn Tma pracy: Sanowisko laboraoryn do badań przsuwników fazowych Promoor: Dr inż. Adam Cichy Dyploman: Adam Duna Srukura rfrau. Wsęp.

Bardziej szczegółowo

Powiatowy Urząd Pracy ul. Andersa 2 59 220 Legnica MONITORING ZAWODÓW DEFICYTOWYCH I NADWYŻKOWYCH W POWIECIE LEGNICKIM W 2009 ROKU

Powiatowy Urząd Pracy ul. Andersa 2 59 220 Legnica MONITORING ZAWODÓW DEFICYTOWYCH I NADWYŻKOWYCH W POWIECIE LEGNICKIM W 2009 ROKU Powiatowy Urzą Pray ul. Anrsa 2 59 220 Lgnia MONITORING ZAWODÓW DEFICYTOWYCH I NADWYŻKOWYCH W POWIECIE LEGNICKIM W 2009 ROKU LIPIEC 2010 CZĘŚĆ II PROGNOSTYCZNA Źrółm inormaji w tj zęśi raportu są wyniki

Bardziej szczegółowo

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP Załączni nr Do Szczegółowych Zasad Prowadzenia Rozliczeń Transacji rzez KDPW_CCP Wyliczanie deozytów zabezieczających dla rynu asowego (ozycje w acjach i obligacjach) 1. Definicje Ileroć w niniejszych

Bardziej szczegółowo

Ł Ł ń Ż Ń ń ć Ż ć Ą ć ń Ż ć Ż ć ń Ż ń ć ć ń ń Ż ń ć Ź ć Ż ć ć ć Ł ź ć ń ń ć Ż ń ń ń ń Ą ń Ż ć ń Ą Ż ć ń ć Ą ć ń Ż ć Ż ń ń ń ć Ż ć ć ń Ż ń ń ń Ż ć ź ć ń ń ć ć ź ń ć Ż Ż ć Ż ń ć ń Ł ć ń Ż ź ć ć Ż ć ć Ż ź

Bardziej szczegółowo

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania

Bardziej szczegółowo

źń ź ć ż Ś ń ż ż ć ż ć ż ń ń ź ż ź źń ń ć ć ż ź ż ń ń ź Ś ż ź ź ć ń ń ź ń ż ź ż Ą ń ż ż ż ć ż ń Ą ź Ę ź ń ń ń ż ż ź ź Ę ć ń ń ź ż ń ź źń Ę Ś ż ń ż ż Ć ż Ł ć Ó Ó ź ż ń ń źń ż ź ń Ś Ź ń ż ż ż ń ż ż ć ć ń

Bardziej szczegółowo

Sygnały, ich klasyfikacja, parametry, widma

Sygnały, ich klasyfikacja, parametry, widma ndrz Lśnici Synały, ich lasyfiaca, paramry, widma / Synały, ich lasyfiaca, paramry, widma ndrz Lśnici, PG Kadra Sysmów Mulimdialnych, Gdańs. Poęci synału W współczsnych społczńswach w obiu znadu się oromna

Bardziej szczegółowo

Elektrony, kwanty, fotony

Elektrony, kwanty, fotony Wstęp. Elktrony, kwanty, fotony dr Janusz B. Kępka Sir Isaa Nwton (angilski fizyk i filozof, 16-177) w swym znakomitym dzil Optiks (170 r.) rozważał zarówno korpuskularny jak i falowy araktr światła, z

Bardziej szczegółowo

Ł Ź Ź Ł Ź Ę Ś Ę Ę Ś Ą Ę Ś Ą Ć Ć ć Ę Ą Ł Ś ć ń ć Ł ć Ź ć Ę Ą Ą Ź ź ź ć ć ć ć ć ń ń ć ć ń Ó ź Ę Ą ć ć ć Ź ć Ź ć ć ń ń ć ń Ó ć Ą ń ć Ę Ą Ą ń ń ń ń ć ń ć ć Ź ć ń Ź ń ń Ć ń ń ń Ę Ą Ś Ą ń ć ń ć ź ń Ę Ś Ą Ąć

Bardziej szczegółowo

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1

9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1 O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i

Bardziej szczegółowo

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego

Powtórzenie na kolokwium nr 4. Dynamika punktu materialnego Powtórzenie na olowiu nr 4 Dynaia puntu aterialnego 1 zadanie dynaii: znany jest ruh, szuay siły go wywołująej. Znane funje opisująe trajetorię ruhu różnizujey i podstawiay do równań ruhu. 2 zadanie dynaii:

Bardziej szczegółowo

Ż Ż Ł Ż ń ń Ó ź ń Ś Ę ź ś ś Ź ś ś Ź ń ź Ż Ś źń Ż ń Ź ś Ą Ź ź ść ź ś Ź ń ś ś ść ś Ź ś ś ń ź Ę ń ź Ż ć ź ź ś ź Ź ź ń ń ś Ź ś ć ź ź ź Ą Ś ź Ż ź ź ź ś ć Ą Ę ś ś ź ń ń Ż ń ń ń ć ś Ź ź ń Ź Ń Ź ź ź ś ś ź Ź ść

Bardziej szczegółowo

Ł Ł Ę ń ń ń ź ź ż ń ć ż ń ć ć ń ń ń ż ć ż ć Ż ń ń ż ń ń ń ć ź ż ń ń ć ń ń źń ć ń ź ż ć ń ż ć ń Ó ć ć Ć ć ń ń ń ń ń ń ń ń ć ć Ą ń ć ń ń ż ń ż ń ń ć ń ń ń ć ć ż ż ż ń ń ć ć ń ń ż ć Ź ń ń ń ż ż ż ć ć Ź Ź

Bardziej szczegółowo

ć Ł Ń Ę Ć ń ń ń Ó ń ć ń ń ń ć ń ć ń ń ć ć ć ć ń ń ć ń Ń ń Ę ć ć ć ź ń Ą ń Ń ń ć ń ń ń ń ń ć ć ń Ę ć ć ć ć ć ć ć ć Ć ć Ę ć ć ć ć ć ć ć ć ć ć ń Ż ć ć ń ć Ć ć Ć Ż ć ć Ć ć ć ć ć ć Ż Ć ć ć ć ń Ń Ż Ę ć Ę ń ń

Bardziej szczegółowo