FIZYKA Akustyka fizyczna Promieniowanie i propagacja fal akustycznych Akustyka kwantowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "FIZYKA Akustyka fizyczna Promieniowanie i propagacja fal akustycznych Akustyka kwantowa"

Transkrypt

1 NAUKI O ZIEMI Oceanologia Elektrotechnika i chemia TECH- NIKA Fizyka ziemi i atmosfery Geoakustyka Dźwięki w atmosferze Medycyna Fizjologia Bioakustyka BIO- LOGIA Psychoakustyka Psychologia FIZYKA Akustyka fizyczna Promieniowanie i propagacja fal akustycznych Akustyka kwantowa Mowa Akustyka mowy i słuchu Słuch Wibroakustyka Elektroakustyka Akustyka muzyczna i reżyseria dźwięku Technika ultradźwiękówa Hydroakustyka Mechanika Muzyka Budownictwo Akustyka architektoniczna Architektura i urbanistyka Sztuki wizualne i audialne SZTUKA Powiązania akustyki z innymi dziedzinami

2 Wielkości fizyczne opisujące falę akustyczną lp. jednostka definicja symbol, pochodzenie 1 częstotliwość liczba pełnych cykli f wychylenia cząstki ośrodka (ang. frequency) z położenia równowagi na 1 sekundę prędkość droga przebyta przez front fali w jednostce czasu 3 ciśnienie akustyczne 4 natężenie dźwięku 5 poziom ciśnienia akustycznego 6 poziom natężenia dźwięku Zmienna składowa ciśnienia nakładająca się na ciśnienie statyczne, powstała w wyniku zaburzenia Powierzchniowa gęstość mocy, tj. ilość energii przepływająca przez powierzchnię jednostkową w jednostce czasu SPL = 0 log (p/p 0 ) P 0 =*10-5 [Pa] L = 10 log (I/I 0 ) I 0 =10-1 [W/m ] c c=340 m/s p (ang. pressure) I (ang. Intensity) I=p /ρ 0 c ρ 0 : gęstość ośrodka* SPL (ang. Sound Pressure Level) L (ang. Sound Intensity Level) jednostka, pochodzenie Hz (Heinrich R. Hertz, niemiecki fizyk, ) m/s Pa (Blaise Pascal, francuski matematyk i fizyk, ) [W/m ] (James Watt, angielski konstruktor, ) [db (Alexander Graham Bell, amerykański fizyk i wynalazca, ) * iloczyn ρ 0 c ma fizyczny sens oporności akustycznej ośrodka, jego wartość dla powietrza wynosi 41 N*s/m

3 r0 I(r) = I(r0 ) (1.1) r I(r), I(r o ): natężenie dźwięku w odległości od źródła odpowiednio r i r o Zmniejszanie się natężenia dźwięku wraz z drogą przebytą przez falę. S: źródło dźwięku; a, b: części przekroju poprzecznego o takim samym polu powierzchni i dwukrotnie różniącej się odległości od źródła. Liczba punktów na przekrojach symbolizuje wielkość energii. Powierzchnie a i b obejmują odpowiednio 16 i 4 punkty, co odpowiada wielkości energii malejącej z kwadratem przebytej drogi, tj. 4:1 przy stosunku przebytej drogi 1:. -m(r-r0 ) I(r) = I(r0 ) e (1.) e: podstawa logarytmu naturalnego (e= ) m: współczynnik pochłaniania dźwięku przez powietrze Współczynnik m pochłaniania dźwięku przez powietrze o wilgotności względnej 50% i temperaturze 0 C Częstotl. [Hz] m, [m -1 ]

4 Dźwięk o widmie złożonym, przedstawiony w postaci sumy tonów prostych. p max : amplituda każdego z tonów prostych, ω: pulsacja, ω=πf, f: częstotliwość p max p max p max f f 3f a) amplituda p max f f 3f b) częstotliwość Widma przebiegów z rysunku powyżej a widma tonów prostych, b widmo dźwięku wypadkowego

5 Przykładowe widmo rzeczywistego dźwięku (saksofon, dźwięk a 1 ) Oś pionowa: poziom ciśnienia akustycznego w db, od pozioma: częstotliwość w Hz 0 częstotliwość [khz] 1.8 Ewolucyjne widmo dźwięku

6 Schemat transmisji dźwięku przez przegrodę. 1: dźwięk powietrzny padający, : dźwięk pow. powracający do pomieszczenia, 3: dźwięk przechodzący przez przegrodę, 4: dźwięk materiałowy biegnący w konstrukcji przegrody, 5: dźwięk pow. przechodzący przez pory (jeśli przegroda jest zbudowana z materiału porowatego), 6: dźwięk pow. odbity, 7: dźwięk mat. wypromieniowany przez przegrodę wstecz, 8: dźwięk mat. wypromieniowany przez przegrodę wprzód, 9: dźwięk mat. zamieniony na ciepło, 10: przegroda

7 α = E pochł / E pad (1.5) E pochł, E pad : energia fali odpowiednio pochłoniętej i padającej w jednostce czasu. półpełny kąt bryłowy Π steradianów a) b) Kierunki padania dźwięku na materiał przy pomiarze pogłosowego (a) i fizycznego (b) współczynnika pochłaniania dźwięku

8 Właściwości dźwiękochłonne najczęściej stosowanych materiałów wykończeniowych Materiał wymalowania, tynki spoiste tynki porowate, tkaniny, tapety i natryski dźwiękochłonne kamień naturalny lub sztuczny, ceramika budowlana pełna przeznaczona do prac wykończeniowych (np. cegła licowa) ceramika otworowa skierowana otworami do wnętrza (np. cegła dziurawka) płyty gipsowo-kartonowe pełne, szkło, drewno i płyty drewnopochodne lub podobne pełne, stosowane bezpośrednio na ścianie lub suficie płyty jw. pełne, perforowane lub szczelinowe w postaci boazerii, okładzin oraz ustrojów ściennych i sufitowych materiały porowate lub włókniste w postaci płyt lub mat (np. wełna mineralna i szklana licowane materiałem przepuszczającym dźwięk - tkanina, włóknina techniczna, natrysk itp.) Podłogowe warstwy wykończeniowe twarde lub elastyczne o powierzchni zmywalnej, np. klepka, płyty, wykładziny z tworzyw, linoleum podłogowe warstwy wykończeniowe miękkie, np. wykładziny dywanowe i krótkowłosiowe Właściwości dźwiękochłonne słabe pochłanianie dźwięku w całym zakresie częstotliwości pochłanianie dźwięku w zakresie dużych częstotliwości słabe pochłanianie dźwięku w całym zakresie częstotliwości rezonansowe pochłanianie dźwięku słabe pochłanianie dźwięku w całym zakresie częstotliwości pochłanianie dźwięku zależne od konstrukcji ustroju silne pochłanianie dźwięku w zakresie średnich i dużych częstotliwości słabe pochłanianie dźwięku w całym zakresie częstotliwości pochłanianie dźwięku w zakresie dużych częstotliwości

9 a) b)

10 c) d) Wpływ pustki za materiałem wykończeniowym na współczynnik pochłaniania dźwięku.

11 Klasyfikacja materiałów, ustrojów i wyrobów dźwiękochłonnych normalna płaszczyzna utworzona przez kierunek fali padającej i normalną α α powierzchnia odbijająca dźwięk Zwierciadlane odbicie fali

12 l K λ (1.6) gdzie λ: długość najdłuższej fali ulegającej odbiciu zwierciadlanemu, l: najmniejszy wymiar przeszkody, K: współczynnik zależny od przyjętego stosunku między energią odbitą w sposób zwierciadlany lub rozproszony. kierunek fali padającej normalna do przeszkody kierunek fali odbitej czoło fali częściowo rozproszonej kierunki biegu fali częściowo rozproszonej kierunek fali odbitej czoło fali padającej α α czoło fali odbitej przeszkoda odbijająca dźwięk przeszkoda częściowo rozpraszająca dźwięk a) b) kierunki biegu fali rozproszonej czoło fali rozproszonej przeszkoda rozpraszająca dźwięk Schematyczne przedstawienie różnicy między zwierciadlanym (a), częściowo rozproszonym (b) i całkowicie rozproszonym (c) odbiciem dźwięku. c)

13 a) b) (a) Model ustroju rozpraszającego dźwięk. Wielkość klocków zależy od zakresu częstotliwości, w którym zachodzi rozproszenie. (b) Charakterystyka kierunkowa rozproszenia przy prostopadłym padaniu dźwięku.

14 powierzchnie odbijające dźwięk węzeł strzałka a) b) c) Fala stojąca pierwszego (a), drugiego (b) i trzeciego rzędu (c), powstała z nałożenia się dwóch fal bieżących, wielokrotnie odbijających się od dwóch równoległych powierzchni. Stopień zaczernienia odpowiada amplitudzie ciśnienia akustycznego, pokazanej również linią krzywą obok poszczególnych rysunków. Układy ścian równoważne pod względem możliwości powstania fal stojących pokazanych na rys. powyżej

15 f 1 =, [Hz] (1.8) Π LC gdzie L = ρ 0 l/s l: długość szyjki rezonatora wraz z poprawką wylotową (np. kanał łączący rezonator z pomieszczeniem głównym), S: powierzchnia przekroju szyjki rezonatora, ρ 0 : gęstość ośrodka, C = V/ρ 0 c V: objętość rezonatora, c: prędkość dźwięku. b) a) c) Rezonatory z wypalanej gliny, znalezione w ruinach punicko-rzymskiego amfiteatru w Nora na Sardynii. a) sposób umieszczenia rezonatorów pod stopniami amfiteatru; b), c) znaleziska archeologiczne

16 Zrekonstruowane modele rezonatorów antycznych a) b) Gliniane wazy rezonansowe w kaplicy w Pleterje koło Ljubljany (rok budowy 1403). a) widok wnętrza, b) waza rezonansowa

17 dysk dębowy a) popiół b) Rezonatory Helmholtza w postaci naczyń glinianych w starych szwedzkich kościołach. a) Kościół w Bjerhesjo. Wieko naczynia stanowi dysk dębowy z otworem, pełniącym funkcję szyjki rezonatora. b) Kościół Marii Panny w Swendborg. Rezonator jest częściowo wypełniony popiołem dla poprawy jego właściwości akustycznych.

18 Rezonansowe ustroje akustyczne wykonane z ceramiki budowlanej. Dla kształtowania właściwości akustycznych ustroju, za ceramiką znajduje się warstwa wełny mineralnej gr. ok cm i pustka powietrzna Element dźwiękochłonny w postaci ściany z cegły dziurawki skierowanej otworami do wnętrza pomieszczenia.

19 amplituda dźwięk bezpośr. k h k dźwięk odbity l l/c k/c a) b) Powstawanie echa w wysokim pomieszczeniu. Echo powstaje, gdy dźwięk odbity od sufitu dociera do słuchacza co najmniej 50 ms po dźwięku bezpośrednim. Przy znanej odległości l miedzy źródłem dźwięku i słuchaczem, wysokość pomieszczenia h przy której powstaje echo można obliczyć z zależności h = k (l / ). Granicę powstania echa określa zależność k+k l=17 m, skąd: k=(l+17)/. Ostatecznie h = ( ( l + 17) l ) /. a) usytuowanie źródła dźwięku i słuchacza, b) dźwięk bezpośredni i odbity, c=340 m/s czas Pogłosowy zanik dźwięku w pomieszczeniu pobudzonym strzałem z pistoletu startowego (ciśnienie akustyczne w funkcji czasu)

20 spadek poziomu o 6 db na podwojenie odległości db pole swobodne pole pogłosowe odległość od źródła dźwięku, m Pole akustyczne w pomieszczeniu pogłosowym gdzie SPL: poziom ciśnienia akustycznego w decybelach (SPL: ang. Sound Pressure Level), p: amplituda ciśnienia akustycznego, [Pa] p 0 : amplituda odniesienia, p 0 =*10-5 [Pa] SPL = 0 log (p/p 0 ), [db] (1.9)

21 Krzywe jednakowego poziomu głośności (izofony) ucha ludzkiego wg Fletchera i Munsona. Liczby przy krzywych oznaczają poziom głośności w fonach. Oś pionowa: poziom natężenia dźwięku w db (0 db odpowiada 10-1 W/m ), oś pozioma: częstotliwość w Hz.

22 poziom głośności dźwięku, fony Krzywe jednakowego poziomu głośności (izofony) wraz z krzywymi wagowymi reprezentującymi średni przebieg izofon dla poziomów głośności mniejszych od 55 fonów (krzywa A), z przedziału fonów (krzywa B) i większych od 85 fonów (krzywa C).

23 Charakterystyka kierunkowa słuchu dla różnych częstotliwości przy słuchaniu dwu-usznym. K,L,M Z M Y L X K c f + + = (1.10) gdzie f K,L,M : częstotliwość fali stojącej rzędu K,L,M, K, L, M: liczby naturalne (K, L, M = 0, 1,,...), X, Y, Z: długości boków pomieszczenia [m], c: prędkość dźwięku w powietrzu. X c X 1 X 0 c f 0,1 = + = (1.11) X c X 0 X 1 c f 1,0 = + = (1.1) X c X 0 X c f,0 = + = (1.13)

24 (1,0) (0,1) Y a) X (,0) (0,1) b) Rzuty pomieszczeń o proporcjach podstawy 1:1 (a) i 1: (b) wraz z osiowymi falami stojącymi najniższych rzędów. Liczby w nawiasie oznaczają rząd fali stojącej. W związku ze współmiernością wymiarów podstawy, wszystkie pokazane fale stojące mają taką samą długość, a stąd taką samą częstotliwość (patrz zależności ).

25 6.9 x 6.9 x 6.9 m 6.1 x 6.1 x 7.6 m 6.1 x 6.9 x 7.6 m częstotliwość, Hz Rozkład najniższych częstotliwości rezonansowych w pomieszczeniach o różniących się proporcjach, obliczony z zależności (1.10). Każda pionowa linia odpowiada jednej częstotliwość rezonansowej. Kilka linii leżących blisko siebie oznaczonych symbolem odpowiada tej samej częstotliwości. W związku z nakładaniem się częstotliwości rezonansowych, najmniej korzystne akustycznie jest pomieszczenia sześcienne. Najkorzystniejsze jest pomieszczenie o różniących się długościach boków, gdzie rozkład częstotliwości rezonansowych jest bardziej równomierny. Poziom ciśnienia akustycznego w funkcji częstotliwości w narożniku prostopadłościennego pomieszczenia o wymiarach 7x3x.5 m. Pomieszczenie pobudzono głośnikiem umieszczonym w przeciwległym narożniku, emitującym sygnał sinusoidalny o bardzo wolno narastającej częstotliwości i rosnącej amplitudzie (linia przerywana). W nawiasach podano rząd fali stojącej.

26 źródło dźwięku odbiornik ściana pozorny obraz źródła dźwięku punkt przebicia promienia a) b) pozorny obraz odbiornika Znajdowanie punktu przebicia promienia przez ścianę przy wyznaczeniu kierunku fali 1-krotnie odbitej z wykorzystaniem metody obrazów pozornych przy użyciu obrazu (a) źródła dźwięku, (b) odbiornika. źródło dźwięku odbiornik ściana nr ściana nr1 1 pozorny obraz źródła dźwięku I rzędu 1 pozorny obraz źródła dźwięku II rzędu Wyznaczanie kierunku fali -krotnie odbitej z wykorzystaniem metody obrazów pozornych przy użyciu obrazu źródła dźwięku. 1,1: symbole źródeł pozornych, odpowiadających odbiciu od ściany nr 1 oraz nr 1 i.

27 Źródła pozorne rzędu I-IV, leżące w płaszczyźnie przekroju prostopadłościanu. Z: źródło rzeczywiste, O: odbiornik, 1313: symbol źródła pozornego, odpowiadający sekwencji odbić od ścian o numerach 1,3,1,3. Przestrzenna siatka źródeł pozornych rzędu I-III dla sześcianu. Liczby oznaczają rząd źródła pozornego, źródło rzędu zerowego wewnątrz sześcianu oznacza źródło rzeczywiste.

28 Wallace Clement Sabine ( ) f = 4000 T/ V (1.14) gdzie T: czas pogłosu pomieszczenia[s], V: objętość pomieszczenia [m 3 ]. A= α S (1.15) gdzie: α: pogłosowy współczynnik pochłaniania dźwięku (patrz zależność (1.5)), S: pole powierzchni materiału, m. K A(f) = α ( f) S + A (f) k= 1 k k J j=1 j (1.16) gdzie: α k (f): współczynniki pochłaniania dźwięku przez poszczególne powierzchnie o polach S k, K: liczba powierzchni ograniczających pomieszczenie, A j (f): chłonność akustyczna pojedynczego obiektu, J: liczba obiektów w pomieszczeniu.

29 stacjonarny sygnał pomiarowy (szum) poziom dźwięku, db 30 db czas pogłosu odcinek krzywej zaniku dźwięku użyty do określenia czasu pogłosu tło akustyczne czas, s Definicja czasu pogłosu zilustrowana przykładowym wynikiem pomiaru krzywej zaniku dźwięku. Wzór Sabine'a V T = (1.17) Sαsr + A 0 gdzie T: czas pogłosu w s, V: objętość pomieszczenia w m 3, S: całkowite pole powierzchni wewnętrznej pomieszczenia w m, α śr : średnia ważona współczynników pochłaniania dźwięku α i poszczególnych ścian o polach powierzchni S i : α sr = α S i Si i (1.18) A 0 : chłonność akustyczna obiektów znajdujących się w pomieszczeniu: J A = (1.19) 0 A j j= 1 A j : chłonność akustyczna pojedynczego obiektu, J: liczba obiektów w pomieszczeniu.

30 Wzór Eyringa T = V S ln(1 -α ) + sr A 0 (1.0) sr ln(1- sr = sr + + sr 3 4 a α αsr α ) α (1.1) = ΔT = ln( 1 αsr ) + αsr ln(1- α sr ) V Sαsr -S ln( V Sα sr * 100% V αsr ) * 100% *100% 9% (1.) Wzór Millingtona T = V S ln(1 -α ) + A i i 0 (1.3) Wzór Knudsena T = V S ln(1 -α sr ) + A + 4mV 0 (1.4) Wzór Fitzroy a V T = - S S x S S x y Sz + + ln(1 -α x ) + 4mV Syln(1 -α y ) + 4mV Szln(1 -α z ) + 4mV (1.5) gdzie S x, S y, S z : powierzchnie par przeciwległych ścian w m, S = S x + S y + S z α x, α y, α z : średnie pogłosowe współczynniki pochłaniania dźwięku materiału na odpowiednich parach ścian.

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Modelowanie pola akustycznego. Opracowała: prof. dr hab. inż. Bożena Kostek

Modelowanie pola akustycznego. Opracowała: prof. dr hab. inż. Bożena Kostek Modelowanie pola akustycznego Opracowała: prof. dr hab. inż. Bożena Kostek Klasyfikacje modeli do badania pola akustycznego Modele i metody wykorzystywane do badania pola akustycznego MODELE FIZYCZNE MODELE

Bardziej szczegółowo

Technika nagłaśniania

Technika nagłaśniania Technika nagłaśniania Pomiar parametrów akustycznych Sanner Tomasz Hoffmann Piotr Plan prezentacji Pomiar czasu pogłosu Pomiar rozkładu natężenia dźwięku Pomiar absorpcji Pomiar izolacyjności Czas Pogłosu

Bardziej szczegółowo

ANALIZA AKUSTYCZNA SALI AUDYTORYJNEJ

ANALIZA AKUSTYCZNA SALI AUDYTORYJNEJ www.avprojekt.com projektowanie i wykonawstwo systemów audiowizualnych, nagłaśniających, DSO dystrybucja, instalacje i programowanie systemów sterowania ANALIZA AKUSTYCZNA SALI AUDYTORYJNEJ OBIEKT: Budynek

Bardziej szczegółowo

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych LABORATORIUM Pomiar poziomu mocy akustycznej w komorze pogłosowej Instrukcja do zajęć laboratoryjnych Kraków 2010 Spis treści 1. Wstęp...3 2. Wprowadzenie teoretyczne...4 2.1. Definicje terminów...4 2.2.

Bardziej szczegółowo

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1.

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. 2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. pokaz ruchu falowego 2. opis ruchu falowego słowami, wykresami, równaniami

Bardziej szczegółowo

PROFIL SUFITU I ŚCIAN

PROFIL SUFITU I ŚCIAN PROFIL SUFITU I ŚCIAN A1 a) A1 B1 A2 b) B2 B1 C1 A c) d) C2 A B2 C1 C2 e) Rys. 2.25. Przekrój pomieszczenia (a) przed i (b) po umieszczeniu ekranów skracających drogę dźwięku odbitego od sufitu oraz przykłady

Bardziej szczegółowo

Procedura orientacyjna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych

Procedura orientacyjna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych Procedura orientacyjna wyznaczania poziomu mocy źródeł ultradźwiękowych w oparciu o pomiary poziomu ciśnienia akustycznego w punktach pomiarowych lub metodą omiatania na powierzchni pomiarowej prostopadłościennej

Bardziej szczegółowo

Równoważną powierzchnię pochłaniania (A) i współczynniki pochłaniania (Si) podaje się dla określonych częstotliwości.

Równoważną powierzchnię pochłaniania (A) i współczynniki pochłaniania (Si) podaje się dla określonych częstotliwości. AKUSTYKA WNĘTRZ RÓWNOWAŻNA POWIERZCHNIA POCHŁANIANIA (A) Wielkość równoważnej powierzchni pochłaniania (oznaczana literą A) ma ogromne znaczenie dla określenia charakteru tłumienia fal akustycznych w danej

Bardziej szczegółowo

4/4/2012. CATT-Acoustic v8.0

4/4/2012. CATT-Acoustic v8.0 CATT-Acoustic v8.0 CATT-Acoustic v8.0 Oprogramowanie CATT-Acoustic umożliwia: Zaprojektowanie geometryczne wnętrza Zadanie odpowiednich współczynników odbicia, rozproszenia dla wszystkich planów pomieszczenia

Bardziej szczegółowo

KSZTAŁT POMIESZCZENIA

KSZTAŁT POMIESZCZENIA KSZTAŁT POMIESZCZENIA Rys. 2.10. Sala Altes Gewandhaus w Lipsku o niepraktykowanym już układzie widowni. Sala istniejąca w latach 1781-1894, znana z pierwszych wykonań wielu znaczących dzieł muzycznych.

Bardziej szczegółowo

mgr inż. Dariusz Borowiecki

mgr inż. Dariusz Borowiecki Ul. Bytomska 13, 62-300 Września 508 056696 NIP 7891599567 e-mail: akustyka@kopereksolutions.pl www.kopereksolutions.pl Inwestor: Zlecający: Temat opracowania: Gmina Gniezno UL. Reymonta 9-11, 62-200 Gniezno

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych

Bardziej szczegółowo

ANALIZA AKUSTYCZNA. Akademia Sztuki w Szczecinie. Akustyka wnętrz. Projekt wykonawczy

ANALIZA AKUSTYCZNA. Akademia Sztuki w Szczecinie. Akustyka wnętrz. Projekt wykonawczy www.avprojekt.com projektowanie i wykonawstwo systemów audiowizualnych, nagłaśniających, DSO dystrybucja, instalacje i programowanie systemów sterowania ANALIZA AKUSTYCZNA OBIEKT: Akademia Sztuki w Szczecinie

Bardziej szczegółowo

PROBLEMY AKUSTYCZNE ZWIĄZANE Z INSTALACJAMI WENTYLACJI MECHANICZNEJ

PROBLEMY AKUSTYCZNE ZWIĄZANE Z INSTALACJAMI WENTYLACJI MECHANICZNEJ PROBLEMY AKUSTYCZNE ZWIĄZANE Z INSTALACJAMI WENTYLACJI MECHANICZNEJ AKUSTYKA - INFORMACJE OGÓLNE Wymagania akustyczne stawiane instalacjom wentylacyjnym określane są zwykle wartością dopuszczalnego poziomu

Bardziej szczegółowo

Laboratorium Akustyki Architektonicznej

Laboratorium Akustyki Architektonicznej Laboratorium Akustyki Architektonicznej Ćwiczenie 3: Pomiar czasu pogłosu i parametrów powiązanych pomieszczenia. Cel ćwiczenia: Zapoznanie się z metodami pomiaru czasu pogłosu. Zadania do przygotowania

Bardziej szczegółowo

Studia wizyjnofoniczne

Studia wizyjnofoniczne Studia wizyjnofoniczne Definicja Studiem wizyjno-fonicznym nazywać będziemy pomieszczenie mające odpowiednie właściwości akustyczne, oświetlenie i dekoracje, w którym odbywa się przetwarzanie za pośrednictwem

Bardziej szczegółowo

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

Powiat Kielecki, 25-516 Kielce, al. IX Wieków Kielc 3

Powiat Kielecki, 25-516 Kielce, al. IX Wieków Kielc 3 Jednostka projektowania: Team s.c. www.team.busko.pl 28-100 Busko-Zdrój, ul. Wojska Polskiego 18a tel./fax 0-41 378 74 65, e-mail: biuro@team.busko.pl Egzemplarz Symbol projektu: 10.1220.06 Faza opracowania:

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis, Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

Studia wizyjnofoniczne

Studia wizyjnofoniczne Studia wizyjnofoniczne Definicja Studiem wizyjno-fonicznym nazywać będziemy pomieszczenie mające odpowiednie właściwości akustyczne, oświetlenie i dekoracje, w którym odbywa się przetwarzanie za pośrednictwem

Bardziej szczegółowo

WYBRANE ASPEKTY AKUSTYCZNE W PROJEKTOWANIU BUDYNKÓW CZ. 1

WYBRANE ASPEKTY AKUSTYCZNE W PROJEKTOWANIU BUDYNKÓW CZ. 1 WYBRANE ASPEKTY AKUSTYCZNE W PROJEKTOWANIU BUDYNKÓW CZ. 1 1.Pojęcia podstawowe: Rodzaje fal : kuliste, płaskie, stojące stan ustalony Stany nieustalone: narastanie, zanikanie, eksplozje Prędkość dźwięku

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH

ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH Politechnika Wrocławska Instytut Telekomunikacji i Akustyki SYSTEMY NAGŁOŚNIENIA TEMAT SEMINARIUM: ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH prowadzący: mgr. P. Kozłowski

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ Nr GLA-1130/13

SPRAWOZDANIE Z BADAŃ Nr GLA-1130/13 ZESPÓŁ LABORATORIÓW BADAWCZYCH GRYFITLAB Spółka z o.o. ul. Prosta 2, Łozienica 72-100 Goleniów ul. Prosta 2, Łozienica 72-100 Goleniów Tel. 7-900-481 SPRAWOZDANIE Z BADAŃ Zleceniodawca: Producent: PAROC

Bardziej szczegółowo

l a b o r a t o r i u m a k u s t y k i

l a b o r a t o r i u m a k u s t y k i Wrocław kwiecień 21 4SOUND Parametry akustyczne 4SOUND ul Klecińska 123 54-413 Wrocław info@4soundpl www4soundpl l a b o r a t o r i u m a k u s t y k i tel +48 53 127 733 lub 71 79 85 746 NIP: 811-155-48-81

Bardziej szczegółowo

Akustyka budowlana c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli

Akustyka budowlana c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli Akustyka budowlana Dźwięk jest zjawiskiem falowym wywołanym drganiami cząstek ośrodka. Sposoby wytwarzania fal akustycznych: przez drgania mechaniczne przez turbulencję Fala akustyczna rozprzestrzeniające

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA I IMPEDANCJI AKUSTYCZNEJ

POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA I IMPEDANCJI AKUSTYCZNEJ ELEKTROAKUSTYKA LABORATORIUM ETE8300L ĆWICZENIE NR 4 POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA I IMPEDANCJI AKUSTYCZNEJ 1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą pomiaru współczynnika pochłaniania

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

5(m) PWSZ -Leszno LABORATORIUM POMIARY I BADANIA WIBROAKUSTYCZNE WYZNACZANIE POZIOMU MOCY AKUSTYCZNEJ MASZYN I URZĄDZEŃ 1. CEL I ZAKRES ĆWICZENIA

5(m) PWSZ -Leszno LABORATORIUM POMIARY I BADANIA WIBROAKUSTYCZNE WYZNACZANIE POZIOMU MOCY AKUSTYCZNEJ MASZYN I URZĄDZEŃ 1. CEL I ZAKRES ĆWICZENIA PWSZ -Leszno LABORATORIUM POMIARY I BADANIA WIBROAKUSTYCZNE WYZNACZANIE POZIOMU MOCY AKUSTYCZNEJ MASZYN I URZĄDZEŃ Instrukcja Wykonania ćwiczenia 5(m) 1. CEL I ZAKRES ĆWICZENIA Poziom mocy akustycznej

Bardziej szczegółowo

INSTYTUT KONSTRUKCJI MASZYN POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU METODĄ FAL STOJĄCYCH

INSTYTUT KONSTRUKCJI MASZYN POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU METODĄ FAL STOJĄCYCH INSTYTUT KONSTRUKCJI MASZYN POMIAR WSPÓŁCZYNNIKA POCHŁANIANIA DŹWIĘKU METODĄ FAL STOJĄCYCH 1. ODBICIE, POCHŁANIANIE I PRZEJŚCIE FALI AKUSTYCZNEJ Przy przejściu fali do ośrodka o innej oporności akustycznej

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Symulacje akustyczne

Symulacje akustyczne Symulacje akustyczne Hala Sportowa w Suwałkach SYSTEM DSO Maj 2017 Opracował: mgr inż. Jarosław Tomasz Adamczyk SPIS TREŚCI 1. Wprowadzenie... 3 2. Dane wejściowe do symulacji... 3 3. Wyniki symulacji...

Bardziej szczegółowo

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db - Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są

Bardziej szczegółowo

AKUSTYKA. Matura 2007

AKUSTYKA. Matura 2007 Matura 007 AKUSTYKA Zadanie 3. Wózek (1 pkt) Wózek z nadajnikiem fal ultradźwiękowych, spoczywający w chwili t = 0, zaczyna oddalać się od nieruchomego odbiornika ruchem jednostajnie przyspieszonym. odbiornik

Bardziej szczegółowo

p p p zmierzona wartość ciśnienia akustycznego w Pa, p 0 ciśnienie odniesienia równe Pa.

p p p zmierzona wartość ciśnienia akustycznego w Pa, p 0 ciśnienie odniesienia równe Pa. POLTECHKA ŚLĄSKA. WYDZAŁ ORGAZACJ ZARZĄDZAA. Strona: 1 1. CEL ĆWCZEA Celem ćwiczenia jest ugruntowanie wiadomości dotyczących pomiarów hałasu maszyn, zależności zachodzących pomiędzy ciśnieniem, natężeniem

Bardziej szczegółowo

Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych

Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych w oparciu o pomiary poziomu ciśnienia akustycznego w punktach pomiarowych lub liniach omiatania na półkulistej powierzchni

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

Zastosowanie ultradźwięków w technikach multimedialnych

Zastosowanie ultradźwięków w technikach multimedialnych Zastosowanie ultradźwięków w technikach multimedialnych Janusz Cichowski, p. 68 jay@sound.eti.pg.gda.pl Katedra Systemów Multimedialnych, Wydział Elektroniki Telekomunikacji i Informatyki, Politechnika

Bardziej szczegółowo

MODEL AKUSTYCZNY SALI WIDOWISKOWEJ TEATRU POLSKIEGO IM. ARNOLDA SZYFMANA W WARSZAWIE

MODEL AKUSTYCZNY SALI WIDOWISKOWEJ TEATRU POLSKIEGO IM. ARNOLDA SZYFMANA W WARSZAWIE MODEL AKUSTYCZNY SALI WIDOWISKOWEJ TEATRU POLSKIEGO IM. ARNOLDA SZYFMANA W WARSZAWIE Warszawa, listopad 2014 SPIS TREŚCI 1. BADANY OBIEKT 2. ZAŁOŻENIA DO OPRACOWANIA MODELU AKUSTYCZENEGO TEATRU 3. CHARAKTERYSTYKA

Bardziej szczegółowo

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1 RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie

Bardziej szczegółowo

Przygotowała: prof. Bożena Kostek

Przygotowała: prof. Bożena Kostek Przygotowała: prof. Bożena Kostek Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej

Bardziej szczegółowo

Mapa akustyczna Torunia

Mapa akustyczna Torunia Mapa akustyczna Torunia Informacje podstawowe Mapa akustyczna Słownik terminów Kontakt Przejdź do mapy» Słownik terminów specjalistycznych Hałas Hałasem nazywamy wszystkie niepożądane, nieprzyjemne, dokuczliwe

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Temat ćwiczenia. Wyznaczanie mocy akustycznej

Temat ćwiczenia. Wyznaczanie mocy akustycznej POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Wyznaczanie mocy akustycznej Cel ćwiczenia Pomiary poziomu natęŝenia dźwięku źródła hałasu. Wyznaczanie mocy akustycznej źródła hałasu. Wyznaczanie

Bardziej szczegółowo

PROJEKT WYKONAWCZY modernizacji Hali Sportowej adaptacja akustyczna GMINNEGO CENTRUM SPORTU I REKREACJI

PROJEKT WYKONAWCZY modernizacji Hali Sportowej adaptacja akustyczna GMINNEGO CENTRUM SPORTU I REKREACJI Mgr akustyki na Wydziale Fizyki Uniwersytetu im. Adama Mickiewicza w Poznaniu inż. Technik Multimedialnych na Wydziale Mechatroniki Politechniki Warszawskiej PROJEKT WYKONAWCZY modernizacji Hali Sportowej

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.

Bardziej szczegółowo

Zalecenia adaptacji akustycznej

Zalecenia adaptacji akustycznej AkustiX sp. z o.o. UL. WIOSNY LUDÓW 54, 62-081 PRZEŹMIEROWO TEL. 61-625-68-00,FAX. 61 624-37-52 www.akustix.pl poczta@akustix.pl Zalecenia adaptacji akustycznej sali sportowej w Szkole Podstawowej w Buku

Bardziej szczegółowo

Falowa natura światła

Falowa natura światła Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH

BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH Ćwiczenie 4 BADANIE PODŁUŻNYCH FAL DŹWIĘKOWYCH W PRĘTACH 4.1. Wiadomości ogólne 4.1.1. Równanie podłużnej fali dźwiękowej i jej prędkość w prętach Rozważmy pręt o powierzchni A kołowego przekroju poprzecznego.

Bardziej szczegółowo

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 29.03.2016 aboratorium Techniki Świetlnej Ćwiczenie nr 5. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓŻYCH WŁASOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

Akustyka budowlana 30/12/2015. c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli

Akustyka budowlana 30/12/2015. c f. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Wprowadzenie. Zagadnienia Współczesnej Fizyki Budowli Akustyka budowlana Wprowadzenie Dźwięk jest zjawiskiem falowym wywołanym drganiami cząstek ośrodka. Sposoby wytwarzania fal akustycznych: przez drgania mechaniczne przez turbulencję Wprowadzenie czas droga

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Energia i natężenie fali Średnia energia ruchu drgającego elementu ośrodka o masie m, objętości V

Bardziej szczegółowo

1.3. ZASADY PROPAGACJI DŹWIĘKU.

1.3. ZASADY PROPAGACJI DŹWIĘKU. .3. ZASADY PROPAGACJ DŹWĘKU. W ośrodkach jednorodnych nie zaburzonych (np. przez wiatr bądź gradient temperatury) fale dźwiękowe rozchodzą się prostoliniowo. Jednak amplituda tych drgań maleje ze wzrostem

Bardziej szczegółowo

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 4 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU METODĄ QUINCKEGO I KUNDTA 1. Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem pierwszej

Bardziej szczegółowo

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

EKSPERTYZA AKUSTYCZNA DO WYKONANIA PRAC ZWIĄZANYCH Z BIEŻĄCĄ KONSERWACJĄ SAL KONFERENCYJNYCH W BUDYNKU II W POMORSKIM PARKU NAUKOWO-TECHNOLOGICZNYM

EKSPERTYZA AKUSTYCZNA DO WYKONANIA PRAC ZWIĄZANYCH Z BIEŻĄCĄ KONSERWACJĄ SAL KONFERENCYJNYCH W BUDYNKU II W POMORSKIM PARKU NAUKOWO-TECHNOLOGICZNYM EKSPERTYZA AKUSTYCZNA DO WYKONANIA PRAC ZWIĄZANYCH Z BIEŻĄCĄ KONSERWACJĄ SAL KONFERENCYJNYCH W BUDYNKU II W POMORSKIM PARKU NAUKOWO-TECHNOLOGICZNYM OBIEKT: sale konferencyjne Morska, Lazurowa, Koralowa,

Bardziej szczegółowo

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Drgania Fale Akustyka Optyka geometryczna POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 017/018 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 2 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Fale sprężyste w gazach przemieszczenie warstwy cząsteczek s( x, t) = sm cos(kx t) zmiana ciśnienia

Bardziej szczegółowo

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych

Bardziej szczegółowo

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv.

Aby nie uszkodzić głowicy dźwiękowej, nie wolno stosować amplitudy większej niż 2000 mv. Tematy powiązane Fale poprzeczne i podłużne, długość fali, amplituda, częstotliwość, przesunięcie fazowe, interferencja, prędkość dźwięku w powietrzu, głośność, prawo Webera-Fechnera. Podstawy Jeśli fala

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Geopoz projekt akustyczny DSO

Geopoz projekt akustyczny DSO Geopoz projekt akustyczny DSO 1. Cel projektu. Celem jest propozycja systemu nagłośnienia DSO budynku Geopoz w Poznaniu zoptymalizowana pod względem akustycznym. Istotne jest uzyskanie równomiernego rozkładu

Bardziej szczegółowo

POMIARY AKUSTYCZNE SALI WIDOWISKOWEJ TEATRU POLSKIEGO IM. ARNOLDA SZYFMANA W WARSZAWIE RAPORT Z POMIARÓW

POMIARY AKUSTYCZNE SALI WIDOWISKOWEJ TEATRU POLSKIEGO IM. ARNOLDA SZYFMANA W WARSZAWIE RAPORT Z POMIARÓW POMIARY AKUSTYCZNE SALI WIDOWISKOWEJ TEATRU POLSKIEGO IM. ARNOLDA SZYFMANA W WARSZAWIE RAPORT Z POMIARÓW Warszawa, listopad 2014 SPIS TREŚCI 1. BADANY OBIEKT 2. ZAKRES POMIARÓW AKUSTYCZNYCH 3. METODYKA

Bardziej szczegółowo

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

Security Systems PL Komunikacja, na której możesz polegać

Security Systems PL Komunikacja, na której możesz polegać XLA 3200 Security Systems PL Instrukcja instalacji Liniowe matryce głośnikowe LBC 3200/00 LBC 3201/00 LBC 3210/00 Komunikacja, na której możesz polegać XLA 3200 Instrukcja instalacji PL 3 Spis treści

Bardziej szczegółowo

1. Określenie hałasu wentylatora

1. Określenie hałasu wentylatora 1. Określenie hałasu wentylatora -na podstawie danych producenta -na podstawie literatury 2.Określenie dopuszczalnego poziomu dźwięku w pomieszczeniu PN-87/B-02151/02 Akustyka budowlana. Ochrona przed

Bardziej szczegółowo

ZJAWISKA FIZYCZNE ZWIĄZANE Z POWSTAWANIEM I PROPAGACJĄ FAL DŹWIĘKOWYCH.

ZJAWISKA FIZYCZNE ZWIĄZANE Z POWSTAWANIEM I PROPAGACJĄ FAL DŹWIĘKOWYCH. ZJAWISKA FIZYCZNE ZWIĄZANE Z POWSTAWANIEM I PROPAGACJĄ FAL DŹWIĘKOWYCH. DŹWIĘK Aspekt psychofizjologiczny wrażenie zmysłowe odbierane przez narząd słuchu Aspekt fizyczny - zaburzenie falowe sprężystego

Bardziej szczegółowo

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW.

3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. 3. WYNIKI POMIARÓW Z WYKORZYSTANIEM ULTRADŹWIĘKÓW. Przy rozchodzeniu się fal dźwiękowych może dochodzić do częściowego lub całkowitego odbicia oraz przenikania fali przez granice ośrodków. Przeszkody napotykane

Bardziej szczegółowo

ZALECENIA. DOTYCZĄCE UŻYCIA AKUSTYCZNYCH SUFITÓW PODWIESZANYCH i PANELI ŚCIENNYCH w WYBRANYCH POMIESZCZENIACH SZKOŁY PODSTAWOWEJ NR 340 w WARSZAWIE

ZALECENIA. DOTYCZĄCE UŻYCIA AKUSTYCZNYCH SUFITÓW PODWIESZANYCH i PANELI ŚCIENNYCH w WYBRANYCH POMIESZCZENIACH SZKOŁY PODSTAWOWEJ NR 340 w WARSZAWIE ZALECENIA DOTYCZĄCE UŻYCIA AKUSTYCZNYCH SUFITÓW PODWIESZANYCH i PANELI ŚCIENNYCH w WYBRANYCH POMIESZCZENIACH SZKOŁY PODSTAWOWEJ NR 340 w WARSZAWIE MIKOŁAJ JAROSZ GRUDZIEŃ, 2015 1. Korytarze i hole 1.1.

Bardziej szczegółowo

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne. Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład

Bardziej szczegółowo

4. Izolacja akustyczna wełną mineralną ISOVER

4. Izolacja akustyczna wełną mineralną ISOVER wełną mineralną ISOVER wstęp Hałas Hałas to powszechnie występujące zjawisko (w pracy, w miejscu zamieszkania i wypoczynku), które powoduje wiele negatywnych skutków dla zdrowia człowieka. Skumulowanie

Bardziej szczegółowo

Moduł akustyczny do wytłumienia pomieszczeń Audimin

Moduł akustyczny do wytłumienia pomieszczeń Audimin Moduł akustyczny do wytłumienia pomieszczeń Audimin BSH KLIMA POLSKA Sp. z o.o. ul.kolejowa 13, Stara Iwiczna PL - 05 500 Piaseczno Telefon +48 22 737 18 58 Telefax +48 22 737 18 59 biuro@bsh.pl www.bsh.pl

Bardziej szczegółowo

Określenie właściwości paneli akustycznych ekranów drogowych produkcji S. i A. Pietrucha Sp z o. o.

Określenie właściwości paneli akustycznych ekranów drogowych produkcji S. i A. Pietrucha Sp z o. o. I N S T Y T U T E N E R G E T Y K I Instytut Badawczy ODDZIAŁ TECHNIKI CIEPLNEJ ITC w Łodzi 93-208 Łódź, ul. Dąbrowskiego 113 www.itc.edu.pl, e-mail: itc@itc.edu.pl Temat w ITC: 04103900 Nr ewidencyjny:

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

PCA Zakres akredytacji Nr AB 023

PCA Zakres akredytacji Nr AB 023 Pomieszczenia w budynku, z systemem nagłaśniania i/lub z dźwiękowym systemem ostrzegawczym Pomieszczenia w budynku (wszystkie) Urządzenia systemów wibroakustycznych głośniki Elastyczny zakres akredytacji

Bardziej szczegółowo

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Zadanie 2 Zadanie 3 Zadanie 4 Zapisz, w którym punkcie wahadło ma największą energię kinetyczną, a w którym największą energię potencjalną? A B C Zadanie 5 Zadanie 6 Okres drgań pewnego wahadła

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WŁASNOŚCI AKUSTYCZNYCH SALI KONFERENCYJNEJ NA PODSTAWIE POMIARÓW RZECZYWISTYCH I SYMULACJI KOMPUTEROWEJ W PROGRAMIE EASE 3.

ANALIZA PORÓWNAWCZA WŁASNOŚCI AKUSTYCZNYCH SALI KONFERENCYJNEJ NA PODSTAWIE POMIARÓW RZECZYWISTYCH I SYMULACJI KOMPUTEROWEJ W PROGRAMIE EASE 3. mgr inŝ. Rafał KOWAL Zakład-Laboratorium Sygnalizacji Alarmu PoŜaru i Automatyki PoŜarniczej ANALIZA PORÓWNAWCZA WŁASNOŚCI AKUSTYCZNYCH SALI KONFERENCYJNEJ NA PODSTAWIE POMIARÓW RZECZYWISTYCH I SYMULACJI

Bardziej szczegółowo