WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ"

Transkrypt

1 Anna Janiga-Ćmiel WYZNACZENIE OKRESU RÓWNOWAGI I STABILIZACJI DŁUGOOKRESOWEJ Wrowadzenie W rozwoju każdego zjawiska niezależnie od tego, jak rozwój ten jest ukształtowany rzez trend i wahania, można wyznaczyć okres równowagi istotny dla krótkiego lub długiego okresu i okres ustabilizowanej zależności, również istotny dla krótkiego lub długiego okresu. W okresie równowagi są zachowane arametry rozkładu charakteryzujące wartość oczekiwaną, wariancję i asymetrię, onieważ w okresie tym ma się do czynienia z niezmienniczością rozkładu badanych zmiennych. Z kolei okres ustabilizowanej zależności dotyczy kolejnych lat, w których nie obserwuje się istotnych zmian w charakterze, sile i kierunku zależności. Długookresowa równowaga dotyczy okresu, w którym istnieją mechanizmy samoregulujące ozwalające osiągnąć stan oczekiwany. Jedna z metod wyznaczania rzedmiotowych odokresów oiera się na analizie rzyrostów badanych zmiennych. Zarówno w rzyadku gosodarki Polski, jak i gosodarek aństw Unii Euroejskiej zostanie wyznaczony najdłuższy możliwy okres ustabilizowanego rozwoju, czyli taki, w którym główne wskaźniki nie wykażą istotnych zmian. Taki okres jest otrzebny w celu dokonania orównania rozwoju gosodarki w Polsce i w krajach Unii Euroejskiej. Rozwój gosodarczy można scharakteryzować w dwojaki sosób. Jednym z nich jest analiza wielowymiarowa wybranego, możliwie najliczniejszego zbioru czynników. Mogą być one stymulantami lub destymulantami rozwoju gosodarczego. Podstawą drugiego ze sosobów jest zmienna charakteryzująca PKB ujmująca w ewnym sensie w sosób syntetyczny czynniki wykorzystane w ierwszym sosobie. W niniejszym artykule osłużono się drugą metodą wykorzystującą PKB. Ponadto analizie oddano gosodarki nastęujących krajów: Polski, Francji, Wielkiej Brytanii, Belgii, Holandii. Analizę wykonano na odstawie danych obejmujących lata zaczerniętych z Roczników Statystycznych i srowadzonych urzednio do ostaci wzajemnie orównywalnych.

2 36 Anna Janiga-Ćmiel 1. Wyznaczenie macierzy mnożników długookresowych Badanie odobieństwa stanu gosodarki w różnych okresach oarto na macierzy wartości mnożników charakteryzujących wariancje i kowariancje stanów rozwoju gosodarek w oszczególnych krajach. Liczba obserwacji wyjściowego szeregu owinna obejmować długi okres. Wymiar szeregu czasowego odowiada liczbie orównywanych krajów. W dalszej analizie rzez m oznaczono ilość badanych krajów Unii Euroejskiej z wyłączeniem Polski. Macierz danych emirycznych szeregu czasowego wielowymiarowego oznaczono rzez W. Macierz W jest wielowymiarowym szeregiem czasowym jednostkowego PKB w rozatrywanych krajach. Macierz W rzedstawiono w tabeli 1. Wskaźniki oziomu jednostkowego PKB Polski i krajów UE Tabela 1 t Lata Polska Francja Wielka Brytania Holandia Belgia ,48,99,42,56, ,49,157,363,33, ,49,185,45,41, ,5,28,451,48, ,54,16,51,82, ,54,187,555,85, ,54,291,614,82, ,55,327,597,115, ,55,378,598,122, ,53,464,76,178, ,53,487,734,213, ,54,53,763,236, ,56,525,89,255, ,63,417,636,26, ,98,573,938,22, ,1,67,118,234, ,12,642,1273,248, ,13,751,1346,261, ,16,781,1386,324, ,16,798,1416,365, ,19,814,1443,46, ,111,838,1474,461, ,17,858,1535,55, ,17,887,1622,555, ,94,921,1644,566, ,135,956,171,625, ,137,1,1833,682,1134

3 Wyznaczenie okresu równowagi i stabilizacji długookresowej 37 cd. tabeli ,14,15,189,732, ,139,198,1949,787, ,143,1151,236,842, ,222,1221,2257,877, ,198,1279,2163,915, ,182,1324,24,933, ,189,1494,2315,975, ,186,1436,242,1149, ,189,147,2185,152, ,369,1655,2486,149, ,38,1847,2556,1217, ,391,187,275,1181, ,43,19,2772,1369, ,421,1929,2838,1286, ,43,1965,294,1296, ,529,28,2918,1478, ,683,255,3128,154, ,69,211,2883,1734, ,89,2157,2881,1691, ,974,2217,352,1757, ,19,2266,39,1983, ,133,2372,3156,26,2429 Na odstawie macierzy W wyznaczono macierz teoretyczną rzybliżonych wartości mnożników długookresowych [5]. Macierz mnożników oznaczono rzez π, rzy czym: 1 T π = W W (1) gdzie oznacza ilość okresów, jakich dotyczą szeregi czasowe. Jest to macierz w ostaci: S S π = S S S S 1 O S π 2 mm S 3 O S4 S = π O π π T mm (2) Dodatkowo rzez π oznaczono wektor:

4 38 Anna Janiga-Ćmiel S1 S 2 π = (3) S 3 S 4 Elementami macierzy są iloczyny skalarne w ostaci: s = 1 t= 1 w T it w jt (4) Dla i, j =,,m, rzy czym oznacza wektor wskaźnika rozwoju gosodarczego w Polsce, a indeksy j = 1,,m dotyczą wskaźników rozwoju gosodarczego w rozatrywanych krajach. Przez B oznaczono odmacierz macierzy W dotyczącą krajów innych niż Polska. Przez π oznaczono macierz owstałą z macierzy π rzez skreślenie ierwszego wiersza i ierwszej kolumny. 2. Wyznaczenie macierzy wag Poszczególne wariancje i kowariancje zawarte w macierzy π można odowiednio zrangować rzez rzyorządkowanie im macierzy wag. Każda z wag będzie ilustrowała relację między stanem gosodarki w kraju i oraz stanem gosodarki w kraju j. Wyznaczoną macierz wag oznaczono rzez K. Macierze K oraz B mają ten sam wymiar, tzn. mają o wierszy i m kolumn. Macierz wag [5] jest zdefiniowana nastęująco: mm K T 1 = S ( Bπ B B (5) mm ) Jest tu rozatrywany model jednorównaniowy, więc w owyższej definicji S jest macierzą jednoelementową określoną wzorem: = 1 (6) N S T w t wt t= 1 Wartość S to czynnik stanowiący charakterystykę rozatrywanego rozwoju gosodarczego w Polsce. Uwzględniając rzedstawione oznaczenia, otrzymano macierz struktury zrównoważonego rozwoju, która ma ostać: S = B K (7)

5 Wyznaczenie okresu równowagi i stabilizacji długookresowej 39 Przedstawiony iloczyn macierzy B oraz K jest rozumiany jako macierz iloczynów skalarnych odowiednich wektorów kolumn. Oznaczając elementy ma- w, macierzy K rzez[ k ], buduje się macierz S elementów cierzy B rzez [ ] w ostaci: s = w k (8) Macierze B i K są jednakowych wymiarów i takie same wymiary ma macierz S, która jest macierzą iloczynów elementów na tych samych ozycjach w macierzach B i K. Analiza macierzy S ozwala na wykrycie kolejnych odokresów z rzedziału okresowego, w którym wsółczynnik korelacji wyważonych kolumn PKB będzie najwyższy. Maksymalnej długości rzedział wyznaczony w ten sosób będzie okresem równowagi i stałej zależności długookresowej w rzedziale danych historycznych. Przedstawiona wyżej macierz S stanowi unkt wyjścia do wyznaczenia dalszych macierzy charakteryzujących relację między dynamiką rozwoju gosodarczego w oszczególnych aństwach. Macierze te rzedstawiają zasadniczą charakterystykę wielowymiarowego rozwoju i są oznaczone rzez E i F. Macierz F dotyczy rozwoju gosodarczego w wybranych krajach, macierz E rzedstawia wyważone różnice rozwoju gosodarczego w Polsce i w innych krajach Unii Euroejskiej uwzględnionych łącznie. Macierz F jest wyznaczona zgodnie ze wzorem: F 1 T 1 T = ( B K) ( B K) = S S (9) Macierz E wyznaczono według wzoru: T E F π S 1 π = (1) Macierze E i F są macierzami kwadratowymi o wymiarze mxm, gdzie m to ilość krajów, z którymi orównuje się rozwój gosodarczy w Polsce. Dla macierzy F, E wyznacza się wartości własne. O zrównoważonym rozwoju zjawiska w orównywanych zbiorowościach można mówić wtedy, gdy macierze E i F (zgodnie z [2]) są jednakowe lub nie wykazują istotnej statystycznie różnicy. Ponadto jeśli w uorządkowanych ciągach wartości własnych stwierdza się różnice i dla kolejnych wartości własnych te różnice będą coraz to niższe, to ma się do czynienia ze zjawiskiem, które w określonych zbiorowościach dąży do równowagi. Natomiast jeżeli rzyrosty względne kolejnych wartości własnych są coraz to większe, oznacza to, że zjawisko w badanych zbiorowościach nigdy nie osiągnie wzajemnej równowagi. Minimalny okres równowagi w zakresie danych historycznych można wyznaczyć jako:

6 4 Anna Janiga-Ćmiel t min = λ λ λ λ (11) gdzie mnożnik jest iloczynem wartości własnych λi macierzy E. Liczba wartości własnych odowiada liczebności gruy krajów, z którymi łącznie orównuje się rozwój gosodarczy Polski. 3. Wyznaczenie macierzy struktury zrównoważonego rozwoju Zgodnie z rozważaniami teoretycznymi analizę rozoczyna się od wyznaczenia macierzy mnożników długookresowych π : Macierz mnożników długookresowych π Tabela 2 Polska Francja Wielka Brytania Holandia Belgia Polska,146,435,632,328,482 Francja,435,1613,2443,1153,187 Wielka Brytania,632,2443,3752,1727,2725 Holandia,328,1153,1727,844,132 Belgia,482,187,2725,132,268 Na odstawie analizy otrzymanych mnożników można stwierdzić, że w Polsce słonność do długookresowej równowagi była najniższa, natomiast w krajach Unii Euroejskiej znacząco wyższa. W tabelach 3 i 4 rzestawiono charakterystykę odążania oszczególnych gosodarek do stanu równowagi. Widać, że w okresie ostatnich iętnastu lat wskaźniki te są odowiednio niższe dla wybranych krajów Unii Euroejskiej z wyjątkiem Holandii, co oznacza, że dla tych krajów istotne znaczenie ma równowaga rozwoju gosodarczego w okresie całego rozatrywanego ięćdziesięciolecia. Wskaźnik dla Polski dla okresu ięćdziesięciu lat wynosi 7,22%, a dla ostatnich iętnastu lat wzrasta do 13,43%, co oznacza istotność równowagi w okresie iętnastu ostatnich lat. Udział mnożnika dla rozatrywanego okresu Kraje Udział mnożnika Polska 7,22% Francja 21,48% Wielka Brytania 31,24% Holandia 16,21% Belgia 23,85% Tabela 3

7 Wyznaczenie okresu równowagi i stabilizacji długookresowej 41 Sośród badanych krajów najwyższą skłonność do długookresowej równowagi wykazuje Wielka Brytania w skali 31,24% całkowitej zmienności w rozwoju gosodarki. Belgia i Francja charakteryzowały się odobnym oziomem, onad 2%, Holandia 16%, Polska 7%. Wynik ten otrzymano z uwzględnieniem czterdziestu dziewięciu lat rozwoju gosodarczego tych krajów. Powtarzając tę samą analizę dla ostatnich iętnastu lat rozatrywanego okresu, można stwierdzić istotne zmiany w dążeniu do równowagi: Udział mnożnika dla ostatnich iętnastu lat Kraje Udział mnożnika Polska 13,43% Francja 25,44% Wielka Brytania 35,33% Holandia 2,12% Belgia 25,67% Tabela 4 Widać, że dążność do równowagi rozwoju gosodarczego w krótszym okresie jest wyższa, a sośród badanych krajów najwyższy wzrost notuje Polska. W celu dalszego i ogłębionego orównania rozwoju gosodarczego Polski i aństw Unii Euroejskiej wyznaczono macierz F zgodnie ze wzorem: F 1 T 1 T = ( W K) ( W K) = S S (12) Jest to macierz w ostaci: Mnożniki zrównoważonego rozwoju w UE Francja Wielka Brytania Holandia Belgia Francja 2,9-1,9 -,7 -,2 Wielka Brytania -1,9 1,3,5,1 Holandia -,7,5,2,1 Belgia -,2,1,1 Tabela 5 Macierz ta ilustruje mnożniki zrównoważonego rozwoju gosodarki w aństwach Unii Euroejskiej. W dalszej kolejności wyznaczono macierz E zgodnie ze wzorem: T E F π S 1 π = (13)

8 42 Anna Janiga-Ćmiel Macierz E rzedstawia mnożniki zrównoważonego rozwoju gosodarki z wyłączeniem wływu Polski na rozwój gosodarki w tych krajach i odwrotnie, otrzymując tym samym macierz w ostaci: Tabela 6 Mnożniki zrównoważonego rozwoju gosodarczego krajów UE z wyłączeniem Polski Francja Wielka Brytania Holandia Belgia Francja 2,92-1,93 -,739 -,239 Wielka Brytania -1,93 1,291,443,125 Holandia -,739,443,2,45 Belgia -,239,125,45,5 Jednak dla nas interesujący jest iloczyn wartości własnych jednej macierzy i drugiej; iloczyn wartości własnych jest równy wartości wyznacznika odowiedniej macierzy: Natomiast dla macierzy E otrzymano: λ1... λ4 = det F =,178 (14) λ1... λ4 = det E =,1795 (15) Przedstawione iloczyny wartości własnych nie mają zasadniczo interretacji ekonomicznej. Interretacji odlega jedynie ich zmiana. Przedstawione wartości wyznaczników sełniają nastęujący związek: det E = 6,325 det F (16) Oznacza to, że wyznacznik macierzy, w której ominięto owiązania rozwoju gosodarek Unii Euroejskiej z rozwojem gosodarki w Polsce, zwiększył się 6,325 razy, co oznacza brak jakiejkolwiek wsółzależności między rozwojem gosodarki w Polsce w okresie rozatrywanych czterdziestu dziewięciu lat. Wsółzależność rozwoju wysteowałaby w rzyadku, gdyby wartości dete i detf istotnie się nie różniły. W dalszym toku analizy z okresu czterdziestu dziewięciu rozatrywanych lat wyodrębniono krótszy odokres obejmujący iętnaście lat, tzn. lata dziewięćdziesiąte i o 2 roku. Dla rozatrywanych iętnastu lat owtórzono analizę równowagi rozwoju gosodarki Polski i wybranych krajów Unii Euroejskiej. Macierz F rzyjęła ostać:

9 Wyznaczenie okresu równowagi i stabilizacji długookresowej 43 Mnożniki zrównoważonego rozwoju w UE dla iętnastu lat Tabela 7 Francja Wielka Brytania Holandia Belgia Francja -1936,67-983, , ,798 Wielka Brytania -34,538-92,3 167, ,593 Holandia 992,1 419, ,27-829,49 Belgia 1236, , , ,12 Analogiczna macierz E rzyjęła nastęującą ostać: Tabela 8 Mnożniki zrównoważonego rozwoju gosodarek krajów UE z wyłączeniem Polski dla iętnastu lat Francja Wielka Brytania Holandia Belgia Francja -1936,74-984, , ,761 Wielka Brytania -34,585-92,69 167, ,54 Holandia 991, , ,48-829,438 Belgia 1236,35 658,32-744, ,145 Okazuje się, że w rozatrywanym rzyadku iloczyny wartości własnych również się zmieniły, rzyjmując wartość dla macierzy F odowiednio: Natomiast dla macierzy E otrzymano: λ1... λ4 = det F = ,421 (17) λ1... λ4 = det E = , (18) Relacja między wyznaczonymi wartościami wyznaczników jest nastęująca: det E det F =,9424 (19) Powyższa zależność oznacza, że omiędzy wartościami wyznaczników macierzy E oraz F nie wystęują istotne statystycznie różnice. Z ekonomicznego unktu widzenia należy zaznaczyć, że rozwój gosodarki olskiej i rozwój gosodarek aństw Unii Euroejskiej wraz z uływem czasu staje się coraz bardziej do siebie zbliżony. Nie można jeszcze mówić o ełnej równowadze rozwoju gosodarek w Polsce i w aństwach Unii Euroejskiej.

10 44 Anna Janiga-Ćmiel Podsumowanie Przedstawiona w artykule metoda Johansena wyznaczania okresu równowagi i stabilizacji długookresowej ozwala na ocenę orównawczą dynamiki szeregów czasowych. Można ją rozatrywać w całym okresie danych historycznych lub oszczególnych odokresach. Zastosowana metoda ozwala wyznaczyć minimalny okres równowagi lub odowiedzieć na ytanie, w jakim okresie rocentowym rozwój gosodarczy w rozatrywanym czasie można uznać za ustabilizowany. Dla całego ięćdziesięciolecia otrzymano niskie wartości własne, a dla ostatnich iętnastu lat istotnie wyższe. Oznacza to, że w ostatnim iętnastoleciu wystęuje znacząca kointegracja rozatrywanych gosodarek. Literatura 1. Grabowski W., Welfe A.: Ekonometria. Zbiór zadań. PWE, Warszawa Johansen S.: Likelihood Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press, Oxford Rocznik Statystyczny GUS. Warszawa Welfe A., Kar P., Kębłowski P.: Mechanizmy makroekonomiczne w gosodarce olskiej. Analiza ekonometryczna. WUŁ, Łódź Welfe A.: Gosodarka Polski w okresie transformacji. Zasady modelowania ekonometrycznego. PWE, Warszawa 2. DETERMINATION OF THE PERIOD OF LONG-TERM EQUILIBRIUM AND STABILITY Summary The study examines the develoment of the Polish economy as well as the economies of selected Euroean Union countries in the eriod from 1949 to 26. Much sace is devoted to a comarative analysis of the develoment economies in the countries concerned. Based on statistical data aroriate synthetic variables were set. Much sace is devoted to the theory of the Johansen s method, to resent the deendencies occurring in the dynamics of economic develoment in subsequent suberiods. The method allows for a comarative assessment of the dynamics of time series. The methods are adoted to examine the level of economic develoment, to determine the eriod of long-term equilibrium and stability.

WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI PRAWNEJ

WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI PRAWNEJ ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 667 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 40 2011 ADAM ADAMCZYK Uniwersytet Szczeciński WYBÓR FORMY OPODATKOWANIA PRZEDSIĘBIORSTW NIEPOSIADAJĄCYCH OSOBOWOŚCI

Bardziej szczegółowo

Janusz Górczyński. Prognozowanie i symulacje w zadaniach

Janusz Górczyński. Prognozowanie i symulacje w zadaniach Wykłady ze statystyki i ekonometrii Janusz Górczyński Prognozowanie i symulacje w zadaniach Wyższa Szkoła Zarządzania i Marketingu Sochaczew 2009 Publikacja ta jest czwartą ozycją w serii wydawniczej Wykłady

Bardziej szczegółowo

ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII INWESTYCYJNYCH NA RYNKACH KAPITAŁOWYCH WRAZ Z ZASTOSOWANIEM WAŻONEGO UŚREDNIANIA

ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII INWESTYCYJNYCH NA RYNKACH KAPITAŁOWYCH WRAZ Z ZASTOSOWANIEM WAŻONEGO UŚREDNIANIA STUDIA INFORMATICA 2012 Volume 33 Number 2A (105) Alina MOMOT Politechnika Śląska, Instytut Informatyki Michał MOMOT Instytut Techniki i Aaratury Medycznej ITAM ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

prof. dr hab. inż. BOGDAN MIEDZIŃSKI Instytut Technik Innowacyjnych EMAG Katowice KGHM POLSKA MIEDŹ SA Lubin KGHM CUPRUM CB-R Wrocław

prof. dr hab. inż. BOGDAN MIEDZIŃSKI Instytut Technik Innowacyjnych EMAG Katowice KGHM POLSKA MIEDŹ SA Lubin KGHM CUPRUM CB-R Wrocław dr inż. PIOTR WOJTAS rof. dr hab. inż. BOGDAN MIEDZIŃSKI dr inż. ARTUR KOZŁOWSKI mgr inż. JULIAN WOSIK Instytut Technik Innowacyjnych EMAG Katowice mgr inż. GRZEGORZ BUGAJSKI KGHM POLSKA MIEDŹ SA Lubin

Bardziej szczegółowo

Metoda Johansena objaśnienia i przykłady

Metoda Johansena objaśnienia i przykłady Metoda Johansena objaśnienia i przykłady Model wektorowej autoregresji rzędu p, VAR(p), ma postad gdzie oznacza wektor zmiennych endogenicznych modelu. Model VAR jest stabilny, jeżeli dla, tzn. wielomian

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

Słowniczek pojęć do Mapy Akustycznej Gliwic

Słowniczek pojęć do Mapy Akustycznej Gliwic Słowniczek ojęć do May kustycznej Gliwic Hałas Hałasem nazywamy wszystkie nieożądane, nierzyjemne, dokuczliwe i szkodliwe dźwięki; jako szkodliwy dla życia i zdrowia jest on uznawany za ważny czynnik decydujący

Bardziej szczegółowo

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona dr inż. JAN TAK Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie inż. RYSZARD ŚLUSARZ Zakład Maszyn Górniczych GLINIK w Gorlicach orównanie nacisków obudowy Glinik 14/35-Oz na sąg obliczonych metodą

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami

Przykładowe zadania z matematyki na poziomie podstawowym wraz z rozwiązaniami 8 Liczba 9 jest równa A. B. C. D. 9 5 C Przykładowe zadania z matematyki na oziomie odstawowym wraz z rozwiązaniami Zadanie. (0-) Liczba log jest równa A. log + log 0 B. log 6 + log C. log 6 log D. log

Bardziej szczegółowo

BADANIE INFORMACYJNEJ EFEKTYWNOŚCI RYNKU W FORMIE SILNEJ NA PRZYKŁADZIE WYBRANYCH FUNDUSZY INWESTYCYJNYCH 1

BADANIE INFORMACYJNEJ EFEKTYWNOŚCI RYNKU W FORMIE SILNEJ NA PRZYKŁADZIE WYBRANYCH FUNDUSZY INWESTYCYJNYCH 1 METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH X, 2009, str. 265-285 BADANIE INFORMACYJNEJ EFEKTYWNOŚCI RYNKU W FORMIE SILNEJ NA PRZYKŁADZIE WYBRANYCH FUNDUSZY INWESTYCYJNYCH 1 Dorota Witkowska, Krzysztof

Bardziej szczegółowo

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie

STATYSTYKA OD PODSTAW Z SYSTEMEM SAS. wersja 9.2 i 9.3. Szkoła Główna Handlowa w Warszawie STATYSTYKA OD PODSTAW Z SYSTEMEM SAS wersja 9.2 i 9.3 Szkoła Główna Handlowa w Warszawie Spis treści Wprowadzenie... 6 1. Podstawowe informacje o systemie SAS... 9 1.1. Informacje ogólne... 9 1.2. Analityka...

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

ANALIZA KOINTEGRACJI STÓP PROCENTOWYCH W POLSCE

ANALIZA KOINTEGRACJI STÓP PROCENTOWYCH W POLSCE Aneta KŁODZIŃSKA ZESZYTY NAUKOWE INSTYTUTU EKONOMII I ZARZĄDZANIA ANALIZA KOINTEGRACJI STÓP PROCENTOWYCH W POLSCE Zarys treści: Celem artykułu jest określenie czy między stopami procentowymi w Polsce występuje

Bardziej szczegółowo

Ćwiczenie 4. Wyznaczanie poziomów dźwięku na podstawie pomiaru skorygowanego poziomu A ciśnienia akustycznego

Ćwiczenie 4. Wyznaczanie poziomów dźwięku na podstawie pomiaru skorygowanego poziomu A ciśnienia akustycznego Ćwiczenie 4. Wyznaczanie oziomów dźwięku na odstawie omiaru skorygowanego oziomu A ciśnienia akustycznego Cel ćwiczenia Zaoznanie z metodą omiaru oziomów ciśnienia akustycznego, ocena orawności uzyskiwanych

Bardziej szczegółowo

Czynniki wpływające na opinie przedsiębiorców w kwestionariuszowych badaniach koniunktury

Czynniki wpływające na opinie przedsiębiorców w kwestionariuszowych badaniach koniunktury Bank i Kredyt 46(4), 2015, 393-410 Czynniki wływające na oinie rzedsiębiorców w kwestionariuszowych badaniach koniunktury Sławomir Kalinowski* Nadesłany: 26 stycznia 2015 r. Zaakcetowany: 21 kwietnia 2015

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego:

ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1. Wykład 3. Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia optymalizacyjnego: ALGORYTMY OPTYMALIZACJI wyklad 3.nb 1 Wykład 3 3. Otymalizacja z ograniczeniami Sformułujemy teraz warunki konieczne dla istnienia rozwiązań zagadnienia otymalizacyjnego: g i HxL 0, i = 1, 2,..., m (3.1)

Bardziej szczegółowo

II. BUDOWA EFEKTYWNEGO PORTFELA PROJEKTÓW INWESTYCYJNYCH

II. BUDOWA EFEKTYWNEGO PORTFELA PROJEKTÓW INWESTYCYJNYCH 5 II. BUDOWA EFEKTYWEGO PORTFELA PROJEKTÓW IWESTYCYJYCH Ryzyko jest nieodłącznym elementem inwestowania. Zgodnie z określeniem inwestycji, dziś są onoszone nakłady, kosztem rezygnacji z bieżącej konsumcji,

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Pomiar wilgotności względnej powietrza

Pomiar wilgotności względnej powietrza Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar wilgotności względnej owietrza - 1 - Wstę teoretyczny Skład gazu wilgotnego. Gazem wilgotnym nazywamy mieszaninę gazów, z których

Bardziej szczegółowo

26 Nowa koncepcja parownika pracującego w obiegu ORC z przepływem wspomaganym siłami kapilarnymi i grawitacyjnymi

26 Nowa koncepcja parownika pracującego w obiegu ORC z przepływem wspomaganym siłami kapilarnymi i grawitacyjnymi ŚRODKOWO-POMORSKIE TOWARZYSTWO NAUKOWE OCHRONY ŚRODOWISKA Rocznik Ochrona Środowiska Tom 13. Rok 2011 ISSN 1506-218X 425-440 26 Nowa koncecja arownika racującego w obiegu ORC z rzeływem wsomaganym siłami

Bardziej szczegółowo

Obszar Logistyka. Rejestracja faktury zakupowej Rejestracja faktury zakupowej z pozycjami towarowymi. Instrukcja użytkownika

Obszar Logistyka. Rejestracja faktury zakupowej Rejestracja faktury zakupowej z pozycjami towarowymi. Instrukcja użytkownika Obszar Logistyka Rejestracja faktury zakuowej Rejestracja faktury zakuowej z ozycjami towarowymi Instrukcja użytkownika 1 Sis treści SPIS TREŚCI... 2 NAWIGACJA PO SYSTEMIE... 3 1. Podstawowa nawigacja

Bardziej szczegółowo

138 Forum Bibl. Med. 2011 R. 4 nr 1 (7)

138 Forum Bibl. Med. 2011 R. 4 nr 1 (7) Dr Tomasz Milewicz, Barbara Latała, Iga Liińska, dr Tomasz Sacha, dr Ewa Stochmal, Dorota Pach, dr Danuta Galicka-Latała, rof. dr hab. Józef Krzysiek Kraków - CM UJ rola szkoleń w nabywaniu umiejętności

Bardziej szczegółowo

ODPOWIEDZI NA PYTANIA. Dotyczy przetargu nieograniczonego na zakup sterylizatora parowego w formie leasingu finansowego (znak sprawy 75/13)

ODPOWIEDZI NA PYTANIA. Dotyczy przetargu nieograniczonego na zakup sterylizatora parowego w formie leasingu finansowego (znak sprawy 75/13) ublin, dn. 6.08.0r. ODPOWIEDZI NA PYTANIA Dotyczy rzetargu nieograniczonego na zaku sterylizatora arowego w formie leasingu finansowego (znak srawy 75/) Działając zgodnie z art. 8 ust. ustawy Prawo zamówień

Bardziej szczegółowo

Obliczanie i badanie obwodów prądu trójfazowego 311[08].O1.05

Obliczanie i badanie obwodów prądu trójfazowego 311[08].O1.05 - 0 - MINISTERSTWO EDUKACJI i NAUKI Teresa Birecka Obliczanie i badanie obwodów rądu trójazowego 3[08].O.05 Poradnik dla ucznia Wydawca Instytut Technologii Eksloatacji Państwowy Instytut Badawczy Radom

Bardziej szczegółowo

Dynamiczne struktury danych: listy

Dynamiczne struktury danych: listy Dynamiczne struktury danych: listy Mirosław Mortka Zaczynając rogramować w dowolnym języku rogramowania jesteśmy zmuszeni do oanowania zasad osługiwania się odstawowymi tyami danych. Na rzykład w języku

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Obliczanie pali obciążonych siłami poziomymi

Obliczanie pali obciążonych siłami poziomymi Obliczanie ali obciążonych siłami oziomymi Obliczanie nośności bocznej ali obciążonych siłą oziomą Srawdzenie sztywności ala Na to, czy dany al można uznać za sztywny czy wiotki, mają wływ nie tylko wymiary

Bardziej szczegółowo

Opis techniczny. Strona 1

Opis techniczny. Strona 1 Ois techniczny Strona 1 1. Założenia dla instalacji solarnej a) lokalizacja inwestycji: b) średnie dobowe zużycie ciełej wody na 1 osobę: 50 [l/d] c) ilość użytkowników: 4 osób d) temeratura z.w.u. z sieci

Bardziej szczegółowo

MECHANIK NR 3/2015 59

MECHANIK NR 3/2015 59 MECHANIK NR 3/2015 59 Bogusław PYTLAK 1 toczenie, owierzchnia mimośrodowa, tablica krzywych, srzężenie osi turning, eccentric surface, curve table, axis couling TOCZENIE POWIERZCHNI MIMOŚRODOWYCH W racy

Bardziej szczegółowo

Podstawy Obliczeń Chemicznych

Podstawy Obliczeń Chemicznych Podstawy Obliczeń Chemicznych Korekta i uzuełnienia z dnia 0.10.009 Autor rozdziału: Łukasz Ponikiewski Rozdział. Prawa Gazowe.1. Warunki normalne.1.1. Objętość molowa gazów rawo Avogadro.1.. Stała gazowa..

Bardziej szczegółowo

Karolina Napierała Wojciech Otto

Karolina Napierała Wojciech Otto Kalkulaca rezerw w ubezieczeniach maątkowych w oarciu o teorię zaufania, z równoczesnym r wykorzystaniem danych o odszkodowaniach wyłaconych i rezerwie liczone metodą indywidualną Karolina Naierała Wociech

Bardziej szczegółowo

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera.

Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. 1 Plan wykładu: 1) Pojęcie stacjonarności i niestacjonarności zmiennych 2) Testowanie integracji 3) Pojęcie kointegracji metoda Engle a-grangera. Pojęcie stacjonarności i niestacjonarności zmiennych Szereg

Bardziej szczegółowo

CHARAKTERYSTYKI ZŁOŻONYCH UKŁADÓW Z TURBINAMI GAZOWYMI

CHARAKTERYSTYKI ZŁOŻONYCH UKŁADÓW Z TURBINAMI GAZOWYMI CHARAERYSYI ZŁOŻOYCH UŁADÓW Z URBIAMI AZOWYMI Autor: rzysztof Badyda ( Rynek Energii nr 6/200) Słowa kluczowe: wytwarzanie energii elektrycznej, turbina gazowa, gaz ziemny Streszczenie. W artykule rzedstawiono

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Warunki i tryb rekrutacji na studia w roku akademickim 2010/2011 w Akademii Morskiej w Szczecinie

Warunki i tryb rekrutacji na studia w roku akademickim 2010/2011 w Akademii Morskiej w Szczecinie Załącznik nr 1 do Uchwały nr 10/009 Senatu Akademii Morskiej w Szczecinie z dnia 7.05.009 r. Warunki i tryb rekrutacji na studia w roku akademickim 010/011 w Akademii Morskiej w Szczecinie Niniejsze zasady

Bardziej szczegółowo

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego.

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego. owanie dynamicznych systemów biocybernetycznych Wykład nr 9 z kursu Biocybernetyki dla Inżynierii Biomedycznej rowadzonego rzez Prof. Ryszarda Tadeusiewicza Dotychczas rozważane były głownie modele biocybernetyczne

Bardziej szczegółowo

This article is available in PDF-format, in coloured version, at: www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne.html

This article is available in PDF-format, in coloured version, at: www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne.html Z. Surma, Z. Leciejewski, A. Dzik, M. Białek This article is available in PDF-format, in coloured version, at: www.wydawnictwa.io.waw.l/materialy-wysokoenergetyczne.html Materiały Wysokoenergetyczne /

Bardziej szczegółowo

PROBLEM ODŻELAZIANIA WÓD W GEOTERMALNYCH NA CELE BALNEOLOGICZNE I REKREACYJNE. Problem żelaza w wodach geotermalnych

PROBLEM ODŻELAZIANIA WÓD W GEOTERMALNYCH NA CELE BALNEOLOGICZNE I REKREACYJNE. Problem żelaza w wodach geotermalnych PROBLEM ODŻELAZIANIA WÓD W GEOTERMALNYCH NA CELE BALNEOLOGICZNE I REKREACYJNE Iwona Kłosok-Bazan Politechnika Oolska Science for Industry: Necessity is the mother of invention Second Networking Event in

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 12 (84) AKADEMII MORSKIEJ Szczecin 2007

ZESZYTY NAUKOWE NR 12 (84) AKADEMII MORSKIEJ Szczecin 2007 ISSN 1733-8670 ZESZYTY NAUKOWE NR 12 (84) AKADEMII MORSKIEJ Szczecin 2007 WYDZIAŁ INŻYNIERYJNO-EKONOMICZNY TRANSPORTU Anna Białas Motyl Przewozy ładunków transportem śródlądowym i praca przewozowa w krajach

Bardziej szczegółowo

Syntetyczna ocena dystansu Polski od krajów Unii Europejskiej na podstawie wybranych aspektów ochrony środowiska

Syntetyczna ocena dystansu Polski od krajów Unii Europejskiej na podstawie wybranych aspektów ochrony środowiska Katarzyna Warzecha * Syntetyczna ocena dystansu Polski od krajów Unii Europejskiej na podstawie wybranych aspektów ochrony środowiska Wstęp Celem opracowania jest ocena pozycji Polski na tle krajów UE

Bardziej szczegółowo

Dodatek 2. Wielowymiarowe modele GARCH

Dodatek 2. Wielowymiarowe modele GARCH Dodatek 2. Wielowymiarowe modele GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 2) Modele MGARCH 1 / 15 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu MGARCH {y t }: y

Bardziej szczegółowo

Wskaźnik smukłości a wysklepienie podłużne stóp studentów

Wskaźnik smukłości a wysklepienie podłużne stóp studentów 98 Hygeia Public Health 2014, 49(1): 98-102 a wyskleienie odłużne stó studentów Index of slenderness vs. longitudinal arch of students feet Ewa Puszczałowska-Lizis Instytut Fizjoteraii, Wydział Medyczny,

Bardziej szczegółowo

SPIS TREŚCI. 1. WSTĘP 1. Wyjście naprzeciw potrzebom dzisiejszej informatyki 2. Koncepcje badawcze i teza pracy

SPIS TREŚCI. 1. WSTĘP 1. Wyjście naprzeciw potrzebom dzisiejszej informatyki 2. Koncepcje badawcze i teza pracy AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I ELEKTRONIKI Adrian Horzyk owe metody uczenia sieci neuronowych bez srzężeń zwrotnych Praca doktorska

Bardziej szczegółowo

Wybrane determinanty jakości życia w cukrzycy

Wybrane determinanty jakości życia w cukrzycy Borgis Wybrane determinanty jakości życia w cukrzycy *Helena Motyka 1, Krystyna Stanisz-Wallis 2 1 Zakład Pedagogiki Medycznej, Wydział Nauk o Zdrowiu, Collegium Medicum, Uniwersytet Jagielloński, Kraków

Bardziej szczegółowo

NAFTA-GAZ, ROK LXIX, Nr 8 / 2013

NAFTA-GAZ, ROK LXIX, Nr 8 / 2013 NAFTA-GAZ, ROK LXIX, Nr 8 / 2013 Robert Wojtowicz Instytut Nafty i Gazu Ocena gazu granicznego G21 od kątem jego rzydatności do określenia jakości salania gazów ziemnych wysokometanowych ochodzących z

Bardziej szczegółowo

(x j x)(y j ȳ) r xy =

(x j x)(y j ȳ) r xy = KORELACJA. WSPÓŁCZYNNIKI KORELACJI Gdy w badaniu mamy kilka cech, często interesujemy się stopniem powiązania tych cech między sobą. Pod słowem korelacja rozumiemy współzależność. Mówimy np. o korelacji

Bardziej szczegółowo

BADANIE KOINTEGRACJI POWIATOWYCH STÓP BEZROBOCIA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM

BADANIE KOINTEGRACJI POWIATOWYCH STÓP BEZROBOCIA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Barbara Batóg Uniwersytet Szczeciński BADANIE KOINTEGRACJI POWIATOWYCH STÓP BEZROBOCIA W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM Streszczenie W artykule

Bardziej szczegółowo

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP

Do Szczegółowych Zasad Prowadzenia Rozliczeń Transakcji przez KDPW_CCP Załączni nr Do Szczegółowych Zasad Prowadzenia Rozliczeń Transacji rzez KDPW_CCP Wyliczanie deozytów zabezieczających dla rynu asowego (ozycje w acjach i obligacjach) 1. Definicje Ileroć w niniejszych

Bardziej szczegółowo

Gradacyjna analiza danych. Instytut Podstaw Informatyki PAN Wiesław Szczesny Emilia Jarochowska

Gradacyjna analiza danych. Instytut Podstaw Informatyki PAN Wiesław Szczesny Emilia Jarochowska Gradacyjna analiza danych Instytut Podstaw Informatyki PAN Wiesław Szczesny Emilia Jarochowska Gradacyjna analiza danych Grade Correspondence Analysis Pomiar koncentracji, nadreprezentacja,, GCA Przykład

Bardziej szczegółowo

Tendencje w rozwoju sektora usług w Polsce w latach 2000 2006

Tendencje w rozwoju sektora usług w Polsce w latach 2000 2006 Jan Hybel Katedra Ekonomii i Polityki Gospodarczej SGGW Tendencje w rozwoju sektora usług w Polsce w latach 20002006 Wstęp Jedną z najważniejszych zmian obserwowanych w strukturze współczesnej gospodarki

Bardziej szczegółowo

Hydraulika i Pneumatyka

Hydraulika i Pneumatyka Hydraulika i Pneumatyka ukazuje się od roku 1980 dwumiesięcznik naukowo-techniczny O R G A N S T O WA R Z Y S Z E N I A I N Ż Y N I E R Ó W I T E C H N I KÓ W E C H A N I KÓ W P O L S K I C H ELEENTY I

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 429 EKONOMICZNE PROBLEMY TURYSTYKI NR 7 2006 RAFAŁ CZYŻYCKI, MARCIN HUNDERT, RAFAŁ KLÓSKA STATYSTYCZNA ANALIZA ZMIAN LICZBY HOTELI W POLSCE W LATACH 1995-2004

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Bariery uprawiania turystyki przez osoby niepełnosprawne w kontekście statusu materialnego Krzysztof Kaganek 1

Bariery uprawiania turystyki przez osoby niepełnosprawne w kontekście statusu materialnego Krzysztof Kaganek 1 PRACA ORYGINALNA Medycyna Ogólna i Nauki o Zdrowiu, 2015, Tom 21, Nr 1, 77 83 www.monz.l Bariery urawiania turystyki rzez osoby nieełnosrawne w kontekście statusu materialnego Krzysztof Kaganek 1 Akademia

Bardziej szczegółowo

MATERIAŁY I STUDIA. Wykresy wachlarzowe inflacji a różne wymiary niepewności. Zeszyt nr 273. Halina Kowalczyk. Warszawa, 2012 r.

MATERIAŁY I STUDIA. Wykresy wachlarzowe inflacji a różne wymiary niepewności. Zeszyt nr 273. Halina Kowalczyk. Warszawa, 2012 r. MATERIAŁY I STUDIA Zeszyt nr 73 Wykresy wachlarzowe inflacji a różne wymiary nieewności Halina Kowalczyk Warszawa, 0 r. Wykresy wachlarzowe inflacji a różne wymiary nieewności Halina Kowalczyk Instytut

Bardziej szczegółowo

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH

ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Małgorzata Szerszunowicz Uniwersytet Ekonomiczny w Katowicach ANALIZA ZDOLNOŚCI PROCESU O ZALEŻNYCH CHARAKTERYSTYKACH Wprowadzenie Statystyczna kontrola jakości ma na celu doskonalenie procesu produkcyjnego

Bardziej szczegółowo

11 lat polskiej emigracji zarobkowej w Unii Europejskiej

11 lat polskiej emigracji zarobkowej w Unii Europejskiej 11 lat polskiej emigracji zarobkowej w Unii Europejskiej Raport Euro-Tax.pl Kwiecień 2015 W 11 lat Polacy zarobili 996 miliardów złotych w UE W ciągu 11 lat naszej obecności w strukturach Unii Europejskiej,

Bardziej szczegółowo

REJESTRACJA PANORAM WIDOKOWYCH W ZAKRESACH POZASPEKTRALNYCH JAKO NARZĘDZIE OCENY ATRAKCYJNOŚCI KRAJOBRAZU

REJESTRACJA PANORAM WIDOKOWYCH W ZAKRESACH POZASPEKTRALNYCH JAKO NARZĘDZIE OCENY ATRAKCYJNOŚCI KRAJOBRAZU Agnieszka OZIMEK, Piotr ŁABĘDŹ KRAJOBRAZ A URYSYKA Prace Komisji Krajrazu Kulturowego Nr 14 Komisja Krajrazu Kulturowego PG, Sosnowiec, 1 Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki

Bardziej szczegółowo

Wyznaczenie kursu bezzałogowego statku powietrznego na podstawie danych GPS i INS

Wyznaczenie kursu bezzałogowego statku powietrznego na podstawie danych GPS i INS Pomiary utomatyka Robotyka, R. 19, Nr 4/2015, 63 68, DI: 10.14313/PR_218/63 Wyznaczenie kursu bezzałogowego statku owietrznego na odstawie danych GPS i INS Kamil Krasuski Zesół echnik Satelitarnych, ul.

Bardziej szczegółowo

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać:

RUCH DRGAJĄCY. Ruch harmoniczny. dt A zatem równanie różniczkowe ruchu oscylatora ma postać: RUCH DRGAJĄCY Ruch haroniczny Ruch, tóry owtarza się w regularnych odstęach czasu, nazyway ruche oresowy (eriodyczny). Szczególny rzyadie ruchu oresowego jest ruch haroniczny: zależność rzeieszczenia od

Bardziej szczegółowo

Związki bezpośrednich inwestycji zagranicznych ze zmianami struktury eksportu i importu w Polsce

Związki bezpośrednich inwestycji zagranicznych ze zmianami struktury eksportu i importu w Polsce Dr Wojciech Zysk Katedra Handlu Zagranicznego Akademii Ekonomicznej w Krakowie Związki bezpośrednich zagranicznych ze zmianami struktury eksportu i importu w Polsce W opracowaniu podjęta zostanie próba

Bardziej szczegółowo

Prezentacja do wykładu: Układy Naędowe I rof. dr hab. Inż. Wacław Kollek Zakład Naędów i Automatyki Hydraulicznej Instytut Konstrukcji i Eksloatacji Maszyn I-6 Politechnika Wrocławska Sis treści. Wrowadzenie

Bardziej szczegółowo

Zarz dzanie w wybranych obszarach sportu, turystyki i rekreacji pod red. Piotra Halemby

Zarz dzanie w wybranych obszarach sportu, turystyki i rekreacji pod red. Piotra Halemby Akademia Wychowania Fizycznego im. Jerzego Kukuczki w Katowicach Zarz dzanie w wybranych obszarach sortu, turystyki i rekreacji od red. Piotra Halemby Katowice 2011 KOMITET WYDAWNICZY: rof. dr hab. Janusz

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Teorie migracji Ekonomiczno społeczne skutki migracji Otwarcie niemieckiego rynku pracy:

Teorie migracji Ekonomiczno społeczne skutki migracji Otwarcie niemieckiego rynku pracy: Łukasz Pokrywka 23.05.2011 Teorie migracji Ekonomiczno społeczne skutki migracji Otwarcie niemieckiego rynku pracy: o Emigracja Polaków po przystąpieniu do UE o Sytuacja społeczno-gospodarcza Niemiec o

Bardziej szczegółowo

Analiza porównawcza poziomu rozwoju społeczno-gospodarczego Polski na tle krajów Unii Europejskiej i krajów do niej kandydujących

Analiza porównawcza poziomu rozwoju społeczno-gospodarczego Polski na tle krajów Unii Europejskiej i krajów do niej kandydujących Dr Małgorzata Stec Wydział Ekonomii Uniwersytetu Rzeszowskiego Analiza porównawcza poziomu rozwoju społeczno-gospodarczego Polski na tle krajów Unii Europejskiej i krajów do niej kandydujących Wprowadzenie

Bardziej szczegółowo

Konstrukcja miernika szans na bankructwo firmy

Konstrukcja miernika szans na bankructwo firmy Natalia Nehrebecka / Departament Statystyki Konstrukcja miernika szans na bankructwo firmy Statystyka Wiedza Rozwój, 17-18 października 2013 r. w Łodzi Konstrukcja miernika szans na bankructwo firmy 2

Bardziej szczegółowo

Badanie maszyn elektrycznych prądu przemiennego

Badanie maszyn elektrycznych prądu przemiennego Szkoła Główna Służby Pożarniczej Katedra Techniki Pożarniczej Zakład Elektroenergetyki Ćwiczenie: Badanie maszyn elektrycznych rądu rzemiennego Oracował: mł. bryg. dr inż. Piotr Kustra Warszawa 2011 1.Cel

Bardziej szczegółowo

A.Światkowski. Wroclaw University of Economics. Working paper

A.Światkowski. Wroclaw University of Economics. Working paper A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 2013 PAWEŁ JAMRÓZ Uniwersytet w Białymstoku EFEKTYWNOŚĆ WYBRANYCH FIO RYNKU AKCJI W LATACH 2003 2011 1 Streszczenie

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

Adam Tarnowski WALIDACJA PSYCHOLOGICZNYCH METOD OCENY PREDYSPOZYCJI DO ZAWODU KIEROWCY

Adam Tarnowski WALIDACJA PSYCHOLOGICZNYCH METOD OCENY PREDYSPOZYCJI DO ZAWODU KIEROWCY Anna Łuczak Centralny Instytut Ochrony Pracy Państwowy Instytut Badawczy Zakład Ergonomii Pracownia Fizjologii i Higieny Pracy Adam Tarnowski Wydział Psychologii Uniwersytet Warszawski Warszawa Studia

Bardziej szczegółowo

P O L I T E C H N I K A W A R S Z A W S K A

P O L I T E C H N I K A W A R S Z A W S K A P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ LABORATORIUM NAPĘDÓW I STEROWANIA HYDRAULICZNEGO I PNEUMATYCZNEGO Instrkcja do

Bardziej szczegółowo

Michał Maj WPŁYW KIERUNKU WSTĘPNEGO ODKSZTAŁCENIA NA PROCES MAGAZYNOWANIA ENERGII W POLIKRYSZTAŁACH

Michał Maj WPŁYW KIERUNKU WSTĘPNEGO ODKSZTAŁCENIA NA PROCES MAGAZYNOWANIA ENERGII W POLIKRYSZTAŁACH INSTYTUT PODSTAWOWYCH PROBLEMÓW TECHNIKI POLSKIEJ AKADEMII NAUK PRACA DOKTORSKA Michał Maj WPŁYW KIERUNKU WSTĘPNEGO ODKSZTAŁCENIA NA PROCES MAGAZYNOWANIA ENERGII W POLIKRYSZTAŁACH Promotor: dr hab. inż.

Bardziej szczegółowo

Joanna Muszyńska, Ewa Zdunek Uniwersytet Mikołaja Kopernika w Toruniu. Ekonometryczna analiza upadłości przedsiębiorstw w Polsce w latach 1990-2005

Joanna Muszyńska, Ewa Zdunek Uniwersytet Mikołaja Kopernika w Toruniu. Ekonometryczna analiza upadłości przedsiębiorstw w Polsce w latach 1990-2005 DYNAMICZNE MODELE EKONOMETRYCZNE X Ogólnopolskie Seminarium Naukowe, 4 6 września 2007 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Uniwersytet Mikołaja Kopernika

Bardziej szczegółowo

Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven

Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven Raport 8/2015 Analiza wpływu długości trwania strategii na proces optymalizacji parametrów dla strategii inwestycyjnych w handlu event-driven autor: Michał Osmoła INIME Instytut nauk informatycznych i

Bardziej szczegółowo

Straty mocy w liniach kablowych zasilających odbiorniki nieliniowe

Straty mocy w liniach kablowych zasilających odbiorniki nieliniowe Straty mocy w liniach kablowych zasilających odbiorniki nieliniowe Grzegorz Hołdyński, Jerzy Niebrzydowski Politechnika Białostocka 1. Wrowadzenie Wzrastający udział odbiorników elektronicznych w mocy

Bardziej szczegółowo

ANALIZA RYNKU USŁUG W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM

ANALIZA RYNKU USŁUG W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 450 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 17 2006 MONIKA ROZKRUT Uniwersytet Szczeciński ANALIZA RYNKU USŁUG W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM Usługi

Bardziej szczegółowo

Wykład z dnia 8 lub 15 października 2014 roku

Wykład z dnia 8 lub 15 października 2014 roku Wykład z dnia 8 lub 15 października 2014 roku Istota i przedmiot statystyki oraz demografii. Prezentacja danych statystycznych Znaczenia słowa statystyka Znaczenie I - nazwa zbioru danych liczbowych prezentujących

Bardziej szczegółowo

Wynagrodzenie minimalne w Polsce i w krajach Unii Europejskiej

Wynagrodzenie minimalne w Polsce i w krajach Unii Europejskiej Wynagrodzenie minimalne w Polsce i w krajach Unii Europejskiej Płaca minimalna w krajach unii europejskiej Spośród 28 państw członkowskich Unii Europejskiej 21 krajów posiada regulacje dotyczące wynagrodzenia

Bardziej szczegółowo

EKONOMETRIA PRZESTRZENNA

EKONOMETRIA PRZESTRZENNA EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1 EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

METODY OCENY DYNAMIKI PROCESÓW EKONOMICZNYCH

METODY OCENY DYNAMIKI PROCESÓW EKONOMICZNYCH Autor: Dr. WACŁAW KOTLIŃSKI Tytuł: METODY OCENY DYNAMIKI PROCESÓW EKONOMICZNYCH Na przykładzie międzynarodowego ruchu turystycznego Recenzja dr hab. Elżbieta Kondratowicz-Pietruszka prof. dr hab. Krzesław

Bardziej szczegółowo

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW

O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Rafał Czyżycki, Marcin Hundert, Rafał Klóska Wydział Zarządzania i Ekonomiki Usług Uniwersytet Szczeciński O LICZBIE ABONENTÓW TELEFONII KOMÓRKOWEJ W POLSCE ZDANIEM TRZECH STATYSTYKÓW Wprowadzenie Poruszana

Bardziej szczegółowo

ANALIZA SZCZECIŃSKIEGO RYNKU NIERUCHOMOŚCI W LATACH 2007 2010

ANALIZA SZCZECIŃSKIEGO RYNKU NIERUCHOMOŚCI W LATACH 2007 2010 STUDA PRACE WYDZAŁU NAUK EKONOMCZNYCH ZARZĄDZANA NR 26 Ewa Putek-Szeląg Uniwersytet Szczeciński ANALZA SZCZECŃSKEGO RYNKU NERUCHOMOŚC W LATACH 27 21 STRESZCZENE Niniejszy artykuł dotyczy analizy rynku

Bardziej szczegółowo

Młodzież podsądna i licealiści wobec zjawiska oszustw szkolnych Komunikat z badań

Młodzież podsądna i licealiści wobec zjawiska oszustw szkolnych Komunikat z badań R ESOCJALIZACJA POLSKA 9/2015 P OLISH J OURNAL OF SOCIAL REHABILITATION ISSN 2081-3767 e-issn 2392-2656 DONIESIENIA Z BADAŃ Małgorzata Parcheta-Kowalik, Alina Ukalisz Uniwersytet Marii Curie-Skłodowskiej

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA VOL.LX, SUPPL. XVI, 365 SECTIO D 2005

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA VOL.LX, SUPPL. XVI, 365 SECTIO D 2005 ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA VOL.L, SUPPL. VI, 365 SECTIO D 2005 1 Wyższa Szkoła Pedagogiki Resocjalizacyjnej Pedagogium w Warszawie Higher School of Pedagogics in Warsaw,

Bardziej szczegółowo

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących

Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Klasyfikacja w oparciu o metrykę budowaną poprzez dystrybuanty empiryczne na przestrzeni wzorców uczących Cezary Dendek Wydział Matematyki i Nauk Informacyjnych PW Plan prezentacji Plan prezentacji Wprowadzenie

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo

e-finanse : finansowy kwartalnik internetowy Nr 3/2005

e-finanse : finansowy kwartalnik internetowy Nr 3/2005 e-finanse : finansowy kwartalnik internetowy Nr 3/2005 www.e-finanse.com dr inż. Andrzej Chyliński Katedra Bankowości i Finansów Wyższa Szkoła Menedżerska w Warszawie Zarządzanie ryzykiem w rzedsiębiorstwie

Bardziej szczegółowo

Ocena nadzoru właścicielskiego Rating PINK 2010Y

Ocena nadzoru właścicielskiego Rating PINK 2010Y Ocena nadzoru właścicielskiego Rating PINK 2010Y analiza danych na dzień 20 czerwca 2011 roku W tym tygodniu Polski Instytut Nadzoru Korporacyjnego (PINK) postanowił po raz pierwszy opublikować stopy zwrotu

Bardziej szczegółowo

STYL ŻYCIA A FUNKCJONOWANIE POZNAWCZE OSÓB STARSZYCH. DONIESIENIE WSTĘPNE LIFESTYLE AND COGNITIVE FUNCTIONING IN OLDER PEOPLE. A PRELIMINARY STUDY

STYL ŻYCIA A FUNKCJONOWANIE POZNAWCZE OSÓB STARSZYCH. DONIESIENIE WSTĘPNE LIFESTYLE AND COGNITIVE FUNCTIONING IN OLDER PEOPLE. A PRELIMINARY STUDY Nowiny Lekarskie 2012, 81, 1, 10 15 JOANNA PNIEWSKA 1, KRYSTYNA JARACZ 1, KRYSTYNA GÓRNA 1, ALINA CZAJKOWSKA 2, GRAŻYNA LICZBIŃSKA 3, DOROTA ŁOJKO 4, WIKTOR PAŁYS 4, ALEKSANDRA SUWALSKA 4 STYL ŻYCIA A

Bardziej szczegółowo

Program nauczania matematyki w szkole podstawowej

Program nauczania matematyki w szkole podstawowej 2 Program nauczania I Program nauczania matematyki w szkole odstawowej ZGODNY Z PODSTAWĄ PROGRAMOWĄ z dnia 23 grudnia 2008 roku Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska 1. Omówienie

Bardziej szczegółowo

The application of classic massage and magnetic therapy in treatment of chronic lower back pain

The application of classic massage and magnetic therapy in treatment of chronic lower back pain The alication of classic massage and magnetic theray in treatment of chronic lower back ain Zastosowanie masażu klasycznego i magnetoteraii w leczeniu rzewlekłych zesołów bólowych odcinka lędźwiowego kręgosłua

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo