Zad. 6 Na ile części dzieli płaszczyznę 30 prostych, z których Ŝadne dwie nie są równoległe i Ŝadne 3 nie przechodzą przez ten sam punkt.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zad. 6 Na ile części dzieli płaszczyznę 30 prostych, z których Ŝadne dwie nie są równoległe i Ŝadne 3 nie przechodzą przez ten sam punkt."

Transkrypt

1 Zespół Szkół Ekonomicznych im. M. Kopernika w Olsztynie Zadania z poprzednich edycji Konkursu Matematyka w zarządzaniu dla uczniów szkół gimnazjalnych 2010 Czas pisania: 90 minut Uwaga: Rozwiązania powinny zawierać precyzyjny i wyczerpujący komentarz oraz odpowiedzi; w przypadku równej liczby punktów o zwycięstwie decydować będzie jakość komentarza. ZAD. 1 [4 punkty] W pewnej firmie płace 25% pracowników wzrosły o 40 zł. O ile złotych wzrosła średnia płaca w tej firmie? ZAD. 2 [10 punktów] Z arkusza papieru w kształcie koła o promieniu R długości 0 cm zrobiono trzy jednakowe pojemniki w kształcie stoŝków na popcorn. Ile naleŝy zapłacić za napełnienie ich popcornem po brzegi, jeŝeli porcja popcornu o objętości 1 kosztuje zł? Do obliczeń przyjmij π, 14, 2 1, 41i wynik zaokrąglij do pełnych złotych. ZAD. [8 punktów] Paweł mówi do Piotra: mam razy więcej lat niŝ ty miałeś wtedy, kiedy ja miałem tyle lat, ile ty masz teraz. Kiedy osiągniesz mój wiek, będziemy łącznie mieć 112 lat. Ile lat ma Piotr, a ile Paweł? ZAD. 4 [10 punktów] Krzysiek i Michał zobaczyli w sklepie grę komputerową, której cena wyraŝała się liczbą pierwszą. Krzysiek nie mógł jej kupić, bo zabrakło mu 74 zł, a Michałowi zabrakło 9 zł. Nie mogli jej takŝe kupić za wspólne pieniądze. Ile pieniędzy miał kaŝdy z nich i ile kosztowała gra komputerowa? ZAD. 5 [9 punktów] Samochód przebył drogę s km z nieznaną prędkością x km/h. Jaka jest prędkość samochodu, jeŝeli zwiększenie prędkości o 2 km/h skróciłoby czas jazdy o pół godziny? [11 punktów] Pewna firma handlowa chce wybudować hurtownię, która ma zaopatrywać sklepy w czterech sąsiednich miejscowościach A, B, C, D. W którym miejscu naleŝy wybudować hurtownię H, aby suma odległości od hurtowni do tych czterech miejscowości była najmniejsza? (odpowiedź uzasadnij). dm

2 2008 Czas rozwiązywania 45 minut Uwaga: Wszystkie rozwiązania powinny być wyjaśnione Na brzegu jeziora mieszkało siedmiu rybaków. Zimą, gdy lód pokrył jezioro, rybacy, odwiedzając się nawzajem, wydeptali ścieŝki tak, Ŝe domy dowolnych dwóch rybaków były połączone ścieŝką.. Ile było ścieŝek? W wannie o pojemności 200 litrów znajduje się 20 litrów wody. Po odkręceniu kurków, do wanny napływa 15 litrów wody w ciągu minuty. Napisz wzór funkcji opisującej zaleŝność liczby litrów wody w wannie od czasu. Po jakim czasie wanna napełni się wodą. Zad. Staw zarasta rzęsa. Co dwa dni obszar zarośnięty rzęsą podwaja się. Cały staw zarósł rzęsą w ciągu 64 dni. Po ilu dniach ćwierć stawu była zarośnięta rzęsą? Z jednego 2 metrowego drzewa o średnicy 10 cm otrzymuje się średnio 100 cm drewna. Z kolei na jedno pudełko zapałek zuŝywa się aŝ 9 cm drewna. Oblicz jaka stratę w ilości drzew poniesie las, jeŝeli wykona się tylko 1 mln małych pudełek zapałek? Latarnia uliczna jest oszklona sześcioma jednakowymi szybami w kształcie równoramiennych trapezów. Boki równoległe trapezu maja długości 24 cm i 12 cm, a odległości między tymi bokami jest równa 7,5 cm. Oblicz ile metrów kwadratowych szkła potrzeba na oszklenie 64 latarń, jeŝeli dokładnością do 0,01 2 m. 1 7 % 2 zuŝytego szkła doliczymy na odpadki. Wynik podaj z Cena akcji pewnej firmy w ciągu dwóch kolejnych sesji giełdowych obniŝała się o 10% i wyniosła 29, 97%. Ile kosztowały akcje tej firmy dwie sesje wcześniej? 2007 Na pewnej powierzchni naleŝy połoŝyć posadzkę. Są do wyboru płytki foremne: trójkątne, czworokątne, sześciokątne. Wszystkie płytki mają równe obwody. Których płytek potrzeba najmniej, a których najwięcej do pokrycia tej samej powierzchni? Pan Nowak umieścił w banku część kwoty zł na rocznej lokacie, oprocentowanej w wysokości % w skali roku wraz z roczną kapitalizacją odsetek. Za resztę zakupił jednoroczne obligacje oprocentowane w wysokości 4,5%. Gdyby pan Nowak złoŝył na lokacie w banku całą sumę, to po roku uzyskałby 60 zł mniej odsetek. Ile odsetek otrzyma po roku?

3 Zad. Złotnik wykonał róŝne bransolety. W jednej jest 10,5g czystego srebra, a w drugiej, która jest 2 razy cięŝsza, 27 g czystego srebra. Próba srebra w cięŝszej bransolecie jest o 0,200 większa niŝ w lŝejszej. Z jakiej próby srebra wykonał jubiler lŝejszą bransoletę? W pewnym kraju od podatku dochodowego są zwolnione dochody nie przekraczające 5 tys. dolarów. Za dochody przekraczające 5 tys. dolarów, ale nie większe niŝ 0 tys. dolarów podatnik płaci podatek w wysokości 10% od dochodu pomniejszonego o 5 tys. dolarów. JeŜeli dochód przekracza 0 tys. dolarów podatnik płaci 2500 dolarów plus 25% nadwyŝki powyŝej 0 tys. dolarów. Opisz system podatkowy w tym kraju za pomocą funkcji, która pokazuje zaleŝność podatku od dochodu i naszkicuj jej wykres. Od dwóch kawałków stopu o róŝnej zawartości procentowej miedzi waŝących m i n kg odcięto jednakowe wagowo kawałki i kaŝdy z odciętych kawałków stopiono z resztą drugiego stopu. W otrzymanych stopach stwierdzono jednakową procentowo zawartość miedzi. Ile waŝył kaŝdy z odciętych kawałków? Na ile części dzieli płaszczyznę 0 prostych, z których Ŝadne dwie nie są równoległe i Ŝadne nie przechodzą przez ten sam punkt. Zad. 7 Z drzew w sadzie zebraliście 667 jabłek. Wkładacie je teraz do toreb, Ŝeby rozdać owoce sąsiadom. Chcecie włoŝyć taka samą liczbę jabłek do kaŝdej torby, a jednocześnie chcecie zuŝyć moŝliwie mało toreb. Po ile jabłek naleŝy włoŝyć i do ilu toreb? 2005 Na globusie w kształcie kuli o promieniu R zakreślono cyrklem o rozwartości R okrąg (nóŝkę cyrkla umieszczono na biegunie). Jaka jest długość narysowanego równoleŝnika? Zad.2 W gospodarstwie rolnym zebrano w roku 2004 jęczmień z 6 ha. Na rok 2005 zaplanowano wzrost wydajności plonów z 1 ha jęczmienia o 8%, a całego zbioru o 20% w stosunku do roku O ile hektarów trzeba zwiększyć obszar uprawy jęczmienia, aby wykonać ten plan? Zad. o Wahadło starego zegara ma długość 50 cm i odchyla się od pionu o 18. Pełne wahnięcie (od lewej do prawej i z powrotem) trwa 2 sekundy. Jaką drogę pokonuje końcówka wahadła w ciągu godziny? Zad.4 W trójkącie prostokątnym o bokach długości 60 cm, 80 cm i 100 cm, wierzchołek kąta prostego połączono odcinkiem z punktem leŝącym na przeciwprostokątnej. Odcinek ten dzieli dany trójkąt na dwa trójkąty o równych obwodach. Oblicz długość tego odcinka.

4 W pewnym małŝeństwie wiek kaŝdego z małŝonków wyraŝa się liczbą dwucyfrową. JeŜeli przestawimy cyfry w liczbie lat męŝa, to otrzymamy liczbę lat Ŝony. RóŜnica ich wieku równa jest jednej piątej wieku Ŝony. Oblicz ile lat ma kaŝdy z małŝonków wiedząc, Ŝe mąŝ jest starszy od Ŝony. Mrówka zamierza wspiąć się na szczyt puszki w kształcie walca o wysokości 6cm i średnicy podstawy cm. Chce się jednak upewnić, czy w pobliŝu nie czai się mrówkojad, musi więc w drodze na szczyt obejść takŝe puszkę dookoła. Jaka jest długość najkrótszej drogi, którą mrówka musi przebyć? Zad Średnia miesięczna płaca netto w pewnym zakładzie zatrudniającym 0 pracowników wynosiła 2500 zł. Po zatrudnieniu nowego pracownika średnia płaca netto w zakładzie wzrosła o 0,4%. Oblicz płacę netto nowego pracownika. Tomek wziął z banku kredyt w wysokości zł na okres dwóch lat, przy kapitalizacji co pół roku i rocznym oprocentowaniu 16%. Ile zł kosztował Tomka ten kredyt? Zad. W ciągu jednego miesiąca trzykrotnie wypadła niedziela w dniu parzystym. Jaki dzień tygodnia wypadł 20-tego w tym miesiącu? Zad.4 Pies dostrzegł w odległości 60 m lisa i rozpoczął pościg. Skok psa ma długość 2 m, a skok lisa 1 m. Pies daje dwa skoki w tym samym czasie, w którym lis daje trzy skoki. Ile metrów drogi musi przebyć pies, aby dogonić lisa? Zad.5 Cztery osoby siedzą na ławce. W pewnym momencie wstają z ławki, zaś po jakimś czasie siadają ponownie. Na ile sposobów mogą usiąść tak, aby Ŝadna z nich nie usiadła na miejscu poprzednio zajmowanym? Zad.6 Zwiększywszy prędkość pociągu o 10 km/h zyskuje się 40 minut na trasie. Jeśli jednak prędkość zostanie zmniejszona o 10 km/h, traci się 1 godzinę. Jaka jest długość trasy?

5 200 Dziewczęta twierdzą, Ŝę wśród wszystkich brunetów w ich szkole tylko 20% jest przystojnych. ChociaŜ aŝ 10% brunetów ma niebiesie oczy, to tylko jeden z nich jest przystojny, ale niestety ma złe wyniki w nauce. On i jeszcze trzech przystojnych brunetów, którzy mają trudności w nauce, stanowią 25 % wszytkich przystojnych brunetów. Ilu jest nieprzystojnych niebieskookich brunetów? Jedna z gmin liczy 50 tys. Mieszkańców. Językiem ojczystym wszystkich mieszkańców gminy jest język polski, ale 20 tys. z nich mówi równieŝ po niemiecku. 5 tysięcy takŝe po angielsku, a 10 tysięcy nie zna ani angielskiego ani niemieckiego. Ilu mieszkańców gminy mówi i po angielsku i po niemiecku? Zad. W 2 kg nasion znajduje się 10% zanieczyszczeń. Ile zanieczyszczeń trzeba usunąć, aby nasiona zawierały tylko 4% zanieczyszczeń? Zbadano płace pięciu zatrudnionych w pewnej instytucji i obliczono z nich średnią arytmetyczną. Płaca pierwszej osoby była wyŝsza od średniej o 88 zł, drugiej - niŝsza o 1 zł, trzeciej - niŝsza o 52 zł, czwartej - wyŝsza o 2 zł. Czy płaca piątej osoby była niŝsza, czy wyŝsza od średniej i o ile? Paweł mówi do Piotra: mam razy więcej lat niŝ ty miałeś, kiedy ja miałem tyle lat, ile ty masz teraz. Kiedy osiągniesz mój wiek, będziemy mieli łącznie 112 lat. Ile lat ma Piotr? Statek płynie z Warszawy do Gdańska przez 2 dni, a z powrotem w ciągu dni. Ile czasu będzie płynąć tratwa z Warszawy do Gdańska? Zad. 7 Trzej strzelcy strzelają do celu na strzelnicy. Pierwszy strzelec oddaje strzały w odstępach 6 sekundowych, a drugi i trzeci odpowiednio 8 i 10 sekundowych. Ile razy strzelcy wystrzelą jednocześnie w ciągu 15 minut licząc od pierwszego strzału, który wszyscy oddali jednocześnie? Zad. 8 W ciemnej piwnicy jest 20 słoików. Wśród nich jest 8 z dŝemem truskawkowym, 7 z dŝemem malinowym i 5 z zemem Ŝurawinowym. Ile co najwyŝej moŝna zabrać słoików ( po ciemku), aby być pewnym, Ŝe w piwnicy pozostaną 4 słoiki jednego rodzaju dŝemu i słoiki innego?

Zadania z poprzednich edycji

Zadania z poprzednich edycji Zespół Szkół Ekonomicznych im. M. Kopernika w Olsztynie Zadania z poprzednich edycji Konkursu Matematyka w zarządzaniu dla uczniów szkół gimnazjalnych 2011 Zadanie 1 Dwa ciała poruszają się po ramionach

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut Rozwiązania zadań ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Bardziej szczegółowo

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział:

KL. I. ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: KL. I ZAD. 1 2 3 0,5 x 3 5 Oblicz x : 1, 2 7 3 1 1,4 : 2 20 4 ZAD. 2 Zapytano rybaka, ile waży złowiona przez niego rybka. Rybak odpowiedział: 2 2 kg i jeszcze 2 razy po swojej masy. Ile waży złowiona

Bardziej szczegółowo

Małe olimpiady przedmiotowe

Małe olimpiady przedmiotowe Małe olimpiady przedmiotowe Test z matematyki Organizatorzy: Wydział Edukacji Urzędu Miasta Centrum Edukacji Nauczycieli Szkoła Podstawowa Nr 17 Szkoła Podstawowa Nr 18 Drogi Uczniu, przeczytaj uwaŝnie

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

3 zawartości szklanki obliczył, że w pozostałej

3 zawartości szklanki obliczył, że w pozostałej Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,

Bardziej szczegółowo

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU!

SZKOLNY KONKURS MATEMATYCZNY MATMIX 2007 DROGI UCZNIU! Wersja A klasy I II SZKOLNY KONKURS MATEMATYCZNY MATMIX 007 DROGI UCZNIU! Masz do rozwiązania 8 zadań testowych, na rozwiązanie których masz 90 minut. Punktacja rozwiązań: - zadania od do 7 - punkty -

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 22 GRUDNIA

TERMIN ODDAWANIA PRAC 22 GRUDNIA KLASA IV Pojemnik zawierał 70 litrów płynu. Po pewnym czasie w pojemniku zostało 5 razy mniej płynu niż było na początku. Ile litrów płynu zużyto? Jak zmieni się suma trzech liczb, jeżeli pierwszą zwiększymy

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

Zadania egzaminacyjne - matematyka

Zadania egzaminacyjne - matematyka Zad.1 Zad.2 Zad.3 Zad.4 Zad.5 1 Zad.6 Zad.7 2 Zad.8 Zad.9 Zad.10 3 Zad.11 Zad.12 Zad.13 Zad.14 Zad.15 4 Zad.16 Zad.17 Zad.18 Zad.19 Zade.20 5 Zad.21 Zad.22 Zad.23 Zad.24 Zad.25 Zad.26 6 Zad.27 Zad.28 Zad.29

Bardziej szczegółowo

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa:

LICZBY WYMIERNE. Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: LICZBY WYMIERNE I. ZADANIA ZAMKNIĘTE Zadanie 1 Wskaż jedną poprawną odpowiedź. Liczba XLIV zapisana w systemie rzymskim jest równa: A. 66 B. 64 C. 46 D. 44 Zadanie 2 Wskaż jedną poprawną odpowiedź. Liczba

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 80866 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przekrój osiowy

Bardziej szczegółowo

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8

Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8 Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką?

Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? pitagoras.d2.pl II. ZADANIA TEKSTOWE Procentowe: 1. Towar po podwyżce o 30% kosztuje 845 zł. Ile kosztował ten towar przed podwyżką? 2. Towar z 23% podatkiem VAT kosztuje 984 zł. Ile wynosi podatek VAT?

Bardziej szczegółowo

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi:

Powodzenia! Zadanie 1 (0-1) Średnia arytmetyczna liczb a, b, c, wynosi 15. Średnia liczb a + 7, b + 3, c + 8 wynosi: Razem Kod ucznia Nr zadania 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 1 1 1 1 1 1 1 1 1 3 5 3 3 3 4 30 XV Powiatowy Konkurs z Matematyki dla uczniów

Bardziej szczegółowo

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V = Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego

Bardziej szczegółowo

ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ

ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ ZAPRASZAMY I ZACHĘCAMY DO ROZWIĄZYWANIA ZADAŃ TERMIN SKŁADANIA PRAC UPŁYWA 11 LUTEGO 2012R. KLASA IV Do sklepu sprowadzono zeszyty w kratkę po 10 sztuk w paczce i zeszyty w linie po 15 sztuk w paczce.

Bardziej szczegółowo

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Stereometria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym 10 jest nachylona do płaszczyzny podstawy

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Czas pracy 170 minut Klasa 3 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od

Bardziej szczegółowo

BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA

BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Zadanie 1. Uczeń przeczytał w ciągu tygodnia ksiąŝkę liczącą 420 stron. Dzień Liczba przeczytanych stron Czas

Bardziej szczegółowo

Która z wymienionych liczb jest średnią arytmetyczną dwóch kolejnych liczb pierwszych? A. 34 B. 27 C. 20 D. 14

Która z wymienionych liczb jest średnią arytmetyczną dwóch kolejnych liczb pierwszych? A. 34 B. 27 C. 20 D. 14 Razem Kod ucznia Nr zadania 2 3 4 5 6 7 8 9 0 2 3 4 5 Liczba punktów możliwych do zdobycia Liczba punktów zdobytych 5 4 4 4 4 5 35 XIV Powiatowy Konkurs z Matematyki dla uczniów gimnazjum w roku szkolnym

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?

Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru? Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?

Bardziej szczegółowo

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH

OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP REJONOWY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 Centralna Komisja Egzaminacyjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA PRZYKŁADOWY ZESTAW ZADAŃ PAŹDZIERNIK 2011 czas (w procentach) Zadanie 1. Do przygotowania

Bardziej szczegółowo

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5.

Dany jest ciąg określony wzorem dla. Oblicz i. Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 1 Dany jest ciąg określony wzorem dla. Oblicz i. Zadanie 2 Piąty wyraz ciągu określonego wzorem, gdzie jest równy A) 1 B) 5 C) 10 D) 0,5. Zadanie 3 Dany jest ciąg o wzorze ogólnym, gdzie. Piąty

Bardziej szczegółowo

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij. lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.

Bardziej szczegółowo

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014 I Ty możesz zostać itagorasem róbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz 1 Styczeń 2014 Liczba punktów 29, czas pracy 90min mgr Iwona Tlałka I Ty możesz zostać itagorasem próbny

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak należy

Bardziej szczegółowo

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie)

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie) Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów województwa lubuskiego 15 marca 2013 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki.

Bardziej szczegółowo

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Strona 1 z 12 liczba osób Informacje do zadań 1. i 2. W dwóch dziesięcioosobowych grupach uczniów przeprowadzono test sprawności notując czas (w sekundach) wykonywania ćwiczenia. Wyniki przedstawia poniższy

Bardziej szczegółowo

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min

I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Arkusz II. Luty 2014. Liczba punktów 30, czas pracy 90min I Ty możesz zostać Pitagorasem Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz II Luty 2014 Liczba punktów 30, czas pracy 90min mgr Iwona Tlałka Zadanie 1. (0 1) I Ty możesz zostać Pitagorasem

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Czas trwania: 60minut

Czas trwania: 60minut Konkurs MATEMATYKA NA BUDOWIE dla gimnazjalistów Numer ewidencyjny 22 października 2014r. 1. Sprawdź, czy zestaw konkursowy zawiera 13 stron. Ewentualne braki zgłoś komisji konkursowej. 2. Na pierwszej

Bardziej szczegółowo

Maraton Matematyczny Klasa I październik

Maraton Matematyczny Klasa I październik Zad.1 Oblicz pamiętając o kolejności działań. Maraton Matematyczny Klasa I październik 4,4 2,25 2 1 a) (5,3-6 ) 2 4 (-28 ) = b) 4 7 2 ( ) 3 2 3 = Zad.2 Oblicz wartość wyrażeń: a) ( 3,6-2,5) : 0,55 3* 0,5=

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Pieczątka szkoły Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM W ROKU SZKOLNYM 2013/2014 STYCZEŃ 2014 R. 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i

Bardziej szczegółowo

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2014/2015 III stopień - wojewódzki Kryteria oceniania

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2014/2015 III stopień - wojewódzki Kryteria oceniania Gimnazjum nr 26 w Gdańsku im. Jana III Sobieskiego ul. R. Traugutta 92 sekretariat@gim26.gda.pl 80-226 Gdańsk www.gim26.gda.pl tel. 58-341-02-33 fax 58-344-05-02 Zad.1. (0 1) Konkurs matematyczny dla uczniów

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 3 (równania i nierówności; twierdzenie Pitagorasa) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 3 (równania i nierówności; twierdzenie Pitagorasa) 1. Zapisz w postaci równania: a) Różnica liczby x i i liczby 8 jest równa połowie liczby

Bardziej szczegółowo

Małopolski Konkurs Matematyczny 25 luty etap wojewódzki

Małopolski Konkurs Matematyczny 25 luty etap wojewódzki Kod ucznia Miejsce na metryczkę ucznia PRZECZYTAJ UWAśNIE 1. Zestaw zawiera 24 zadania. 2. Za poprawne rozwiązanie wszystkich zadań moŝesz uzyskać 40 punktów. 3. Rozwiązania zapisuj długopisem. Zapisy

Bardziej szczegółowo

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2

Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B. Stopnie: bdobry (5) dobry (4) (2) 20 1 3 5 7 3 1. chłopcy 15 3 5 3 2 2 Przykładowy arkusz egzaminacyjny I - poziom podstawowy - wersja B Zadanie. ( pkt.) W baku samochodu Fiat Uno mieści się 40 l benzyny. Samochód ten spala przeciętnie 5, l benzyny na 00 km. Czy trzeba będzie

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Klasa 3. Odczytywanie wykresów.

Klasa 3. Odczytywanie wykresów. Klasa 3 Odczytywanie wykresów 1 Wykres obok przedstawia zmiany temperatury podczas pewnego zimowego dnia w Giżycku Jaką temperaturę powietrza pokazywał tego dnia termometr o godzinie 18 00? A 0 C B 1 C

Bardziej szczegółowo

MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł?

MARATON GRUDNIOWY KLASA I Zadanie 1. Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Oblicz wartość wyrażenia MARATON GRUDNIOWY KLASA I Zadanie 1 Zadanie2 Ile kosztuje rower, jeżeli pierwsza rata, która stanowi 9% ceny roweru, jest równa 189 zł? Zadanie 3 Trzy boki trapezu równoramiennego

Bardziej szczegółowo

Zestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli

Zestaw 6 funkcje. Zad. 1. Zad.2 Funkcja określona jest przy pomocy tabeli Zestaw 6 funkcje Zad. 1 Zad.2 Funkcja określona jest przy pomocy tabeli 5 10 15 20 25 3 2 17 10-8 a) Określ dziedzinę i wypisz wartości tej funkcji. b) Jaka jest największa wartość tej funkcji? c) Dla

Bardziej szczegółowo

GMINNY KONKURS MATEMATYCZNY PLUS. klasa V r. godz. 9 15

GMINNY KONKURS MATEMATYCZNY PLUS. klasa V r. godz. 9 15 Imię i nazwisko ucznia Nazwa szkoły GMINNY KONKURS MATEMATYCZNY PLUS klasa V 27.05.2008r. godz. 9 15 Drogi Uczniu, witaj na Gminnym Konkursie Matematycznym Plus. Przeczytaj uwaŝnie instrukcję i postaraj

Bardziej szczegółowo

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1 Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie

Bardziej szczegółowo

ZESTAW EGZAMINACYJNY NR 1.

ZESTAW EGZAMINACYJNY NR 1. ZESTAW EGZAMINACYJNY NR 1. 1. (0-1p.) Ze zbiornika I, w którym znajdowało się 100 litrów wody, przelewano wodę do zbiornika II. Na wykresie przedstawiono, jak zmieniała się objętość wody w zbiorniku II

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2009/2010 Etap wojewódzki 13 marca 2010 r. Kod ucznia Godzina 10.00 Instrukcja dla ucznia Zanim przystąpisz do rozwiązywania arkusza przepisz na tę stronę Kod ucznia z karty kodowej. 1, Sprawdź, czy zestaw zawiera

Bardziej szczegółowo

Zadania z treścią na ekstrema funkcji

Zadania z treścią na ekstrema funkcji Zadania z treścią na ekstrema funkcji Zad. 1: W trójkąt równoramienny, którego boki zawierają się w prostych: AB o równaniu y =, AC o równaniu x y + 1 = 0 i BC o równaniu x + y 6 = 0, wpisano równoległobok

Bardziej szczegółowo

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej. Opracowanie: mgr Władysława Paczesna

XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 2009. ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej. Opracowanie: mgr Władysława Paczesna XV MIĘDZYSZKOLONA LIGA PRZEDMIOTOWA PŁOCK 009 ZADANIA KONKURSOWE Z MATEMATYKI dla klasy VI szkoły podstawowej Opracowanie: mgr Władysława Paczesna Zapraszamy Cię do wzięcia udziału w Międzyszkolnej Lidze

Bardziej szczegółowo

pudełka w kształcie walca, którego wysokość wynosi 10 cm, a średnica 24 cm. Czy dobrze została dobrana średnica tych pudełek?

pudełka w kształcie walca, którego wysokość wynosi 10 cm, a średnica 24 cm. Czy dobrze została dobrana średnica tych pudełek? ZADANIA 1 ZADANIE 1 Obwód czworokata wypukłego ABCD jest równy 50 cm. Obwód trójkata ABD jest równy 46 cm, a obwód trójkata BCD jest równy 36 cm. Oblicz długość przekatnej BD. ZADANIE 2 Huta szkła produkuje

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2010/2011 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Asia postanowiła sprawdzić, ile czasu poświęca

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Drogi Uczniu ETAP REJONOWY Witaj na II etapie konkursu matematycznego. Przeczytaj uważnie

Bardziej szczegółowo

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem

UZUPEŁNIA ZESPÓŁ NADZORUJĄCY miejsce na naklejkę z kodem Układ graficzny CKE 2011 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. KOD UCZNIA UZUPEŁNIA ZESPÓŁ NADZORUJĄCY PESEL miejsce na naklejkę z kodem EGZAMIN W KLASIE TRZECIEJ

Bardziej szczegółowo

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY

Konkursy w województwie podkarpackim w roku szkolnym 2013/2014 KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Kod ucznia - - pieczątka WKK Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH ETAP REJONOWY Drogi Uczniu! Witaj na II etapie konkursu z matematyki. Przeczytaj

Bardziej szczegółowo

PRACA KONTROLNA nr 1

PRACA KONTROLNA nr 1 XXXV KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 005r. 1. Niech f(x) = x + bx + 5. Wyznaczyć wszystkie wartości parametru b, dla których: a) wykres funkcji f jest symetryczny względem

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

Zadania z ułamkami. Obliczenia czasowe

Zadania z ułamkami. Obliczenia czasowe Przykładowe zadania do etapu szkolnego i do etapu powiatowego Konkursu Matematycznego dla uczniów klas V. (zadania z poprzednich edycji konkursu) Zadania z ułamkami. Zad. 1. (2 pkt) Pod kasztanowcem leżały

Bardziej szczegółowo

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I

Kuratorium Oświaty w Bydgoszczy. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Kod ucznia: Bydgoszcz, 31.01.2015r. Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów szkół podstawowych etap wojewódzki część I Wypełnia komisja konkursowa Numer zadania 1 2 3 4 5 Razem Punktacja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-P1_1P-091 PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI STYCZEŃ ROK 2009 POZIOM PODSTAWOWY Czas pracy 120 minut

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO PRZYRODNICZA MATEMATYKA TEST 2 Klucz odpowiedzi i wykaz umiejętności do pobrania

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP WOJEWÓDZKI Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron. Ewentualny

Bardziej szczegółowo

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW

XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW XII WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWO WIELKOPOLSKIE Etap rejonowy rok szkolny 011/01 wylosowany numer uczestnika konkursu Dane dotyczące ucznia: (wypełnia Komisja Konkursowa

Bardziej szczegółowo

Quiz Matematyczny r.sz. 2015/16

Quiz Matematyczny r.sz. 2015/16 Quiz Matematyczny rsz 2015/16 część 1 Zad1 Przednie koło pewnego ciągnika obraca się 240 razy na pewnej drodze, a tylne mające obwód o 0,6 m większy obraca się na tej samej drodze 180 razy Jaki jest obwód

Bardziej szczegółowo

Sprawdzian z matematyki na zakończenie nauki w pierwszej klasie gimnazjum

Sprawdzian z matematyki na zakończenie nauki w pierwszej klasie gimnazjum Wypełnia uczeń Kod ucznia Sprawdzian z matematyki na zakończenie nauki w pierwszej klasie gimnazjum Informacje dla ucznia 1. Sprawdź, czy sprawdzian ma 6 stron. Ewentualny brak stron lub inne usterki zgłoś

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2015/2016 12 STYCZNIA 2016 1. Test konkursowy zawiera 24 zadania. Są to zadania zamknięte i otwarte.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 MAJA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Rozwiazaniem nierówności

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie naleŝy powielać ani udostępniać w Ŝadnej formie

Bardziej szczegółowo

Matematyka test dla uczniów klas trzecich = = = = = =...

Matematyka test dla uczniów klas trzecich = = = = = =... Matematyka test dla uczniów klas trzecich szkół podstawowych w roku szkolnym 2007/2008 Etap szkolny (60 minut) Ryzyko dysleksji [suma punktów] Imię i nazwisko... kl.3... 1. Oblicz. 22 + 9 =... 46 + 30

Bardziej szczegółowo

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =

Bardziej szczegółowo

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014

MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 2014 MIĘDZYSZKOLNA LIGA PRZEDMIOTOWA MATEMATYKA klasa IV PŁOCK 204 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. 2 Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 Zad. 8 SUMA PUNKTÓW Max liczba

Bardziej szczegółowo

BAZA ZADAŃ KLASA 1 TECHNIKUM

BAZA ZADAŃ KLASA 1 TECHNIKUM LICZBY RZECZYWISTE BAZA ZADAŃ KLASA TECHNIKUM. Znajdź liczbę odwrotną i liczbę przeciwną do liczby jeśli a). Wyznacz NWD(x, y), jeśli: a) x = 780, y = 6 b) x = 0, y = 6 c) x = 700, y = 60 d) x = 96, y

Bardziej szczegółowo

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie)

Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Kod ucznia:... Konkurs przedmiotowy z matematyki dla uczniów gimnazjów 13 marca 2015 r. zawody III stopnia (wojewódzkie) Witamy Cię na trzecim etapie Konkursu przedmiotowego z matematyki. Przed przystąpieniem

Bardziej szczegółowo

mgr A. Piłat, mgr M. Małycha n 2 b n = (n 2 1)(n 2 5n+6)

mgr A. Piłat, mgr M. Małycha n 2 b n = (n 2 1)(n 2 5n+6) 1. a) Podaj pięć wyrazów ciągu: a n = n 2 +n, b n = n 2 { 1 (n+1)!, c n = 2, dla n nieparzystego n 2, dla n parzystego b)którezwyrazówciągusąrównezero: a n = 1+( 1)n 2n 1, b n = (n 2 1)(n 2 5n+) c)danyjestciąg

Bardziej szczegółowo

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia

SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE WYPEŁNIA UCZEŃ. Kod ucznia WYPEŁNIA UCZEŃ Kod ucznia Informacje dla ucznia SPRAWDZIAN Z MATEMATYKI NA ZAKOŃCZENIE NAUKI W DRUGIEJ KLASIE GIMNAZJUM W MIEŚCIE 1. Sprawdź, czy sprawdzian ma 9 stron. Ewentualny brak stron lub inne usterki

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP-CL-1. Trzy liczby: a, b, c, których suma jest równa 93 tworzą ciąg geometryczny. Te same liczby, w podanej kolejności są pierwszym, drugim i siódmym wyrazem ciągu arytmetycznego. Znajdź te liczby.

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. PESEL Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z

Bardziej szczegółowo

PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie.

PESEL. Czas pracy: do 135 minut 4. Rozwiązania zadań od 21. do 23. formułujesz samodzielnie. Układ graficzny CKE 2011 Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. UZUPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę z

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY

PRÓBNY EGZAMIN GIMNAZJALNY PRÓBNY EGZAMIN GIMNAZJALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO 9 KWIETNIA 206 CZAS PRACY: 90 MINUT ZADANIE ( PKT) Dokończ zdanie tak, aby otrzymać zdanie prawdziwe. Różnica między

Bardziej szczegółowo

2. Cena CD ROM-u wraz z 7% podatkiem VAT wynosiła 252 zł 60 gr. Oblicz jego cenę z 22% podatkiem VAT.

2. Cena CD ROM-u wraz z 7% podatkiem VAT wynosiła 252 zł 60 gr. Oblicz jego cenę z 22% podatkiem VAT. Tematy zadań sprawdziany klasa I poziom podstawowy Elementy logiki Określ, czy podane wyraŝenie jest zdaniem logicznym lub formą zdaniową Odpowiedź uzasadnij a) Liczbą przeciwną do liczby jest liczba x

Bardziej szczegółowo

Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach.

Lista NR 6. Przedstaw obliczenia we wszystkich zadaniach. Lista NR 6 Przedstaw obliczenia we wszystkich zadaniach. Zad 1. (0-1) Długość przekątnej prostokąta przedstawionego na rysunku jest równa A. 12 B. 16 C. 20 D. 24 Zad 2. (0-2) Przedstawiony na rysunku trójkąt

Bardziej szczegółowo

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych.

Dolna stacja. Zadanie 1. (0 1) Jak długo trwa przejazd kolejki od górnej stacji do punktu K? Wybierz właściwą odpowiedź spośród podanych. Informacje do zadań 1. i 2. Każda z dwóch kolejek górskich przebywa drogę 150 metrów w ciągu minuty. Na schemacie zaznaczono niektóre długości trasy pokonywanej przez kolejki. Górna stacja 750 m 120 m

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania

SPIS TREŚCI. Do Nauczyciela... 4. Regulamin konkursu... 5. Zadania SPIS TREŚCI Do Nauczyciela... 4 Regulamin konkursu... 5 Zadania Liczby i wyrażenia algebraiczne... 7 Funkcje... 12 Wielokąty, koła i okręgi... 18 Przekształcenia geometryczne... 23 Figury podobne... 28

Bardziej szczegółowo

3. Gdy wyjrzałem na zakręcie z okna pociągu spostrzegłem przede mną 12 wagonów, a za mną 7 wagonów. Z ilu wagonów składał się pociąg?

3. Gdy wyjrzałem na zakręcie z okna pociągu spostrzegłem przede mną 12 wagonów, a za mną 7 wagonów. Z ilu wagonów składał się pociąg? KOŁO MATEMATYCZNE KLAS III TEST I 1. Na zawodach startuje 5 biegaczy. KaŜdy w nagrodę otrzymuje o 26zł mniej od tego, kto przybiegł przed nim. Ostatni otrzymał 75zł. Ile wynosi łączna pula nagród? 2. Ile

Bardziej szczegółowo

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne)

Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3. Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) Zestaw powtórzeniowy z matematyki dla uczniów kl II PG nr 3 Część 2 (własności i pola figur płaskich, wyrażenia algebraiczne) 1. W którym przypadku z podanych odcinków można zbudować trójkąt? a) 8cm; 1,2dm

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I Geometria analityczna 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

MATEMATYKA. karty pracy klasa 2 gimnazjum

MATEMATYKA. karty pracy klasa 2 gimnazjum MATEMATYKA karty pracy klasa 2 gimnazjum Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 Numer zadania Test Karty pracy Zadania wyrównujące Zadania utrwalające Zadania rozwijające

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo