Krzysztof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa. Analiza spektralna indeksów giełdowych DJIA i WIG. 1. Wprowadzenie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krzysztof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa. Analiza spektralna indeksów giełdowych DJIA i WIG. 1. Wprowadzenie"

Transkrypt

1 Krzyszof Borowski, Paweł Skrzypczyński Szkoła Główna Handlowa Analiza spekralna indeksów giełdowych DJIA i WIG 1 Wprowadzenie We współczesnych analizach ekonomicznych doyczących pomiaru cyklu koniunkuralnego bardzo popularnym podejściem sała się procedura polegająca na wyizolowaniu z wejściowego zesawu danych, pewnego komponenu, kórego przebieg obrazuje oscylacje o określonej charakerysyce częsoliwościowej Esymacja owego komponenu polega na usunięciu określonego pasma częsoliwości z zw spekrum mocy wejściowego szeregu czasowego za pomocą filra o odpowiedniej charakerysyce częsoliwościowej Spekrum mocy (widmo mocy) jes o funkcja w dziedzinie częsoliwości, kóra sanowi rozkład wariancji szeregu czasowego w ej dziedzinie (por Hamilon (1994), s 152) Spekrum mocy jes zdefiniowane w przypadku sacjonarnego szeregu czasowego jako ransformaa Fouriera jego ciągu auokowariancyjnego, w przypadku szeregów niesacjonarnych mówi się o zw pseudospekrum mocy Filry umożliwiają esymację komponenu długookresowego rendu, komponenu obrazującego wahania koniunkuralne czy eż komponenu obrazującego wahania sezonowe i losowe W przypadku esymacji rendu wykorzysywany jes filr dolnoprzepusowy, kóry opuszcza zakres niskich częsoliwości i usuwa częsoliwości wysokie Filr górno-przepusowy ma działanie odwrone do filra dolno-przepusowego, usuwa częsoliwości niskie i pozosawia wysokie, w wyniku, czego uzyskany komponen obrazuje wahania pojawiające się wokół długookresowego rendu Filr pasmowo-przepusowy również umożliwia esymację wahań pojawiających się wokół długookresowego rendu, jednakże pozbawionych wahań o charakerze sezonowym i losowym Filr pasmowo-przepusowy pozosawia określone pasmo częsoliwości i usuwa jego dopełnienie Najpopularniejszymi filrami służącymi do pomiaru cyklu koniunkuralnego, są pasmowo-przepusowy filr Baxer-Kinga (por Baxer M, King R G (1995)) i górno-przepusowy filr Hodricka-Prescoa (por Hodrick R J, Presco E C (1997)) Celem niniejszej pracy jes analiza indeksów giełdowych Dow Jones Indusrial Average (DJIA) oraz Warszawskiego Indeksu Giełdowego (WIG) pod kąem idenyfikacji cykli mających dominujący wpływ na kszałowanie obserwowanego przebiegu indeksów Prezenowana analiza sprowadza się kolejno do dekompozycji przyjęych szeregów czasowych na podsawowe składowe za pomocą odpowiednich filrów ypu Baxer-Kinga i Hodricka-Prescoa, a nasępnie przedsawienia uzyskanych komponenów cyklicznych w dziedzinie częsoliwości i określenia na ej podsawie długości cykli, mających dominujące znaczenie w opisywaniu analizowanych szeregów czasowych W analizie przyjęo podział szeregu czasowego na rzy składowe, zn: komponen długookresowego rendu (wahania długookresowe) komponen zawierający wahania koniunkuralne (wahania średniookresowe) komponen zawierający wahania sezonowe i losowe (wahania krókookresowe) W przypadku filra Hodricka-Prescoa, kóry jes filrem górno-przepusowym komponen cykliczny obrazuje łączny efek wahań o charakerze koniunkuralnym, sezonowym i losowym W analizie przyjęo, iż pasmo wahań koniunkuralnych odpowiada definicji A F Burnsa oraz W C Michella (1946), mówiącej o długościach cyklu koniunkuralnego pomiędzy 6 a 32 kwarałami, zn pomiędzy 1,5 roku a 8 laami (por Baxer M, King R G (1995), s 8) W - 1 -

2 konsekwencji komponen zawierający wahania koniunkuralne odpowiada cyklom o długościach od 1,5 roku do 8 la, długookresowy rend o wahania o długościach wyższych niż 8 la, naomias komponen zawierający wahania sezonowe i losowe o cykle o długościach krószych niż 1,5 roku Analizowane szeregi czasowe oraz uzyskane w wyniku dekompozycji składowe cykliczne zosały również poddane esowaniu sacjonarności Wykorzysano w ym celu es pierwiaska jednoskowego (ang uni roo es), rozszerzony es Dickeya-Fullera (es ADF) 2 Analiza indeksu Dow Jones Indusrial Average w laach Indeks DJIA jes głównym wskaźnikiem giełdy papierów warościowych w Nowym Jorku (ang New York Sock Exchange) i równocześnie sanowi najważniejszy wskaźnik obrazujący zachowanie amerykańskiego rynku kapiałowego Dla porzeb analizy przyjmujemy, iż indeks DJIA będzie rozparywany na danych kwaralnych W związku z powyższym, przyjęy szereg czasowy obejmuje okres od II kwarału 1896 roku do IV kwarału 24 roku i składa się z 435 obserwacji, będących kursami zamknięcia indeksu DJIA na osaniej sesji giełdowej danego kwarału Oznaczmy en szereg czasowy przez 435 P, gdzie 1 P oznacza kurs zamknięcia indeksu na koniec -ego kwarału Dla celów analizy przyjęo, że indeks zosanie przedsawiony w układzie skumulowanej logarymicznej sopy zwrou, zn rozparujemy szereg czasowy x 435, gdzie x ln P P ln P P 1 1 ln 1 Rozważmy nasępującą dekompozycję, szereg czasowy x zosał rozbiy na rzy składowe S1, i S3, zn x S1 S3 Komponen S1 jes wynikiem zasosowania dolno-przepusowego filra Baxer-Kinga, kóry opuszcza wahania o okresach dłuższych niż 32 kwarały ( T 32), a więc jes o komponen rendu Komponen wynika z zasosowania pasmowo-przepusowego filra Baxer-Kinga, kóry opuszcza wahania o okresach pomiędzy 6 a 32 kwarałami ( 6 T 32 ), a więc jes o komponen zawierający wahania koniunkuralne Z kolei komponen S3 jes efekem zasosowania górno-przepusowego filra Baxer-Kinga, kóry opuszcza wahania o okresach krószych niż 6 kwarałów ( T 6 ), a więc jes o komponen zawierający szum składający się z wahań sezonowych i losowych Przy konsrukcji wszyskich filrów Baxer-Kinga wykorzysano 12 opóźnień w czasie Powyższe usawienia odpowiadają ym sugerowanym przez auorów filra dla danych kwaralnych (por Baxer M, King R G (1995), s 8) Dodajmy, że szeregi czasowe komponenów uzyskanych przyjęymi filrami Baxer-Kinga składają się z 411 obserwacji Rysunek 21 przedsawia kolejno szereg czasowy x i komponen S1, komponen, komponen S3 oraz komponen S3, kóry zawiera wahania koniunkuralne, sezonowe i losowe, innymi słowy jes o wynik zasosowania górno-przepusowego filra Baxer-Kinga dla K 12, kóry opuszcza wahania o okresach krószych niż 32 kwarały ( T 32) Rysunek 21 DJIA i jego składowe uzyskane za pomocą filra Baxer-Kinga x S1,6,4 - -,4 -,6 -,

3 ,4,3,1 -,1 - -, S3,8,6,4 - -,4 -,6 -,8-1, S3 Podobną dekompozycję szeregu czasowego x przeprowadzamy przy użyciu filra Hodricka- Prescoa, wówczas szereg x jes sumą komponenu rendu d i komponenu cyklicznego c, zn x d c Przyjęy paramer wygładzający filra Hodricka-Prescoa wynosi 16 1, a więc odpowiada usawieniom przyjęym przez auorów dla danych kwaralnych (por Hodrick R J, Presco E C (1997), s 4) Dla parameru 16, komponen d wynika z zasosowania dolno-przepusowego filra Hodricka-Prescoa, kóry opuszcza wahania o okresach dłuższych niż 39,7 kwarału ( T 39, 7) (por Maravall A, del Rio A (21), s 18) Nauralnie komponen c jes wówczas wynikiem zasosowania górno-przepusowego filra Hodricka-Prescoa, kóry opuszcza wahania o okresach krószych niż 39,7 kwarału ( T 39, 7) Szeregi czasowe komponenów uzyskanych filrem Hodricka-Prescoa składają się z 435 obserwacji, ak jak szereg czasowy x Rysunek 22 przedsawia kolejno szereg czasowy x i komponen d oraz komponen c Nauralnie składowa d ma zbliżony przebieg do składowej S1, naomias składowa c ma zbliżony przebieg do składowej S3 Rysunek 22 DJIA i jego składowe uzyskane za pomocą filra Hodricka-Prescoa x d,8,6,4 - -,4 -,6 -,8-1, -1, c Szereg czasowy x i jego składowe cykliczne zosały nasępnie poddane esowi ADF (ang augmened Dickey-Fuller), kórego hipoeza zerowa zakłada wysępowanie pierwiaska jednoskowego, a więc zakłada niesacjonarność badanego szeregu czasowego, wobec hipoezy 1 Pod pojęciem parameru wygładzającego w filrze Hodricka-Prescoa należy rozumieć dodanią wielkość deerminującą rozgraniczenie pomiędzy komponenem rendu a komponenem cyklicznym szeregu czasowego w dziedzinie częsoliwości Wybór parameru decyduje o częsoliwości rozdzielającej szereg na rend i cykl, a więc ym samym decyduje o gładkości uzyskiwanego rendu W przypadku, gdy, mamy do czynienia z coraz lepszym dopasowaniem rendu do obserwowanego szeregu czasowego (rend nieliniowy), naomias w przeciwnym przypadku, gdy, rend saje się rendem liniowym - 3 -

4 alernaywnej zakładającej jego sacjonarność Tes ADF we wszyskich przypadkach zosał przeprowadzony na podsawie równania regresji bez sałej (zw dryfu) i rendu deerminisycznego, posaci K x x 1 k k x k 1, gdzie x jes badanym szeregiem czasowym (por Syczewska E M (1999), s 37) Opymalna liczba opóźnień K zosała usalona w każdym przypadku na podsawie minimalizacji informacyjnego kryerium Schwarza Odrzucenie hipoezy zerowej na rzecz alernaywnej oznacza, że badany szereg czasowy jes zinegrowany w sopniu zero i odbywa się wówczas, gdy warość saysyki ADF jes mniejsza niż odpowiednia dla danego poziomu isoności warość kryyczna Saysyka ADF jes obliczana jako iloraz -Sudena dla oszacowanego MNK parameru Wyniki esu ADF dla poziomu isoności, 5 zosały zamieszczone w abeli 21 Tabela 21 Tes ADF dla DJIA i jego składowych przy poziomie isoności, 5 szereg saysyka ADF warość kryyczna decyzja - H wniosek I 1 x 2, ,94157 przyjęa x -19, , odrzucona I -6, , odrzucona I S3-7, , odrzucona I 2 S -9, , odrzucona I c -9, , odrzucona I S 3 Jedynie w przypadku szeregu czasowego x nie było podsaw do odrzucenia hipoezy zerowej o wysępowaniu pierwiaska jednoskowego Z kolei esowanie pierwszych przyrosów x doprowadziło do odrzucenia hipoezy zerowej, a w związku z ym szereg ~ I jes sacjonarny, naomias szereg 1 x ~ I jes niesacjonarny Również w przypadku składowych cyklicznych, S3, S3 oraz c, hipoeza zerowa zosała odrzucona, co wskazuje na zinegrowanie badanych komponenów w sopniu zero, a więc komponeny e są sacjonarne Analiza spekralna uzyskanych komponenów umożliwi idenyfikację cykli mających dominujące znaczenie w opisywaniu zmienności indeksu DJIA 2 Prezenowane periodogramy szeregów czasowych zosały przedsawione dla znormalizowanych dyskrenych częsoliwości f j j n gdzie j 1,2,, n 1 2 i n odpowiada liczbie obserwacji szeregu czasowego Należy zaznaczyć, że z uwagi na niesacjonarność szeregu czasowego x, odpowiadający mu periodogram powinien być rakowany jako pseudo-spekrum mocy Rysunek 23 przedsawia periodogram szeregu czasowego x Nauralnie z uwagi na obecność rendu, większość wariancji szeregu x jes skupiona w paśmie niskich częsoliwości Nauralnym wnioskiem w ym przypadku jes swierdzenie, iż dominujące znaczenie w opisywaniu zmienności indeksu DJIA odgrywa rend, ma on najsilniejszy wpływ na kszałowanie przebieg szeregu x x 2 Podsawowa miara analizy spekralnej, czyli spekrum mocy (bądź jego znormalizowana wersja, czyli funkcja gęsości spekralnej) przyjmuje wysokie warości w przypadku częsoliwości, kóre odpowiadają długościom cykli mających największy wpływ na kszałowanie przebiegu analizowanego szeregu czasowego Innymi słowy cykle e wnoszą największy wkład do całkowiej wariancji szeregu czasowego Na wykresie periodogramu jes o zobrazowane wyróżniającymi się na le pozosałych częsoliwości pikami, czyli isonie wysokimi warościami periodogramu - 4 -

5 Rysunek 23 Periodogram DJIA Rozważmy nasępnie periodogramy składowych cyklicznych indeksu DJIA Zauważmy, że są o składowe, kórych wariancje nie są powiązane z pasmem niskich częsoliwości Rysunek 24 przedsawia kolejno periodogramy składowych, S3, S3 oraz c Rysunek 24 Periodogramy składowych cyklicznych DJIA 7 35 S S3 7 c Jako pierwszy przeanalizujemy periodogram składowej częsoliwości koniunkuralnych, f 1 32, W paśmie znormalizowanych, wysępuje wyraźny pik dla częsoliwości f Dodajmy, że częsoliwości f j odpowiada okres T n j W związku z ym częsoliwości f 29 odpowiada okres T , 17 kwarału (3,54 roku) Cykl o ym okresie ma znaczący wpływ na kszałowanie szeregu czasowego x w paśmie wahań koniunkuralnych (składowa ma największą moc dla częsoliwości o okresie 3,54 roku) Nauralnie isnieją akże mniej wyraźne piki dla innych częsoliwości, kóre wiążą się z cyklami o mniejszej mocy niż cykl o okresie 3,54 roku Analogiczne wnioski płyną z analizy periodogramu sumy składowych i S3 Nauralnie periodogram składowej S3 ma

6 zbliżony przebieg do periodogramu składowej c Analiza periodogramu składowej c prowadzi do podobnych wniosków jak w przypadku składowej i S3 Periodogram składowej c wskazuje na dwa isone piki w paśmie częsoliwości f 1 397,1 2, pierwszy z nich wysępuje dla częsoliwości f 11, 253, kórej odpowiada okres T , 55 kwarału (9,89 roku), naomias drugi dla częsoliwości f 31, 713, kórej odpowiada okres T ,3 kwarału (3,51 roku) Jeżeli chodzi o periodogram składowej S3, o należy zaznaczyć, że jego inerpreacja jes dosyć skomplikowana z uwagi na dużą liczbę pików W celu uławienia inerpreacji periodogramu składowej S3, jak również periodogramów pozosałych składowych cyklicznych, rozważmy esymację spekrum mocy za pomocą wygładzania periodogramu w dziedzinie częsoliwości Rysunek 25 przedsawia kolejno spekra mocy składowych, S3, S3 oraz c, kóre zosały uzyskane dzięki zasosowaniu okna rójkąnego o szerokości pasma h 3 Rysunek 25 Spekra mocy składowych cyklicznych DJIA (okno rójkąne dla h 3) S S c Uzyskane spekrum mocy składowej wskazuje na rzy dominujące cykle w obrębie pasma częsoliwości koniunkuralnych Pierwszy z ych cykli jes powiązany z pikiem dla częsoliwości f 11, 268, kórej odpowiada okres T , 36 kwarału (9,34 roku) Cykl en ma okres leżący powyżej górnej granicy okresu wahań koniunkuralnych (8 la) Drugi cykl przypada dla częsoliwości f 19, 462, kórej odpowiada okres T , 63 kwarału (5,41 roku) Trzeci z dominujących cykli przypada dla częsoliwości f 29, 76, zn dla T 14, 17 kwarałów (3,54 roku) i zidenyfikowano go również na podsawie periodogramu składowej S 2 Z uwagi na najwyższą warość periodogramu składowej dla częsoliwości f 29, cykl o ej częsoliwości ma największą moc w rozparywanym paśmie częsoliwości Z kolei uzyskane poprzez wygładzanie periodogramu spekrum mocy składowej S 2 wskazuje na zbliżone znaczenie cykli przypadających dla częsoliwości f 11, f 19 i f

7 Isnieją również dwa kolejne cykle, kórych moc jes dużo mniejsza w porównaniu z rzema pierwszymi cyklami Cykl czwary przypada dla częsoliwości f 42, 122, dla kórej okres T ,79 kwarału (2,45 roku), naomias cykl piąy wysępuje dla częsoliwości f 51,1241, dla kórej cykl T , 6 kwarału (2,1 roku) Cykl czwary i piąy mają wyjąkowo zbliżone znaczenie Nauralnie podobne informacje zawiera spekrum mocy składowej S3, kóre wskazuje również na rzy dominujące i dwa mniej isone cykle powiązane z wahaniami koniunkuralnymi Okresy ych cykli są oczywiście idenyczne z ymi, kóre zidenyfikowano dla składowej S 2 Ponado spekrum mocy składowej S3 wskazuje również na isnienie szósego cyklu w obrębie górnej granicy pasma częsoliwości koniunkuralnych Cykl szósy przypada dla częsoliwości f 71, 1727, kórej odpowiada okres T , 87 kwarału (1,47 roku) Okres ego cyklu leży nieco poniżej dolnej granicy okresu wahań koniunkuralnych (1,5 roku) Cykl en ma nieco mniejszą moc niż cykl o okresie 2,1 roku Analiza spekrum mocy składowej c wskazuje również na isnienie sześciu cykli o charakerze koniunkuralnym, ak jak w przypadku składowej i S3 Pierwszy ze znalezionych cykli wynika z piku dla częsoliwości f 12, 276, kórej odpowiada okres T ,25 kwarału (9,6 roku) Drugi cykl jes powiązany z częsoliwością f 2 46, dla kórej okres T , 75 kwarału (5,44 roku) Cykl rzeci obrazuje pik dla częsoliwości f 31, 713, a jego okres wynosi T , 3 kwarału (3,51 roku) Cykl czwary przypada dla częsoliwości f 46, 157, a jego okres o T ,46 kwarału (2,36 roku) Cykl piąy wynika z częsoliwości f 54, 1241, dla kórej okres wynosi T , 6 kwarału (2,1 roku) Cykl szósy jes powiązany z częsoliwością f 73, 1678, a jego okres o T , 96 kwarału (1,49 roku) Jeżeli chodzi o znaczenie cykli zidenyfikowanych na podsawie składowej c, o należy zaznaczyć, iż jes ono zbliżone do układu przedsawionego dla składowych i S3 Isnieją jednak pewne różnice, w przypadku składowej c, uzyskane spekrum mocy wskazuje na cykl pierwszy jako cykl dominujący, z kolei cykl drugi i rzeci mają podobne znaczenie W przypadku analizy periodogramu składowej c, swierdzono, iż cykl pierwszy i rzeci są dominujące i mają wyjąkowo zbliżoną moc Uzyskane spekrum mocy składowej c wskazuje ponado, iż pozosałe cykle pozosają w akiej samej relacji mocy jak w przypadku składowej S3 W związku z powyższym, uzyskane wyniki dla składowych, S3 i c w paśmie częsoliwości koniunkuralnych są zbliżone Przeanalizujmy nasępnie spekrum mocy składowej S3 W paśmie częsoliwości f 1 6,1 2 wysępują czery isone cykle, pierwszy z nich przypada dla częsoliwości f 85, 268, kórej odpowiada okres T , 84 kwarału (1,21 roku) Pik dla częsoliwości f 84 jes najwyższą warością mocy składowej S3, co oznacza, że cykl o okresie 1,21 roku ma największe znaczenie w rozparywanym paśmie częsoliwości Oznaczmy en cykl jako cykl siódmy Drugi pik przypada dla częsoliwości f 129,3139, a odpowiadający jej okres o T , 19 kwarału (,8 roku) Jes o cykl ósmy Trzeci pik wysępuje dla częsoliwości f 161, 3917, kórej odpowiada okres T ,55 kwarału (,64 roku) Jes o cykl dziewiąy Czwary pik przypada dla częsoliwości f 194, 472, kórej odpowiada okres T , 12 kwarału (,53 roku) Jes o cykl dziesiąy Z uwagi na zbliżone warości spekrum mocy dla częsoliwości f 129 i f 161, cykle o ych częsoliwościach mają podobne znaczenie, z kolei cykl przypadający dla częsoliwości f 194 jes najmniej isony - 7 -

8 Tabela 22 sanowi podsumowanie przeprowadzonej analizy i przedsawia okresy dziesięciu cykli, kóre zosały zidenyfikowane jako cykle mające największy wpływ na kszałowanie indeksu DJIA Każdy okres zosał przypisany do filra Baxer-Kinga lub filra Hodricka- Prescoa, w zależności od ego, kóry z filrów umożliwił idenyfikację cyklu o ym okresie Cykle I VI mają charaker wahań koniunkuralnych, naomias cykle VII X są efekem wahań o charakerze sezonowym i losowym Należy jednak podkreślić, że zgodnie z przyjęą definicją wahań koniunkuralnych, okres cyklu I (zarówno dla filra Baxer-Kinga i filra Hodricka-Prescoa) leży powyżej górnej granicy okresu wahań o akim charakerze Z kolei okres cyklu VII (zarówno dla filra Baxer-Kinga i filra Hodricka-Prescoa) leży nieco poniżej dolnej granicy okresu wahań o charakerze koniunkuralnym Tabela 22 Dominujące cykle DJIA cykl okres (w laach) filr Baxer-Kinga okres (w laach) filr Hodricka-Prescoa I 9,34 9,6 II 5,41 5,44 III 3,54 3,51 IV 2,45 2,36 V 2,1 2,1 VI 1,47 1,49 VII 1,21 - VIII,8 - IX,64 - X,53 - Podsumowując, należy podkreślić, że indeks DJIA jes kszałowany przez wiele cykli, kóre nakładają się na siebie i są powiązane z różnymi częsoliwościami Jes o wyraźnie widoczne na przedsawionych periodogramach, jak również na rysunkach obrazujących poszczególne składowe analizowanego szeregu czasowego w dziedzinie czasu Cykle I X powinny być rozumiane jako oscylacje, kóre mają najwyższe znaczenie wśród wszyskich możliwych cykli zawarych w analizowanym szeregu czasowym Generalnie możemy swierdzić, że im dłuższy okres danego cyklu, ym większe jes jego znaczenie w opisywaniu indeksu DJIA Eksremalnym przypadkiem jes rend, kóry jes powiązany z wahaniami o wyjąkowo długich okresach, co przekłada się na jego dominujące znaczenie w kszałowaniu analizowanego szeregu czasowego Powierdza o abela 23, kóra przedsawia dekompozycję wariancji indeksu DJIA na rzy składowe, kóre kolejno odpowiadają długookresowemu rendowi, wahaniom o charakerze koniunkuralnym oraz wahaniom sezonowym i losowym Prezenowane warości zosały odczyane na podsawie periodogramu szeregu czasowego x Tabela 23 Dekompozycja wariancji DJIA okres (w kwarałach) wariancja udział T 2, - wszyskie cykle 2,3394 1% T 32 - długookresowy rend 2,226 94,15% 6 T 32 - wahania koniunkuralne,1137 4,86% T 6 - wahania sezonowe i losowe 231,99% - 8 -

9 3 Analiza Warszawskiego Indeksu Giełdowego w laach Warszawski Indeks Giełdowy jes głównym wskaźnikiem Giełdy Papierów Warościowych w Warszawie Dla porzeb analizy przyjmujemy, iż WIG będzie rozparywany na danych miesięcznych W związku z powyższym, przyjęy szereg czasowy obejmuje okres od kwienia 1991 roku do grudnia 24 roku i składa się ze 165 obserwacji, będących kursami zamknięcia WIG-u na osaniej sesji giełdowej danego miesiąca Oznaczmy en szereg czasowy przez P 165, gdzie P 1 oznacza kurs zamknięcia indeksu na koniec -ego miesiąca Dla celów analizy przyjęo, że indeks zosanie przedsawiony w układzie skumulowanej logarymicznej sopy zwrou, zn rozparujemy szereg czasowy x 165, gdzie x 1 ln P P1 ln P ln P1 Szereg czasowy x zosał rozbiy na rzy składowe S1, i S3, zn x S1 S3 Składowe e zosały uzyskane dzięki zasosowaniu odpowiednich filrów Baxer-Kinga Składowa S1 o komponen rendu, zawierający wahania o okresach dłuższych niż 96 miesięcy ( T 96), składowa o komponen zawierający wahania koniunkuralne o okresach krószych niż 96 miesięcy i dłuższych niż 18 miesięcy ( 18 T 96), naomias składowa S3 o komponen zawierający wahania sezonowe i losowe o okresach krószych niż 18 miesięcy ( T 18) Z uwagi na małą liczbę obserwacji szeregu czasowego x przy konsrukcji wszyskich filrów Baxer-Kinga wykorzysano 24 opóźnienia w czasie, zn K 24, zamias sugerowanych przez auorów filra 36 opóźnień w przypadku danych miesięcznych Dodajmy, że szeregi czasowe komponenów uzyskanych przyjęymi filrami Baxer-Kinga składają się ze 117 obserwacji Rysunek 31 przedsawia kolejno szereg czasowy x i komponen S1, komponen, komponen S3 oraz komponen S3, kóry zawiera wahania koniunkuralne, sezonowe i losowe Komponen S3 jes wynikiem zasosowania górnoprzepusowego filra Baxer-Kinga dla K 24, kóry opuszcza wahania o okresach krószych niż 96 miesięcy ( T 96) Rysunek 31 WIG i jego składowe uzyskane za pomocą filra Baxer-Kinga x S1,5,4,3,1 -,1 - -,3 -,4 -, S3 1,2 1,,8,6,4 - -,4 -, ,8 1,5 1,2,9,6,3 -,3 -, S3-9 -

10 Podobną dekompozycję szeregu czasowego x przeprowadzamy przy użyciu filra Hodricka- Prescoa Szereg x jes sumą komponenu rendu d i komponenu cyklicznego c, zn x d c Przyjęy paramer wygładzający o 54535, 3 Paramer en odpowiada okresowi 96 miesięcy (por Maravall A, del Rio A (21), s 17 18), a więc komponen d wynika w ym przypadku z zasosowania dolno-przepusowego filra Hodricka-Prescoa, kóry opuszcza wahania o okresach dłuższych niż 96 miesięcy ( T 96), naomias komponen c jes wynikiem zasosowania górno-przepusowego filra Hodricka-Prescoa, kóry opuszcza wahania o okresach krószych niż 96 miesięcy ( T 96) Szeregi czasowe komponenów uzyskanych filrem Hodricka-Prescoa składają się ze 165 obserwacji, ak jak szereg czasowy x Rysunek 32 przedsawia kolejno szereg czasowy x i komponen d oraz komponen c Nauralnie składowa d ma zbliżony przebieg do składowej S1, naomias składowa c ma zbliżony przebieg do składowej S3 Rysunek 32 WIG i jego składowe uzyskane za pomocą filra Hodricka-Prescoa x d 2, 1,5 1,,5 -,5-1, c Nasępnie szereg czasowy x i jego składowe cykliczne zosały poddane esowi pierwiaska jednoskowego (es ADF) Tes zosał przeprowadzony we wszyskich przypadkach na podsawie równania regresji bez sałej (dryfu) i rendu deerminisycznego, naomias opymalna liczba opóźnień w równaniu zosała usalona na podsawie minimalizacji informacyjnego kryerium Schwarza Wyniki esu ADF dla poziomu isoności, 5 zosały zamieszczone w abeli 31 Tabela 31 Tes ADF dla WIG i jego składowych przy poziomie isoności, 5 Szereg saysyka ADF warość kryyczna decyzja - H wniosek I 1 x, , przyjęa x -11, , odrzucona I -4, , odrzucona I S3-4, , odrzucona I 2 S -6, , odrzucona I c -5, ,94292 odrzucona I S 3-1 -

11 W przypadku szeregu czasowego x nie było podsaw do odrzucenia hipoezy zerowej o wysępowaniu pierwiaska jednoskowego, esowanie pierwszych przyrosów x doprowadziło do odrzucenia hipoezy zerowej, a w związku z ym szereg ~ I jes sacjonarny, naomias szereg 1 x ~ I jes niesacjonarny W przypadku składowych cyklicznych, S3, S3 oraz c, hipoeza zerowa zosała odrzucona, co wskazuje na sacjonarność badanych komponenów Kolejnym eapem jes przeprowadzenie analizy spekralnej uzyskanych komponenów indeksu WIG Prezenowane periodogramy szeregów czasowych zosały przedsawione dla znormalizowanych dyskrenych częsoliwości f j j n gdzie j 1,2,, n 1 2 i n odpowiada liczbie obserwacji szeregu czasowego Dodajmy, że uzyskane periodogramy wynikają z szeregów czasowych o sosunkowo małych liczbach obserwacji, co sprawia, że ich inerpreacja jes dużo ławiejsza, niż miało o miejsce w przypadku analizy indeksu DJIA W związku z powyższym, w analizie spekralnej WIG-u, oprócz periodogramu nie uwzględniono innych esymaorów spekrum mocy W związku z niesacjonarnością szeregu czasowego x, odpowiadający mu periodogram o pseudo-spekrum mocy Rysunek 33 przedsawia periodogram szeregu czasowego x Z uwagi na wysępowanie rendu w szeregu x, najwyższe warości jego periodogramu są osiągane dla częsoliwości bliskich zeru Rysunek 33 Periodogram WIG x Rozważmy nasępnie periodogramy składowych cyklicznych indeksu WIG Dodajmy, że wariancja składowej cyklicznej nie jes powiązana z pasmem niskich częsoliwości Rysunek 34 przedsawia kolejno periodogramy składowych, S3, S3 oraz c Rysunek 34 Periodogramy składowych cyklicznych WIG,6,5,4,3,1 S

12 ,6 +S3,6 c,5,5,4,4,3,3,1,1 Jako pierwszy rozważmy periodogram składowej częsoliwości koniunkuralnych, f 1 96,1 18 W paśmie znormalizowanych, wysępuje jeden wyraźny pik dla częsoliwości f 3, 256, kórej odpowiada okres T miesięcy (3,25 roku) Oznaczmy en cykl jako cykl pierwszy Cykl en ma znaczący wpływ na kszałowanie szeregu czasowego x w paśmie wahań koniunkuralnych Isnieje również dużo mniej wyraźny piki dla częsoliwości f 5, 427, kórej odpowiada okres T , 4 miesiąca (1,95 roku) Jes o cykl drugi Analogiczne wnioski płyną z analizy periodogramu sumy składowych i S3, a ponado periodogram en wskazuje również na rzeci cykl przypadający dla częsoliwości f 7, 598, o okresie T , 71 miesiąca (1,39 roku) Jeżeli chodzi o periodogram składowej c o ma on zbliżony przebieg do periodogramu składowej S3 Analiza periodogramu składowej c prowadzi do podobnych wniosków jak w przypadku składowej i S3 Jednakże periodogram składowej c wskazuje ylko na dwa cykle w paśmie częsoliwości koniunkuralnych Pierwszy pik przypada dla częsoliwości f 4, 242, kórej odpowiada cykl o okresie T , 25 miesiąca (3,44 roku), naomias drugi dla częsoliwości f 1, 66, kórej odpowiada cykl o okresie T , 5 miesiąca (1,38 roku) Cykl przypadający dla częsoliwości f 4 o odpowiednik cyklu pierwszego, naomias cykl przypadający dla częsoliwości f 1 o odpowiednik cyklu rzeciego Jeżeli chodzi o periodogram składowej S3, o wskazuje on na isnienie czerech dominujących cykli o charakerze sezonowym i losowym Najwyższy pik przypada dla częsoliwości f 1, 855, kórej odpowiada okres T , 7 miesiąca (,97 roku) Oznaczmy en cykl jako cykl czwary Cykl piąy przypada dla częsoliwości f 13, 1111, o okresie T , miesięcy (,75 roku), cykl szósy dla częsoliwości f 16, 1368, o kresie T , 31 miesiąca (,61 roku) naomias cykl siódmy dla częsoliwości f 2, 179, o okresie T ,85 miesiąca (,49 roku) Jeżeli chodzi o znaczenie zidenyfikowanych cykli, o należy podkreślić, iż wraz ze wzrosem długości cyklu, rośnie jego wpływ na kszałowanie WIG-u Tabela 32 sanowi podsumowanie przeprowadzonej analizy i przedsawia okresy siedmiu cykli, kóre zosały zidenyfikowane jako cykle mające największy wpływ na kszałowanie WIG-u Każdy okres zosał przypisany do filra Baxer-Kinga lub filra Hodricka-Prescoa, w zależności od ego, kóry z filrów umożliwił idenyfikację cyklu o ym okresie Cykle I III mają charaker wahań koniunkuralnych, naomias cykle IV VII są efekem wahań o charakerze sezonowym i losowym Należy jednak podkreślić, że zgodnie z przyjęą definicją wahań koniunkuralnych, okres cyklu III (zarówno dla filra Baxer-Kinga i filra Hodricka-Prescoa)

13 leży nieco poniżej dolnej granicy okresu wahań o charakerze koniunkuralnym W przypadku filra Hodricka-Prescoa nie zidenyfikowano cyklu II Tabela 32 Dominujące cykle WIG cykl okres (w laach) filr Baxer-Kinga okres (w laach filr Hodricka-Prescoa I 3,25 3,44 II 1,95 nie zidenyfikowano III 1,39 1,38 IV,97 - V,75 - VI,61 - VII,49 - Cykle I VII powinny być rakowane jako wahania mające najwyższe znaczenie wśród wszyskich możliwych cykli zawarych w analizowanym szeregu czasowym Generalnie możemy swierdzić, że im dłuższy okres danego cyklu, ym większe jes jego znaczenie w opisywaniu WIG-u Jednakże w przeciwieńswie do indeksu DJIA, rend WIG-u nie wywiera ak ogromnego wpływu na jego przebieg Jes o związane z o wiele krószą próbą obserwacji WIG-u w porównaniu z indeksem DJIA Relacje długookresowe nie są w przypadku WIG-u ak wyraźnie widoczne jak ma o miejsce w przypadku indeksu DJIA, ponieważ z uwagi na króką próbę obserwacji WIG-u, długookresowego rendu nie da się obecnie sklasyfikować jako składowej dominującej Powierdza o abela 33, kóra przedsawia dekompozycję wariancji indeksu DJIA na rzy składowe, kóre kolejno odpowiadają długookresowemu rendowi, wahaniom o charakerze koniunkuralnym oraz wahaniom sezonowym i losowym Prezenowane warości zosały odczyane na podsawie periodogramu szeregu czasowego x Tabela 33 Dekompozycja wariancji WIG okres (w miesiącach) wariancja udział T 2, - wszyskie cykle 1,79 1% T 96 - długookresowy rend,424 39,25% 18 T 96 - wahania koniunkuralne, ,14% T 18 - wahania sezonowe i losowe 77 6,6% 4 Podsumowanie Przeprowadzona analiza wskazuje przede wszyskim na złożony charaker wahań cyklicznych wyodrębnionych na podsawie indeksu DJIA oraz na bardzo prosy schema, kóry reprezenuje indeks WIG Nauralnie indeks DJIA obejmuje okres ponad su la, naomias WIG zaledwie czernasu la, co sprawia, iż związki, kóre zosały zidenyfikowane w przypadku WIG-u mają o wiele prosszą srukurę niż ma o miejsce w przypadku indeksu DJIA Cykl I o okresie około 9 la, kóry zosał zidenyfikowany w przypadku indeksu DJIA, może być rakowany w przybliżeniu jako przykład cyklu Juglara, kórego średnia długość wynosi właśnie około 9 la Jednakże należy pamięać, iż w lieraurze nie ma jednoznacznego określenia długości cyklu Juglara Długość a waha się od 6 do 1 la, jednakże można również spokać się z przedziałami od 7 do 1 la, jak również od 5 do 7 la Ponado należy zaznaczyć, iż w przypadku analizy

14 periodogramu składowej cyklicznej indeksu DJIA, kóra zosała uzyskana za pomocą filra HP, swierdzono, że długość cyklu I wynosi niemal 1 la, co wskazywałoby na pokrywanie się ego okresu z górną granicą długości cyklu Juglara Z kolei cykl II, kórego okres wynosi około 5,5 roku może być rakowany jako przykład cyklu, kórego okres pokrywa się z dolną granicą długości cyklu Juglara W związku z powyższym należy zaznaczyć, iż nie można jednoznacznie swierdzić, iż cykl I i II w przypadku indeksu DJIA winny być rakowane jako cykle Juglara Niemniej jednak są o cykle średniookresowe obrazujące wahania o naurze koniunkuralnej Na szczególną uwagę zasługuje cykl o okresie zbliżonym do 3,5 roku, kóry zidenyfikowano jako isony zarówno w przypadku indeksu DJIA (cykl III) i WIG (cykl I) Cykl en w przypadku indeksu DJIA charakeryzuje się wyjąkowo wysokim poziomem mocy, kóry jes porównywalny z mocą cykli o dłuższych okresach pozosających w paśmie wahań koniunkuralnych Cykl o okresie około 3,5 roku może być rakowany jako przykład cyklu Kichina, kórego okres waha się od 4 do 53 miesięcy ze średnią długością około 4 la Ponado cykl en, może w przybliżeniu sanowić zw 4-leni cykl prezydencki, kóry według analizy echnicznej wpływa na zachowanie rynku kapiałowego Cykl en jes nazywany prezydenckim, ponieważ zbiega się z wyborami na prezydena Sanów Zjednoczonych (por Murphy J J (1999), s 326) Należy zaznaczyć, że w przypadku indeksu DJIA możliwe jes, jednoznaczne swierdzenie, iż długookresowy rend sochasyczny jes główną deerminaną obserwowanego przebiegu ego indeksu Przypomnijmy, że wahania długookresowe sanowią w ym przypadku ponad 94% zmienności wyrażonej za pomocą wariancji szeregu czasowego W przypadku WIGu, największy udział w wariancji przypada dla wahań o charakerze koniunkuralnym, ponad 54% Należy podkreślić, iż wynik en jednoznacznie powierdza fak, iż relacje długookresowe WIG-u, nie są ak wyraźnie zarysowane jak w przypadku indeksu DJIA Wydaje się, że wraz z dalszym rozwojem Giełdy Papierów Warościowych w Warszawie układ wychwyconych zależności dla WIG-u, winien zmieniać się w kierunku wzrosu udziału wahań długookresowych przy równoczesnym spadku udziału wahań cyklicznych w ogólnej zmienności WIG-u, dążąc do schemau widocznego w przypadku indeksu DJIA Należy podkreślić, iż większość pozosałych cykli o okresach krószych niż 3,5 roku, zidenyfikowanych na podsawie indeksu DJIA, znajduje również swoje odpowiedniki wśród cykli zidenyfikowanych na podsawie WIG-u W związku z powyższym niewąpliwie ciekawym zagadnieniem w przypadku WIG-u pozosaje analiza cykli, kóre na chwilę obecną wysąpiły jednokronie bądź wcale Na szczególną uwagę zasługują u cykle o okresach około 5,5 roku oraz 9 1 la, kóre zosały uznane za wyjąkowo isone w przypadku indeksu DJIA i być może w przyszłości również saną się isone w przypadku WIG-u, kóry reprezenuje dużo młodszy rynek kapiałowy aniżeli nowojorski DJIA 5 Bibliografia 1 Baxer M, King R G (1995), Measuring Business Cycles: Approximae Band-Pass Filers for Economic Time Series, Naional Bureau of Economic Research, Working Paper No 522, srona inerneowa hp://wwwnberorg/papers/w522pdf z dnia Benai L (21), Band-pass filering, coinegraion, and business cycle analysis, Bank of England, Working Paper No 142, srona inerneowa hp://wwwbankofenglandcouk/ wp/wp142pdf z dnia Burns A F, Michell W C (1946), Measuring Business Cycles, NY: NBER, New York 4 Hamilon J D (1994), Time Series Analysis, Princeon Universiy Press, Princeon 5 Hodrick R J, Presco E C (1997), Poswar US Business Cycles: An Empirical Invesigaion, Journal of Money Credi and Banking, Vol 29, No 1, s King R, Plosser C, Sock J, Wason M (1987), Sochasic Trends and Economic Flucuaions, Naional Bureau of Economic Research, Working Paper No 2229, srona inerneowa hp://wwwnberorg/papers/w2229pdf z dnia Kydland F, Presco E C (199), Business Cycles: Real Facs and Moneary Myh, Federal Reserve Bank of Minneapolis Quarerly Review, Vol 14, Spring, s

15 8 Maravall A, del Rio A (21), Time Aggregaion and he Hodrick-Presco Filer, Documeno de Trabajo n o 18, Servicio de Esudios, Banco de España, srona inerneowa hp://wwwbdees/informes/be/docs/d18epdf z dnia Murphy J J (1999), Analiza echniczna rynków finansowych, WIG-Press, Warszawa 1 Nelson C R, Plosser C I (1982), Trends and Random Walks in Macroeconomic Time Series; Some Evidence and Implicaions, Journal of Moneary Economics, Vol 1, s Skrzypczyński P, Borowski K (23), Teoria impulsu i jej empiryczne powierdzenie przy użyciu meod filracji szeregów czasowych, Sudia i Prace Kolegium Zarządzania i Finansów, Zeszy Naukowy 38, Wydawnicwo SGH, Warszawa, s Sock J M, Wason M W (1998), Business Cycle Flucuaions in US Macroeconomic Time Series, Naional Bureau of Economic Research, Working Paper No 6528, srona inerneowa hp://wwwnberorg/papers/w6528pdf z dnia Syczewska E M (1999), Analiza relacji długookresowych: esymacja i weryfikacja, Monografie i Opracowania 462, Wydawnicwo SGH, Warszawa

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie.

Jacek Kwiatkowski Magdalena Osińska. Procesy zawierające stochastyczne pierwiastki jednostkowe identyfikacja i zastosowanie. DYNAMICZNE MODELE EKONOMETRYCZNE Jacek Kwiakowski Magdalena Osińska Uniwersye Mikołaja Kopernika Procesy zawierające sochasyczne pierwiaski jednoskowe idenyfikacja i zasosowanie.. Wsęp Większość lieraury

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

Identyfikacja wahań koniunkturalnych gospodarki polskiej

Identyfikacja wahań koniunkturalnych gospodarki polskiej Rozdział i Idenyfikacja wahań koniunkuralnych gospodarki polskiej dr Rafał Kasperowicz Uniwersye Ekonomiczny w Poznaniu Kaedra Mikroekonomii Sreszczenie Celem niniejszego opracowania jes idenyfikacja wahao

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODEE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Joanna Małgorzaa andmesser Szkoła Główna

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Wahania aktywności gospodarczej w Polsce i strefie euro *

Wahania aktywności gospodarczej w Polsce i strefie euro * Wahania akywności gospodarczej w Polsce i srefie euro * Paweł Skrzypczyński ** Sierpień, 2008 Sreszczenie Zbliżone kszałowanie się cykli koniunkuralnych w krajach worzących unię waluową jes jednym z ważniejszych

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 005 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015

Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach ISSN 2083-8611 Nr 219 2015 Sudia Ekonomiczne. Zeszyy Naukowe Uniwersyeu Ekonomicznego w Kaowicach ISSN 2083-86 Nr 29 205 Alicja Ganczarek-Gamro Uniwersye Ekonomiczny w Kaowicach Wydział Informayki i Komunikacji Kaedra Demografii

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG

ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYCH INDEKSÓW GIEŁDOWYCH: WIG, WIG20, MIDWIG I TECHWIG Doroa Wikowska, Anna Gasek Kaedra Ekonomerii i Informayki SGGW dwikowska@mors.sggw.waw.pl ZASTOSOWANIE TESTU PERRONA DO BADANIA PUNKTÓW ZWROTNYC INDEKSÓW GIEŁDOWYC: WIG, WIG2, MIDWIG I TECWIG Sreszczenie:

Bardziej szczegółowo

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE

POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Anea Kłodzińska, Poliechnika Koszalińska, Zakład Ekonomerii POWIĄZANIA POMIĘDZY KRÓTKOOKRESOWYMI I DŁUGOOKRESOWYMI STOPAMI PROCENTOWYMI W POLSCE Sopy procenowe w analizach ekonomicznych Sopy procenowe

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Maeriał dla sudenów Niesacjonarne zmienne czasowe własności i esowanie (sudium przypadku) Nazwa przedmiou: ekonomeria finansowa I (22204), analiza szeregów czasowych i prognozowanie (13201); Kierunek sudiów:

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA

Efekty agregacji czasowej szeregów finansowych a modele klasy Sign RCA Joanna Górka * Efeky agregacji czasowej szeregów finansowych a modele klasy Sign RCA Wsęp Wprowadzenie losowego parameru do modelu auoregresyjnego zwiększa możliwości aplikacyjne ego modelu, gdyż pozwala

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Pior Fiszeder Uniwersye Mikołaja Kopernika

Bardziej szczegółowo

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce

Nie(efektywność) informacyjna giełdowego rynku kontraktów terminowych w Polsce Zeszyy Naukowe Uniwersyeu Szczecińskiego nr 862 Finanse, Rynki Finansowe, Ubezpieczenia nr 75 (2015) DOI: 10.18276/frfu.2015.75-16 s. 193 204 Nie(efekywność) informacyjna giełdowego rynku konraków erminowych

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

Analiza szeregów czasowych w Gretlu (zajęcia 8)

Analiza szeregów czasowych w Gretlu (zajęcia 8) Analiza szeregów czasowych w Grelu (zajęcia 8) Grel jes dość dobrym narzędziem do analizy szeregów czasowych. Już w samej podsawie Grela znajdziemy sporo zaimplemenowanych echnik służących do obróbki danych

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Uniwersye Mikołaja Kopernika Zależność

Bardziej szczegółowo

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH

TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Mariusz Doszyń TESTOWANIE EGZOGENICZNOŚCI ZMIENNYCH W MODELACH EKONOMETRYCZNYCH Od pewnego czasu w lieraurze ekonomerycznej pojawiają się

Bardziej szczegółowo

Badanie funktorów logicznych TTL - ćwiczenie 1

Badanie funktorów logicznych TTL - ćwiczenie 1 adanie funkorów logicznych TTL - ćwiczenie 1 1. Cel ćwiczenia Zapoznanie się z podsawowymi srukurami funkorów logicznych realizowanych w echnice TTL (Transisor Transisor Logic), ich podsawowymi paramerami

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones

Komputerowa analiza przepływów turbulentnych i indeksu Dow Jones Kompuerowa analiza przepływów urbulennych i indeksu Dow Jones Rafał Ogrodowczyk Pańswowa Wyższa Szkoła Zawodowa w Chełmie Wiesław A. Kamiński Uniwersye Marii Curie-Skłodowskie w Lublinie W badaniach porównano

Bardziej szczegółowo

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE

EFEKT DŹWIGNI NA GPW W WARSZAWIE WPROWADZENIE Paweł Kobus, Rober Pierzykowski Kaedra Ekonomerii i Informayki SGGW e-mail: pawel.kobus@saysyka.info EFEKT DŹWIGNI NA GPW W WARSZAWIE Sreszczenie: Do modelowania asymerycznego wpływu dobrych i złych informacji

Bardziej szczegółowo

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A.

Transakcje insiderów a ceny akcji spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie S.A. Agaa Srzelczyk Transakcje insiderów a ceny akcji spółek noowanych na Giełdzie Papierów Warościowych w Warszawie S.A. Wsęp Inwesorzy oczekują od każdej noowanej na Giełdzie Papierów Warościowych spółki

Bardziej szczegółowo

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY

PREDYKCJA KURSU EURO/DOLAR Z WYKORZYSTANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WYBRANE MODELE EKONOMETRYCZNE I PERCEPTRON WIELOWARSTWOWY B A D A N I A O P E R A C J N E I D E C Z J E Nr 2004 Aleksandra MAUSZEWSKA Doroa WIKOWSKA PREDKCJA KURSU EURO/DOLAR Z WKORZSANIEM PROGNOZ INDEKSU GIEŁDOWEGO: WBRANE MODELE EKONOMERCZNE I PERCEPRON WIELOWARSWOW

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 MAŁGORZATA BOŁTUĆ Uniwersye Ekonomiczny we Wrocławiu ZALEŻNOŚĆ POMIĘDZY RYNKIEM SWAPÓW KREDYTOWYCH

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW

MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu MODELOWANIE WŁASNOŚCI SZEREGÓW STÓP ZWROTU SKOŚNOŚĆ ROZKŁADÓW Wprowadzenie Współczesne zarządzanie ryzykiem

Bardziej szczegółowo

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ

ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ Ćwiczenie 8 ANALIZA HARMONICZNA RZECZYWISTYCH PRZEBIEGÓW DRGAŃ. Cel ćwiczenia Analiza złożonego przebiegu drgań maszyny i wyznaczenie częsoliwości składowych harmonicznych ego przebiegu.. Wprowadzenie

Bardziej szczegółowo

MATERIAŁY I STUDIA. Ze s z y t n r Analiza synchronizacji cykli koniunkturalnych w strefie euro. Paweł Skrzypczyński

MATERIAŁY I STUDIA. Ze s z y t n r Analiza synchronizacji cykli koniunkturalnych w strefie euro. Paweł Skrzypczyński MATERIAŁY I STUDIA Ze s z y n r 1 0 Analiza synchronizaci cykli koniunkuralnych w srefie euro Paweł Skrzypczyński Warszawa, wrzesień 006 r. Paweł Skrzypczyński Deparamen Analiz Makroekonomicznych i Srukuralnych

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009 A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 389 TORUŃ 2009 Uniwersye Mikołaja Kopernika w Toruniu Kaedra Ekonomerii i Saysyki Jarosław

Bardziej szczegółowo

Metody analizy i prognozowania szeregów czasowych

Metody analizy i prognozowania szeregów czasowych Meody analizy i prognozowania szeregów czasowych Wsęp 1. Modele szeregów czasowych 2. Modele ARMA i procedura Boxa-Jenkinsa 3. Modele rendów deerminisycznych i sochasycznych 4. Meody dekompozycji szeregów

Bardziej szczegółowo

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN

ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 0, sr. 389 398 ŹRÓDŁA FLUKTUACJI REALNEGO EFEKTYWNEGO KURSU EUR/ PLN Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków Gospodarczych

Bardziej szczegółowo

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu

OeconomiA copernicana. Małgorzata Madrak-Grochowska, Mirosława Żurek Uniwersytet Mikołaja Kopernika w Toruniu OeconomiA copernicana 2011 Nr 4 Małgorzaa Madrak-Grochowska, Mirosława Żurek Uniwersye Mikołaja Kopernika w Toruniu TESTOWANIE PRZYCZYNOWOŚCI W WARIANCJI MIĘDZY WYBRANYMI INDEKSAMI RYNKÓW AKCJI NA ŚWIECIE

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH

Wyzwania praktyczne w modelowaniu wielowymiarowych procesów GARCH Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu Wyzwania prakyczne w modelowaniu wielowymiarowych procesów GARCH Wsęp Od zaproponowania przez Engla w 1982 roku jednowymiarowego modelu klasy ARCH, modele

Bardziej szczegółowo

1.1. Bezpośrednie transformowanie napięć przemiennych

1.1. Bezpośrednie transformowanie napięć przemiennych Rozdział Wprowadzenie.. Bezpośrednie ransformowanie napięć przemiennych Bezpośrednie ransformowanie napięć przemiennych jes formą zmiany paramerów wielkości fizycznych charakeryzujących energię elekryczną

Bardziej szczegółowo

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ

ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Anna Janiga-Ćmiel Uniwersye Ekonomiczny w Kaowicach Wydział Zarządzania Kaedra Maemayki anna.janiga-cmiel@ue.kaowice.pl ZJAWISKA SZOKOWE W ROZWOJU GOSPODARCZYM WYBRANYCH KRAJÓW UNII EUROPEJSKIEJ Sreszczenie:

Bardziej szczegółowo

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ

MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Agaa MESJASZ-LECH * MODELE AUTOREGRESYJNE JAKO INSTRUMENT ZARZĄDZANIA ZAPASAMI NA PRZYKŁADZIE ELEKTROWNI CIEPLNEJ Sreszczenie W arykule przedsawiono wyniki analizy ekonomerycznej miesięcznych warości w

Bardziej szczegółowo

Estymacja stopy NAIRU dla Polski *

Estymacja stopy NAIRU dla Polski * Michał Owerczuk * Pior Śpiewanowski Esymacja sopy NAIRU dla Polski * * Sudenci, Szkoła Główna Handlowa, Sudenckie Koło Naukowe Ekonomii Teoreycznej przy kaedrze Ekonomii I. Auorzy będą bardzo wdzięczni

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

Modelowanie i analiza szeregów czasowych

Modelowanie i analiza szeregów czasowych Modelowanie i analiza szeregów czasowych Małgorzaa Doman Plan zajęć Część. Modelowanie szeregów jednowymiarowych.. Szeregi jednowymiarowe własności i diagnozowanie. Modele auoregresji i średniej ruchomej

Bardziej szczegółowo

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP

EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE WSTĘP Joanna Landmesser Kaedra Ekonomerii i Informayki SGGW e-mail: jgwiazda@mors.sggw.waw.pl EFEKT DNIA TYGODNIA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE Sreszczenie: W pracy zbadano wysępowanie efeku

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR

Krzysztof Piontek MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Inwesycje finansowe i ubezpieczenia endencje świaowe a rynek polski Krzyszof Pionek Akademia Ekonomiczna we Wrocławiu MODELOWANIE ZMIENNOŚCI STÓP PROCENTOWYCH NA PRZYKŁADZIE STOPY WIBOR Wsęp Konieczność

Bardziej szczegółowo

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego

Stała potencjalnego wzrostu w rachunku kapitału ludzkiego 252 Dr Wojciech Kozioł Kaedra Rachunkowości Uniwersye Ekonomiczny w Krakowie Sała poencjalnego wzrosu w rachunku kapiału ludzkiego WSTĘP Prowadzone do ej pory badania naukowe wskazują, że poencjał kapiału

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

DYNAMICZNE MODELE EKONOMETRYCZNE

DYNAMICZNE MODELE EKONOMETRYCZNE DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 27 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaa Kopernika w Toruniu Małgorzaa Borzyszkowska Uniwersye Gdański

Bardziej szczegółowo

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz

Porównanie jakości nieliniowych modeli ekonometrycznych na podstawie testów trafności prognoz 233 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Porównanie jakości nieliniowych modeli ekonomerycznych na podsawie esów rafności prognoz Sreszczenie.

Bardziej szczegółowo

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG

dr inż. MARCIN MAŁACHOWSKI Instytut Technik Innowacyjnych EMAG dr inż. MARCIN MAŁACHOWSKI Insyu Technik Innowacyjnych EMAG Wykorzysanie opycznej meody pomiaru sężenia pyłu do wspomagania oceny paramerów wpływających na możliwość zaisnienia wybuchu osiadłego pyłu węglowego

Bardziej szczegółowo

METODY STATYSTYCZNE W FINANSACH

METODY STATYSTYCZNE W FINANSACH METODY STATYSTYCZNE W FINANSACH Krzyszof Jajuga Akademia Ekonomiczna we Wrocławiu, Kaedra Inwesycji Finansowych i Ubezpieczeń Wprowadzenie W osanich kilkunasu laach na świecie obserwuje się dynamiczny

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro

Struktura sektorowa finansowania wydatków na B+R w krajach strefy euro Rozdział i. Srukura sekorowa finansowania wydaków na B+R w krajach srefy euro Rober W. Włodarczyk 1 Sreszczenie W arykule podjęo próbę oceny srukury sekorowej (sekor przedsiębiorsw, sekor rządowy, sekor

Bardziej szczegółowo

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU

STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU KAPITAŁOWEGO WPROWADZENIE METODOLOGIA TESTOWANIA MODELU GraŜyna Trzpio, Dominik KręŜołek Kaedra Saysyki Akademii Ekonomicznej w Kaowicach e-mail rzpio@sulu.ae.kaowice.pl, dominik_arkano@wp.pl STATYSTYCZNA WERYFIKACJA MODELU CAPM NA PRZYKŁADZIE POLSKIEGO RYNKU

Bardziej szczegółowo

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO

MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO KIERZKOWSKI Arur 1 Transpor loniczy, szeregi czasowe, eksploaacja, modelowanie MODEL CZASU OBSŁUGI NAZIEMNEJ STATKU POWIETRZNEGO W referacie przedsawiono probabilisyczny model czasu obsługi naziemnej saku

Bardziej szczegółowo

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR

OPTYMALIZACJA PORTFELA INWESTYCYJNEGO ZE WZGLĘDU NA MINIMALNY POZIOM TOLERANCJI DLA USTALONEGO VaR Daniel Iskra Uniwersye Ekonomiczny w Kaowicach OPTYMALIZACJA PORTFELA IWESTYCYJEGO ZE WZGLĘDU A MIIMALY POZIOM TOLERACJI DLA USTALOEGO VaR Wprowadzenie W osanich laach bardzo popularną miarą ryzyka sała

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii

Alicja Ganczarek Akademia Ekonomiczna w Katowicach. Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 007 w Toruniu Kaedra Ekonomerii i Saysyki, Uniwersye Mikołaja Kopernika w Toruniu Akademia Ekonomiczna w Kaowicach Analiza

Bardziej szczegółowo

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK

Zastosowanie technologii SDF do lokalizowania źródeł emisji BPSK i QPSK Jan M. KELNER, Cezary ZIÓŁKOWSKI Wojskowa Akademia Techniczna, Wydział Elekroniki, Insyu Telekomunikacji doi:1.15199/48.15.3.14 Zasosowanie echnologii SDF do lokalizowania źródeł emisji BPSK i QPSK Sreszczenie.

Bardziej szczegółowo

Ćwiczenie E-5 UKŁADY PROSTUJĄCE

Ćwiczenie E-5 UKŁADY PROSTUJĄCE KŁADY PROSJĄCE I. Cel ćwiczenia: pomiar podsawowych paramerów prosownika jedno- i dwupołówkowego oraz najprosszych filrów. II. Przyrządy: płyka monaŝowa, wolomierz magneoelekryczny, wolomierz elekrodynamiczny

Bardziej szczegółowo

Stały czy płynny? Model PVEC realnego kursu walutowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski

Stały czy płynny? Model PVEC realnego kursu walutowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski Maeriały i Sudia nr 312 Sały czy płynny? Model PVEC realnego kursu waluowego dla krajów Europy Środkowo-Wschodniej implikacje dla Polski Pior Kębłowski Maeriały i Sudia nr 312 Sały czy płynny? Model PVEC

Bardziej szczegółowo

Management Systems in Production Engineering No 4(20), 2015

Management Systems in Production Engineering No 4(20), 2015 EKONOMICZNE ASPEKTY PRZYGOTOWANIA PRODUKCJI NOWEGO WYROBU Janusz WÓJCIK Fabryka Druu Gliwice Sp. z o.o. Jolana BIJAŃSKA, Krzyszof WODARSKI Poliechnika Śląska Sreszczenie: Realizacja prac z zakresu przygoowania

Bardziej szczegółowo

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej:

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej: Zasosowanie echniki Heikin Ashi na rynku kapiałowym Krzyszof Borowski Opublikowany w: Sudia i Prace Kolegium Zarządzania i Finansów, Zeszy Naukowy 66, Warszawa 26, sr. 9-99. Po raz pierwszy japońskie echniki

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH

ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH Pior KISIELEWSKI, Łukasz SOBOTA ZASTOSOWANIE TEORII MASOWEJ OBSŁUGI DO MODELOWANIA SYSTEMÓW TRANSPORTOWYCH W arykule przedsawiono zasosowanie eorii masowej obsługi do analizy i modelowania wybranych sysemów

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR

LABORATORIUM PODSTAWY ELEKTRONIKI Badanie Bramki X-OR LORTORIUM PODSTWY ELEKTRONIKI adanie ramki X-OR 1.1 Wsęp eoreyczny. ramka XOR ramka a realizuje funkcję logiczną zwaną po angielsku EXLUSIVE-OR (WYŁĄZNIE LU). Polska nazwa brzmi LO. Funkcję EX-OR zapisuje

Bardziej szczegółowo

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU

SZACOWANIE MODELU RYNKOWEGO CYKLU ŻYCIA PRODUKTU B A D A N I A O P E R A C J N E I D E C Z J E Nr 2 2006 Bogusław GUZIK* SZACOWANIE MODELU RNKOWEGO CKLU ŻCIA PRODUKTU Przedsawiono zasadnicze podejścia do saysycznego szacowania modelu rynkowego cyklu

Bardziej szczegółowo

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH

ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/1, 2012, sr. 224 233 ANALIZA SZEREGU CZASOWEGO CEN ŻYWCA BROJLERÓW W LATACH 1991-2011 Kaarzyna Unik-Banaś Kaedra Zarządzania i Markeingu w Agrobiznesie

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej:

hact , 4 haot technice świec japońskich. 4 Na podstawie strony internetowej: Zasosowanie echniki Heikin Ashi na rynku kapiałowym Krzyszof Borowski Opublikowany w: Sudia i Prace Kolegium Zarządzania i Finansów, Zeszy Naukowy 66, Warszawa 26, sr. 9-99. Po raz pierwszy japońskie echniki

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR

Heteroskedastyczność szeregu stóp zwrotu a koncepcja pomiaru ryzyka metodą VaR Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Heeroskedasyczność szeregu sóp zwrou a koncepcja pomiaru ryzyka meodą VaR Wsęp Spośród wielu rodzajów ryzyka

Bardziej szczegółowo

LABORATORIUM Z ELEKTRONIKI

LABORATORIUM Z ELEKTRONIKI LABORAORIM Z ELEKRONIKI PROSOWNIKI Józef Boksa WA 01 1. PROSOWANIKI...3 1.1. CEL ĆWICZENIA...3 1.. WPROWADZENIE...3 1..1. Prosowanie...3 1.3. PROSOWNIKI NAPIĘCIA...3 1.4. SCHEMAY BLOKOWE KŁADÓW POMIAROWYCH...5

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

ψ przedstawia zależność

ψ przedstawia zależność Ruch falowy 4-4 Ruch falowy Ruch falowy polega na rozchodzeniu się zaburzenia (odkszałcenia) w ośrodku sprężysym Wielkość zaburzenia jes, podobnie jak w przypadku drgań, funkcją czasu () Zaburzenie rozchodzi

Bardziej szczegółowo

WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS

WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS MODELOWANIE INśYNIERSKIE ISSN 1896-771X 37, s. 11-18, Gliwice 2009 WPŁYW RUCHU DROGOWEGO NA POZIOM ZANIECZYSZCZEŃ POWIETRZA ORAZ RYZYKO CHORÓB UKŁADU ODDECHOWEGO. CZ. I OPIS ZALEśNOŚCI POZIOMÓW ZANIECZYSZCZEŃ

Bardziej szczegółowo

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof.

Ruch płaski. Bryła w ruchu płaskim. (płaszczyzna kierująca) Punkty bryły o jednakowych prędkościach i przyspieszeniach. Prof. Ruch płaski Ruchem płaskim nazywamy ruch, podczas kórego wszyskie punky ciała poruszają się w płaszczyznach równoległych do pewnej nieruchomej płaszczyzny, zwanej płaszczyzną kierującą. Punky bryły o jednakowych

Bardziej szczegółowo

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarstwa Wiejskiego w Warszawie ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 013 ANNA GÓRSKA MONIKA KRAWIEC Szkoła Główna Gospodarswa Wiejskiego w Warszawie BADANIE EFEKTYWNOŚCI INFORMACYJNEJ

Bardziej szczegółowo

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X

Macierz X ma wymiary: 27 wierszy (liczba obserwacji) x 6 kolumn (kolumna jednostkowa i 5 kolumn ze zmiennymi objaśniającymi) X ROZWIĄZANIA ZADAO Zadanie EKONOMETRIA_dw_.xls Na podsawie danych zamieszczonych w arkuszu Zadanie. Podad posad analiyczną modelu ekonomerycznego wielkości produkcji w przemyśle od PO - liczby pracujących

Bardziej szczegółowo

MATERIAŁY I STUDIA. Zeszyt nr 258. Podatność polskich rynków finansowych na niestabilności wewnętrzne i zewnętrzne

MATERIAŁY I STUDIA. Zeszyt nr 258. Podatność polskich rynków finansowych na niestabilności wewnętrzne i zewnętrzne MATERIAŁY I STUDIA Zeszy nr 58 Podaność polskich rynków finansowych na niesabilności wewnęrzne i zewnęrzne Wojciech Bieńkowski, Bogna Gawrońska-Nowak, Wojciech Grabowski Warszawa, 0 r. Wojciech Bieńkowski

Bardziej szczegółowo

Analiza stopnia zbieŝności cyklu koniunkturalnego gospodarki polskiej ze strefą euro

Analiza stopnia zbieŝności cyklu koniunkturalnego gospodarki polskiej ze strefą euro Analiza sopnia zbieŝności cyklu koniunkuralnego gospodarki polskiej ze srefą euro Karolina Konopczak 24.09.2008 Analizy synchronizacji cyklicznej w ramach prac nad Raporem Analiza synchronizacji cyklicznej

Bardziej szczegółowo

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX

MODELOWANIE KURSÓW WALUTOWYCH NA PRZYKŁADZIE MODELI KURSÓW RÓWNOWAGI ORAZ ZMIENNOŚCI NA RYNKU FOREX Krzyszof Ćwikliński Uniwersye Ekonomiczny we Wrocławiu Wydział Zarządzania, Informayki i Finansów Kaedra Ekonomerii krzyszof.cwiklinski@ue.wroc.pl Daniel Papla Uniwersye Ekonomiczny we Wrocławiu Wydział

Bardziej szczegółowo

STOPIEŃ AGREGACJI PRZESTRZENNEJ A ZMIENNOŚĆ SZEREGÓW CZASOWYCH CEN SUROWCÓW ROLNYCH

STOPIEŃ AGREGACJI PRZESTRZENNEJ A ZMIENNOŚĆ SZEREGÓW CZASOWYCH CEN SUROWCÓW ROLNYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/, 011, sr. 180 190 STOPIEŃ AGREGACJI PRZESTRZENNEJ A ZMIENNOŚĆ SZEREGÓW CZASOWYCH CEN SUROWCÓW ROLNYCH Mariusz Hamulczuk Kaedra Ekonomiki Rolnicwa i Międzynarodowych

Bardziej szczegółowo

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII

MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII KRZYSZTOF JAJUGA Akademia Ekonomiczna we Wrocławiu MODELOWANIE STRUKTURY TERMINOWEJ STÓP PROCENTOWYCH WYZWANIE DLA EKONOMETRII. Modele makroekonomiczne a modele sóp procenowych wprowadzenie Nie do podważenia

Bardziej szczegółowo

Analiza metod oceny efektywności inwestycji rzeczowych**

Analiza metod oceny efektywności inwestycji rzeczowych** Ekonomia Menedżerska 2009, nr 6, s. 119 128 Marek Łukasz Michalski* Analiza meod oceny efekywności inwesycji rzeczowych** 1. Wsęp Podsawowymi celami przedsiębiorswa w długim okresie jes rozwój i osiąganie

Bardziej szczegółowo

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy

Czy prowadzona polityka pieniężna jest skuteczna? Jaki ma wpływ na procesy Dobromił Serwa Reakcje rynków finansowych na szoki w poliyce pieniężnej.. Wsęp Czy prowadzona poliyka pieniężna jes skueczna? Jaki ma wpływ na procesy ekonomiczne zachodzące w kraju? Czy jes ona równie

Bardziej szczegółowo

Analiza związku pomiędzy cenami i pieniądzem w gospodarce polskiej na podstawie modelu Π*

Analiza związku pomiędzy cenami i pieniądzem w gospodarce polskiej na podstawie modelu Π* Michał Brzoza-Brzezina, Jacek Kołowski 1 Analiza związku pomiędzy cenami i pieniądzem w gospodarce polskiej na podsawie modelu Π* W ramach przekszałconej do posaci przyrosowej wersji modelu P-sar, auorzy

Bardziej szczegółowo

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych

Magdalena Osińska, Marcin Fałdziński Uniwersytet Mikołaja Kopernika w Toruniu. Modele GARCH i SV z zastosowaniem teorii wartości ekstremalnych DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarim Nakowe 4 6 września 2007 w Torni Kaedra Ekonomerii i Saysyki Uniwersye Mikołaja Kopernika w Torni Magdalena Osińska Marcin Fałdziński Uniwersye

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

REGULAMIN FUNDUSZU ROZLICZENIOWEGO

REGULAMIN FUNDUSZU ROZLICZENIOWEGO REGULAMIN FUNDUSZU ROZLICZENIOEGO przyjęy uchwałą nr 10/60/98 Rady Nadzorczej Krajowego Depozyu Papierów arościowych S.A. z dnia 28 września 1998 r., zawierdzony decyzją Komisji Papierów arościowych i

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo