10. BADANIE TRWAŁOŚCI OSTRZA

Wielkość: px
Rozpocząć pokaz od strony:

Download "10. BADANIE TRWAŁOŚCI OSTRZA"

Transkrypt

1 10. BADANIE RWAŁOŚCI OSRZA Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z zależnością trwałości ostrza od prędkości skrwania oraz od przyjętego kryterium stępienia ostrza Okres trwałości ostrza wiadomości wstępne ypy przebiegów bezpośrednich wskaźników zużycia w funkcji czasu przedstawiono na rys k VB B0 K K k płytki płaskie niepokrywane K płytki płaskie pokrywane K płytki z rowkiem K k K k rys ypy przebiegów zużycia w funkcji czasu K 0 równaniem: Przebieg zużycia ostrza w funkcji czasu skrawania po dotarciu ostrza można ogólnie opisać w' = C t w u (10.1) Z reguły czas docierania jest bardzo krótki i może być pominięty. Przyjmując to uproszczenie możemy całkowitą wartość zużycia zapisać jako: w = w + C t 0 w u (10.2) gdzie w - całkowita wartość zużycia, w 0 - wartość dotarcia (lub głębokość zwijacza wióra) Okres trwałości ostrza jest to czas skrawania do jego stępienia, tj. do osiągnięcia maksymalnej dopuszczalnej wartości określonego wskaźnika zużycia lub np. wykruszenie krawędzi skrawającej czy wyłamanie znacznego fragmentu ostrza. e ostatnie zjawiska nazywamy katastroficznym stępieniem ostrza. 10-1

2 Dopuszczalną (krytyczną) wartość zużycia ostrza lub jego wykruszenie czy wyłamanie nazywamy kryterium trwałości ostrza. Dobór kryterium trwałości zależy od dwu czynników. Po pierwsze powinno ono jak najlepiej charakteryzować stan nieprzydatności narzędzia do dalszej pracy. Po drugie musi być w danych warunkach możliwe do określenia. en drugi, praktyczny wzgląd jest z reguły dominujący. Możemy tu wyróżnić kilka sytuacji. 1. W pracach badawczych czy w trakcie opracowywania technologii produkcji wielkoseryjnej stosuje się bezpośrednie wskaźniki zużycia, przedstawione je rys Są one najbardziej obiektywne, mogą być zmierzone w najbardziej pewny sposób, wreszcie w sposób bezpośredni opisują zużycie ostrza. Kryterium trwałości jest więc w tym przypadku określoną wartością wybranego wskaźnika zużycia lub kombinacją takich wartości. 2. W produkcji jednostkowej czy remontowej, tam gdzie nadzór operatora obrabiarki jest stały i bezpośredni, kryteria trwałości ostrza wynikają z obserwacji strefy skrawania, czyli są oparte o pośrednie wskaźniki zużycia określane przez człowieka. Może to być kształt czy kolor wiórów, piski narzędzia (szczególnie wiertła), stan powierzchni obrobionej i inne wynikające z doświadczenia operatora. 3. W produkcji seryjnej nadzór operatora jest ograniczony. Dotyczy to zwłaszcza układów obróbkowych o zwiększonej autonomii jak linie automatyczne. W takich przypadkach w trakcie uruchamiania produkcji dobiera się właściwe warunki skrawania i określa możliwą do wykonania liczbę operacji. Należy przy tym uwzględnić losowy charakter okresu trwałości, o czym za chwilę. 4. W najbardziej nowoczesnych układach zautomatyzowanych jak elastyczne systemy obróbkowe, stosowane są znów pośrednie wskaźniki zużycia i wynikające z nich kryteria trwałości. ym razem jednak oparte są one nie na obserwacjach operatora lecz pomiarach wykonanych przez odpowiednie czujniki, opracowywanych następnie przez specjalistyczne układy diagnostyczne. Zagadnieniom tym poświecony jest rozdział 11-ty. 10-2

3 b KB KM A-A KF KE K κ r A rε A C VB C max B b/4 N VB N rys Bezpośrednie wskaźniki zużycia ostrza Zużycie ostrza, a zatem także okres trwałości jest wielkością w losową. Oznacza to, że ostrza kolejnych narzędzi pracujących w tych samych warunkach skrawania zużywają się nieco inaczej i ulegają stępieniu po różnym czasie (rys. 10.3a). Poszczególne okresy trwałości ostrza są w przybliżeniu symetrycznie rozproszone wokół wartości średniej. Liczne występowanie przedwczesnych, zwłaszcza katastroficznych stępień ostrza, prowadzące do wyraźnej niesymetryczności rozkładu świadczy o źle dobranych warunkach pracy. Zatem przy właściwych warunkach skrawania okres trwałości ostrza można opisać rozkładem normalnym. Odchylenie standardowe, będące miarą rozproszenia jest w przybliżeniu proporcjonalne do wartości średniej, zależnej od parametrów i innych warunków skrawania. Stąd praktyczną, wygodniejszą miarą rozproszenia jest współczynnik zmienności definiowany jako: V = σ (10.3) gdzie σ - odchylenie standardowe okresu trwałości ostrza, - średni okres trwałości ostrza 10-3

4 Jest on ważną miarą jakości narzędzi i poprawności doboru warunków skrawania. Dla dobrych narzędzi, przy właściwych warunkach skrawania nie powinien on przekraczać a) k _ czas skrawania b) Częstość występowania okresu trwałości P = α /2 z α σ P = 1- α z α σ P = α/2 α/2 _ okres trwałości ostrza rys Losowy charakter zużycia i trwałości ostrza W praktyce posługiwanie się średnim okresem trwałości właściwe jest tylko wtedy, gdy obróbka odbywa się pod bezpośrednim nadzorem operatora, który na bieżąco ocenia stan ostrza i wymienia je gdy jest stępione. Przy obróbce zautomatyzowanej, gdy nadzór taki nie występuje, a nie ma także układów diagnostyki stanu narzędzia, konieczny jest taki dobór parametrów skrawania, aby stępienie ostrza z założonym prawdopodobieństwem nie występowało przed upływem założonego czasu. aki czas nazywamy niezawodnym okresem trwałości ostrza i oznaczamy α/2, gdzie (1-α/2) jest prawdopodobieństwem, że ostrze nie ulegnie stępieniu przed upływem czasu α/2. Dla rozkładu normalnego = 0.5, co oznacza, że istnieje 50% prawdopodobieństwa, że ostrze nie ulegnie stępieniu przed upływem czasu skrawania równego. Pojęcia te zilustrowano na rys. 10.3b. Zakreskowane pole, pod krzywą częstości występowania okresów trwałości ostrza, równe jest prawdopodobieństwu (1-α) wstąpienia okresu trwałości z zakresu: = ± z α σ (10.4) gdzie σ - odchylenie standardowe okresu trwałości ostrza z α - kwantyl rzędu α rozkładu normalnego. 10-4

5 Szarym kolorem zaciemniono pola odpowiadające pozostałemu prawdopodobieństwu, że okres trwałości będzie większy lub mniejszy niż zawarty we wspomnianym zakresie. ak więc niezawodny okres trwałości ostrza można opisać zależnością: α/2 = - z α σ (10.5) Wykorzystując wprowadzone wyżej pojęcie współczynnika zmienności okresu trwałości mamy: α/2 = (1 - z α V ) (10.6) Przyjmując przykładowo, że współczynnik zmienności wynosi 0.1, otrzymamy: dla α=0.1, z α =1.645 czyli 0.05 =0.84 (dopuszczamy 5% ostrzy stępionych przedwcześnie) dla α=0.02, z α =2.326 czyli 0.05 =0.76 (dopuszczamy 1% ostrzy stępionych przedwcześnie) W rzeczywistości nie dysponujemy ani prawdziwą średnią, ani prawdziwym odchyleniem standardowym (współczynnikiem zmienności) lecz jedynie co najwyżej ich oszacowaniami. W takim przypadku rozkład normalny należy zastąpić rozkładem t-studenta, czyli w zależności (10.5 lub 10.6) zamiast z α zastosować krytyczną wartość tego rozkładu na poziomie istotności α przy liczbie stopni swobody równej (N - 1), oznaczanej jako t α;n-1. Pojęciem uzupełniającym dla okresu trwałości jest żywotność ostrza zwana czasem okresem trwania. Jest ona równa sumie okresów trwałości ostrza możliwych do wykorzystania dla danego narzędzia: Z = Σ = N (10.7) gdzie N - liczba okresów trwałości ostrza Zauważmy, że dla narzędzi przeostrzanych zależność ta przyjmie postać: Z = (N o +1) (10.8) gdzie N o - liczba przeostrzeń (narzędzie powinno być naostrzone fabrycznie) zaś dla płytek wieloostrzowych: Z = ηn O (10.9) gdzie N O - liczba ostrzy η - współczynnik wykorzystania ostrzy Współczynnik wykorzystania ostrzy występujący w ostatniej zależności jest mniejszy od jedności i uwzględnia utratę niektórych ostrzy ze względu na uszkodzenia płytki lub zbyt duże (katastroficzne) zużycie ostrza po drugiej stronie płytki. 10-5

6 Wyznaczanie zależności okresu trwałości ostrza od prędkości skrawania Zależność okresu trwałości ostrza od prędkości skrawania przedstawiono na rys Jest ona odwróconą zależnością w-v c z rys. 10.5, jako że wynika z wpływu prędkości na zużycie. Na rys zaznaczono dwa zakresy prędkości, którym odpowiadają opadające fragmenty krzywej. Z reguły wykorzystywany jest zakres 2. Przykładowe zależności zuzycia ostrza od czasu skrawania dla różnych prędkości przedstawiono na rys. 9. W niektórych przypadkach (gwintowanie, przeciąganie stali stopowych) wykorzystywany jest zakres pierwszy. Okres trwałości aylor stwierdził, że opadające części wykresu -v c w układzie podwójnie logarytmicznym można przedstawić w postaci prostej: y = c + k x (10.10) 1 2 prędkość skrawania gdzie y = log, x = log v c c = log C czyli: rys Zależność okresu trwałości ostrza od prędkości skrawania. log = log C + k log v c co po zdelogarytmowaniu daje: = C v c k (10.11) w ścieranie adhezja dyfuzja utlenianie deformacje plastyczne v c rys Zależność zuzycia ostrza od prędkości skrawania 10-6

7 log Stała C odpowiada (tylko matematycznie!) trwałości ostrza przy prędkości skrawania v c = 1 jest bardzo duża, a przez to niewygodna. Zauważmy, że zależność - v c przecina poziomą oś w punkcie ( = 1, v c = C v ), czyli C v jest (znowu tylko matematycznie) prędkością skrawania odpowiadającą okresowi trwałości = 1. Zachodzi zatem: arctg k =1 logc log v c v rys Zależność aylora logc k = C = C v k (10.12) logcv Podstawiając powyższe do (10.11) otrzymamy : = C -k v v k c (10.13) a stąd równanie aylora: 1 v k c = Cv (10.14) Równanie to wykorzystywane będzie w dwu postaciach użytkowych: oraz k v = c Cv (10.15) 1 k vc = Cv (10.16) Zależność -v c wyznaczyć można na podstawie co najmniej ośmiu prób prowadzonych przy 4 5 prędkościach skrawania. Należy przy tym zadbać o to, by uzyskiwane okresy trwałości ostrza leżały w racjonalnym zakresie, zwłaszcza niedopuszczalne jest przyjmowanie prób, w których okres ten jest bardzo krótki. Samą zależność wyznacza się statystyczne metodą najmniejszych kwadratów (MNK). Przed przystąpieniem do obliczeń należy dane pierwotne zakodować, czyli sprowadzić wzór aylora do równania prostej (10.10). Nie miejsce tu na wykład ze statystyki, stąd jedynie przypomnienie, że stałe aylora wyznacza się z równań: ( ) $ xy x y N k = log C 2 2 x x N v y = x k (10.17) gdzie: y = log, x = log v c, N - liczba prób. x $k - oszacowana wartość k, = x N - średnia wartość x y= y N - średnia wartość y 10-7

8 Zależność aylora można też wyznaczyć wykreślnie, co jest często wystarczające do celów praktycznych. Najwygodniej posłużyć się w tym celu papierem logarytmicznym Przykład 10.1: przy obróbce stali 45 nożem ( min) xx składanym CSRNR z płytką SNUN z węglików spiekanych gatunku S30S, z posuwem f = 0.33 mm/obr, i głębokością a x skrawania a p = 2.5 mm uzyskano następujące wyniki prób dla kryterium stępienia K k = 0.25 mm: 8 6 x x b v c ( m/min) k = -a/b = -6.96, C = 270 v rys Wykreślne wyznaczanie zależności - v c 10-8

9 v c (m/min) (min) Wyniki tych pomiarów naniesiono na skalę logarytmiczną (rys. 10.7) Warto przypomnieć, że skalę logarytmiczną można pomnożyć przez dowolną liczbę, nie wolno natomiast do niej dodawać. W przykładzie na rysunku skalę prędkości pomnożono przez 50, dzięki czemu tak przysunięto tworzony wykres, by punkty leżały na gęściejszym obszarze siatki. Przez punkty przeprowadzono prostą ( na oko ), a miejscu, w którym przecina ona oś odciętych na poziomie odpowiadającym = 1 min określono stałą C v =270 oraz wyznaczono współczynnik kierunkowy prostej k = -a/b = Stałe aylora otrzymane statystycznie dla tych danych mają wartości (wraz z przedziałami ufności na poziomie 95%): 408 k= C v = Jak widać wyniki otrzymane metodą wykreślną mieszczą się w statystycznych przedziałach ufności. Ogólnie można stwierdzić, iż stała C v zależy od materiału obrabianego i innych warunków skrawania, zaś wykładnik k przede wszystkim od materiału ostrza i kryterium stępienia. Dla narzędzi ze stali szybkotnących jest on rzędu -8-12, dla węglików spiekanych rzędu -2-6, zaś dla narzędzi ceramicznych rzędu Wartości te wskazują na wrażliwość trwałości na zmiany prędkości skrawania dla różnych materiałów narzędziowych. Największa jest ona dla stali szybkotnących - tu zmiana prędkości skrawania rzędu 10% powoduje ok. dwukrotną zmianę trwałości ostrza. 10-9

10 log VBB >k K=K k K =k K<K k =k K=K k =k K>K k VBB <k K=K k v v v c1 c2 c3 log v c rys Wpływ kryterium stępienia na zależność -v c. Zależność wykładnika k od kryterium stępienia ilustruje rys Nachylenie prostej aylora jest wyższe gdy kryterium stępienia jest głębokość żłobka na powierzchni natarcia K, niż w przypadku szerokości starcia na powierzchni przyłożenia. Wynika to z silniejszego wpływu dyfuzji na zużycie kraterowe, a jak stwierdzono wyżej, dyfuzja występuje przy wyższych prędkościach skrawania Na rysunku 10.8 zaznaczono trzy prędkości skrawania oraz odpowiadające im punkty na zależnościach aylora dla obu kryteriów stępienia. Dla najniższej z nich - v c1 po czasie skrawania odpowiadającym okresowi trwałości ostrza określanemu wg, głębokość żłobka na powierzchni natarcia jest oczywiście mniejsza niż dopuszczalna, jako że trwałość ostrza dla tego kryterium jest przy prędkości v c1 wyższa. Z drugiej strony po osiągnięciu K k starcie na powierzchni przyłożenia przekracza wartość dopuszczalną. Odwrotnie jest przy prędkości v c3 - tu dyfuzja powoduje znacznie szybsze zużywanie się powierzchni natarcia i osiągnięcie przez K kryterium stępienia, gdy starcie na powierzchni przyłożenia jest mniejsze od wartości dopuszczalnej. Wynika stąd, że jeśli przecięcie prostych aylora odpowiadających różnym kryteriom stępienia występuje w stosowanym zakresie prędkości skrawania, należy posługiwać się złożoną (łamaną) zależnością -v c zaznaczoną na rys pogrubieniem

11 v c1 > v c2 > v c3 > v c4 > v c5 v c1 v c2 v c3 v c4 v c rys Zależność zużycia ostrza od czasu skrawania dla różnych prędkości skrawania 10-11

6. BADANIE TRWAŁOŚCI NARZĘDZI SKRAWAJĄCYCH. 6.1 Cel ćwiczenia. 6.2 Wprowadzenie

6. BADANIE TRWAŁOŚCI NARZĘDZI SKRAWAJĄCYCH. 6.1 Cel ćwiczenia. 6.2 Wprowadzenie 6. BADANIE TRWAŁOŚCI NARZĘDZI SKRAWAJĄCYCH 6.1 Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się studentów z metodami badań trwałości narzędzi skrawających. Uwaga: W opracowaniu sprawozdania

Bardziej szczegółowo

5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH. 5.1 Cel ćwiczenia. 5.2 Wprowadzenie

5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH. 5.1 Cel ćwiczenia. 5.2 Wprowadzenie 5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH 5.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z formami zużywania się narzędzi skrawających oraz z wpływem warunków obróbki na przebieg zużycia. 5.2 Wprowadzenie

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Zużycie i trwałość ostrza Technologie Materiałów Konstrukcyjnych i Wielofunkcyjnych Ć2:

Bardziej szczegółowo

L a b o r a t o r i u m ( h a l a 2 0 Z O S )

L a b o r a t o r i u m ( h a l a 2 0 Z O S ) Politechnika Poznańska Instytut echnologii Mechanicznej Wydział: BMiZ Studium: niestacjonarne/ii stopień Kierunek: MiBM, IME Rok akad.: 016/17 Liczba godzin 15 E K S P L O A A C J A N A R Z Ę D Z I S K

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Katalogowy dobór narzędzi i parametrów obróbki Nr ćwiczenia : 10 Kierunek:

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Przedmiot: Temat ćwiczenia: Obróbka skrawaniem i narzędzia Toczenie cz. II Numer ćwiczenia: 3 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studenta z parametrami

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Przedmiot: Temat ćwiczenia: Obróbka skrawaniem i narzędzia Toczenie cz. II Numer ćwiczenia: 3 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studenta z parametrami

Bardziej szczegółowo

OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA. Ćwiczenie nr 6

OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA. Ćwiczenie nr 6 OBRÓBKA SKRAWANIEM Ćwiczenie nr 6 DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA opracowali: dr inż. Joanna Kossakowska mgr inż. Maciej Winiarski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK WYTWARZANIA

Bardziej szczegółowo

Dobór parametrów dla frezowania

Dobór parametrów dla frezowania Dobór parametrów dla frezowania Wytyczne dobru parametrów obróbkowych dla frezowania: Dobór narzędzia. W katalogu narzędzi naleŝy odszukać narzędzie, które z punktu widzenia technologii umoŝliwi zrealizowanie

Bardziej szczegółowo

passion passion for precision for precision Wiertło Supradrill U

passion passion for precision for precision Wiertło Supradrill U passion passion for precision for precision Wiertło Supradrill U Wiertło Supradrill U do obróbki stali i stali nierdzewnej Wiertło kręte Supradrill U to wytrzymałe narzędzie z węglika spiekanego zaprojektowane

Bardziej szczegółowo

Budowa i zastosowanie narzędzi frezarskich do obróbki CNC.

Budowa i zastosowanie narzędzi frezarskich do obróbki CNC. Budowa i zastosowanie narzędzi frezarskich do obróbki CNC. Materiały szkoleniowe. Sporządził mgr inż. Wojciech Kubiszyn 1. Frezowanie i metody frezowania Frezowanie jest jedną z obróbek skrawaniem mającej

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA Techniki Wytwarzania Ć1: Budowa narzędzi tokarskich

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 3

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 3 Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Toczenie cz. II KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 3 Kierunek: Mechanika i Budowa Maszyn

Bardziej szczegółowo

Temat: NAROST NA OSTRZU NARZĘDZIA

Temat: NAROST NA OSTRZU NARZĘDZIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Rajmund Rytlewski, dr inż.

Rajmund Rytlewski, dr inż. Rajmund Rytlewski, dr inż. starszy wykładowca Wydział Mechaniczny PG Katedra Technologii Maszyn i Automatyzacji Produkcji p. 240A (bud. WM) Tel.: 58 3471379 rajryt@mech.pg.gda.pl http://www.rytlewski.republika.pl

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

Trzpieniowe 6.2. Informacje podstawowe

Trzpieniowe 6.2. Informacje podstawowe 6. Trzpieniowe Informacje podstawowe 6 Trzpieniowe Narzędzia trzpieniowe wykonywane w formie frezów z lutowanymi ostrzami HSS lub HM, głowic z wymienną płytką oraz frezów spiralnych, monolitycznych. Frezy

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności Informacje ogólne Założenia dotyczące stanu granicznego nośności przekroju obciążonego momentem zginającym i siłą podłużną, przyjęte w PN-EN 1992-1-1, pozwalają na ujednolicenie procedur obliczeniowych,

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

AKTUALNOŚCI B194P Płytki z cermetalu z powłoką PVD do obróbki stali MP3025. Zapewniają doskonałą gładkość powierzchni po obróbce

AKTUALNOŚCI B194P Płytki z cermetalu z powłoką PVD do obróbki stali MP3025. Zapewniają doskonałą gładkość powierzchni po obróbce AKTUALNOŚCI Płytki z cermetalu z powłoką PVD do obróbki stali 3025 2014.01 B194P Zapewniają doskonałą gładkość powierzchni po obróbce Płytki z cermetalu z powłoką PVD do obróbki stali Płytki z cermetalu

Bardziej szczegółowo

ĆWICZENIE NR Materiały pomocnicze do wykonania zadania

ĆWICZENIE NR Materiały pomocnicze do wykonania zadania ĆWICZENIE NR 2 2. OBRÓBKA TARCZY NA TOKARCE 2.1. Zadanie technologiczne Dla zadanej rysunkiem wykonawczym tarczy wykonać : - Plan operacyjny obróbki tokarskiej, wykonywanej na tokarce kłowej TUR-50. -

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Komputerowy dobór narzędzi i parametrów obróbki w procesie toczenia Nr

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

Gwinty drobnozwojne. Zarys częściowy płaska powierzchnia natarcia (NTF i NTK): Zarys częściowy. kontrola wiórów (NT-K): Gwinty drobnozwojne

Gwinty drobnozwojne. Zarys częściowy płaska powierzchnia natarcia (NTF i NTK): Zarys częściowy. kontrola wiórów (NT-K): Gwinty drobnozwojne poradnik zastosowania Top Notch do toczenia zewnętrznych Rozmiary oprawek z chwytem o przekroju kwadratowym: Metryczne 10 32 mm gwintu UN: 32 Minimalny skok gwintu ISO: 1,5 mm gwintu UN: 7 Maksymalny skok

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

ĆWICZENIE NR Materiały pomocnicze do wykonania zadania

ĆWICZENIE NR Materiały pomocnicze do wykonania zadania ĆWICZENIE NR 3 3. OBRÓBKA TULEI NA TOKARCE REWOLWEROWEJ 3.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym tulei wykonać : - Plan operacyjny obróbki tokarskiej, wykonywanej na tokarce rewolwerowej

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

CZAS WYKONANIA BUDOWLANYCH ELEMENTÓW KONSTRUKCJI STALOWYCH OBRABIANYCH METODĄ SKRAWANIA A PARAMETRY SKRAWANIA

CZAS WYKONANIA BUDOWLANYCH ELEMENTÓW KONSTRUKCJI STALOWYCH OBRABIANYCH METODĄ SKRAWANIA A PARAMETRY SKRAWANIA Budownictwo 16 Piotr Całusiński CZAS WYKONANIA BUDOWLANYCH ELEMENTÓW KONSTRUKCJI STALOWYCH OBRABIANYCH METODĄ SKRAWANIA A PARAMETRY SKRAWANIA Wprowadzenie Rys. 1. Zmiana całkowitych kosztów wytworzenia

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

POKRYWANE FREZY ZE STALI PROSZKOWEJ PM60. Idealne rozwiązanie dla problemów z wykruszaniem narzędzi węglikowych w warunkach wibracji i drgań

POKRYWANE FREZY ZE STALI PROSZKOWEJ PM60. Idealne rozwiązanie dla problemów z wykruszaniem narzędzi węglikowych w warunkach wibracji i drgań FREZY POKRYWANE FREZY ZE STALI PROSZKOWEJ PM60 Idealne rozwiązanie dla problemów z wykruszaniem narzędzi węglikowych w warunkach wibracji i drgań - Lepsza odporność na zużycie - Lepsza żywotność narzędzi

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Frezy UFJ Wiertła WDXC Płytki: węglikowe ceramiczne borazonowe OBRÓBKA INCONELU.

Frezy UFJ Wiertła WDXC Płytki: węglikowe ceramiczne borazonowe OBRÓBKA INCONELU. Frezy UFJ Wiertła WDXC Płytki: węglikowe ceramiczne borazonowe OBRÓBKA INCONELU DEDYKOWANE NARZĘDZIA DO INCONELU TIZ IMPLEMENTS Seria frezów UFJ Połączenie ultra-drobnego węglika o wysokiej wytrzymałości,

Bardziej szczegółowo

OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO TOCZENIA. Ćwiczenie nr 5. opracowała: dr inż. Joanna Kossakowska

OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO TOCZENIA. Ćwiczenie nr 5. opracowała: dr inż. Joanna Kossakowska OBRÓBKA SKRAWANIEM Ćwizenie nr 5 DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO TOCZENIA opraowała: dr inż. Joanna Kossakowska PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK WYTWARZANIA ZAKŁAD AUTOMATYZACJI,

Bardziej szczegółowo

QM - MAX. Wysokowydajne frezy do obróbki kopiowej i kształtowej DIJET INDUSTRIAL CO., LTD

QM - MAX. Wysokowydajne frezy do obróbki kopiowej i kształtowej DIJET INDUSTRIAL CO., LTD QM - MAX Wysokowydajne frezy do obróbki kopiowej i kształtowej DIJET INDUSTRIAL CO., LTD Właściwości produktu 1) Wysoka produktywność poprzez zastosowanie wielu ostrzy 2) Możliwość stosowania wysokich

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.

Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin. Statystyka w pracy badawczej nauczyciela Wykład 3: Analiza struktury zbiorowości statystycznej dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Zadania analityczne (1) Analiza przewiduje badanie podobieństw

Bardziej szczegółowo

Wykład 4: Statystyki opisowe (część 1)

Wykład 4: Statystyki opisowe (część 1) Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można

Bardziej szczegółowo

PRZECIĄGACZE.

PRZECIĄGACZE. Wzrost produktywności Poprawa jakości Bezkonkurencyjność Przepychacze Przeciągacze śrubowe Przeciągacze okrągłe Przeciągacze wielowypustowe Przeciągacze wielowypustowe o zarysie ewolwentowym Przeciągacze

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

UE6110 MC6025 UH6400 US735 HZ/HL/ HM/HX/ HV/HR TOOLS NEWS. Nowy system łamaczy wióra do obróbki ciężkiej

UE6110 MC6025 UH6400 US735 HZ/HL/ HM/HX/ HV/HR TOOLS NEWS. Nowy system łamaczy wióra do obróbki ciężkiej TOOLS NEWS B45P Nowy system łamaczy wióra do obróbki ciężkiej Przeznaczony specjalnie do obróbki cięzkiej stali nierdzewnych i stopowych. // HM/HX/ HV/HR Nowy system łamaczy wióra do obróbki ciężkiej //

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

FIZYKA LABORATORIUM prawo Ohma

FIZYKA LABORATORIUM prawo Ohma FIZYKA LABORATORIUM prawo Ohma dr hab. inż. Michał K. Urbański, Wydział Fizyki Politechniki Warszawskiej, pok 18 Gmach Fizyki, murba@if.pw.edu.pl www.if.pw.edu.pl/ murba strona Wydziału Fizyki www.fizyka.pw.edu.pl

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

OBRÓBK A S K R AW AN I E M L a b o r a t o r i u m ( h a l a 2 0 Z O S )

OBRÓBK A S K R AW AN I E M L a b o r a t o r i u m ( h a l a 2 0 Z O S ) Wydział: BMiZ Studium: stacjonarne I stopnia Semestr: 3 Kierunek: MCH Rok akad.:2016/17 Liczba godzin - 15 OBRÓBK A S K R AW AN I E M L a b o r a t o r i u m ( h a l a 2 0 Z O S ) Prowadzący: dr inż. Damian

Bardziej szczegółowo

Obliczanie parametrów technologicznych do obróbki CNC.

Obliczanie parametrów technologicznych do obróbki CNC. Obliczanie parametrów technologicznych do obróbki CNC. Materiały szkoleniowe. Opracował: mgr inż. Wojciech Kubiszyn Parametry skrawania Podczas obróbki skrawaniem można rozróżnić w obrabianym przedmiocie

Bardziej szczegółowo

Estymacja parametrów, przedziały ufności etc

Estymacja parametrów, przedziały ufności etc Estymacja parametrów, przedziały ufności etc Liniowa MNK przypomnienie Wariancja parametrów Postulat Bayesa: rozkłady p-stwa dla parametrów Przypadek nieliniowy Przedziały ufności Rozkłady chi-kwadrat,

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

PEŁNA WYDAJNOŚĆ DZIĘKI HAI-TECH (TECHNOLOGII ZĘBA REKINA)

PEŁNA WYDAJNOŚĆ DZIĘKI HAI-TECH (TECHNOLOGII ZĘBA REKINA) INNOWACJA Ceny bez VAT, obowiązują do 31.07.2016 roku PEŁNA WYDAJNOŚĆ DZIĘKI HAI-TECH (TECHNOLOGII ZĘBA REKINA) Zainspirowany przez naturę, nowy, wysokowydajny materiał na narzędzia skrawające GARANT HB

Bardziej szczegółowo

5 : mm. Główna krawędź skrawająca

5 : mm. Główna krawędź skrawająca Informacja techniczna System oznaczeń PB A M 5 R/L M Power Buster Kąt przyłożenia I/C Średnica narz. Kierunek Liczba ostrzy A : 5 Z : 0 Typ trzpienia M : Metryczny I : Calowy 5 : 5.75mm ØD : mm R : Prawy

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1 Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Geometria ostrzy narzędzi skrawających KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1 Kierunek: Mechanika

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

T E ND ENCJE W T E CHNI K ACH K S Z T AŁTUJ ĄCY CH

T E ND ENCJE W T E CHNI K ACH K S Z T AŁTUJ ĄCY CH : Studium: stacjonarne II stopnia : : ZiIP Rok akad.: 205/6 Liczba godzin - 5 T E ND ENCJE W T E CHNI K ACH K S Z T AŁTUJ ĄCY CH L a b o r a t o r i u m ( h a la 2 0 Z O S ) Prowadzący: dr inż. Damian

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1

XIXOLIMPIADA FIZYCZNA (1969/1970). Stopień W, zadanie doświadczalne D.. Znaleźć doświadczalną zależność T od P. Rys. 1 KOOF Szczecin: www.of.szc.pl XIXOLIMPIADA FIZYCZNA (1969/197). Stopień W, zadanie doświadczalne D. Źródło: Olimpiady fizyczne XIX i XX Autor: Waldemar Gorzkowski Nazwa zadania: Drgania gumy. Działy: Drgania

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

Ceramiczne materiały narzędziowe. Inteligentna i produktywna obróbka superstopów

Ceramiczne materiały narzędziowe. Inteligentna i produktywna obróbka superstopów Ceramiczne materiały narzędziowe Inteligentna i produktywna obróbka superstopów Skrawanie ostrzami ceramicznymi Zastosowania Ceramiczne gatunki płytek wieloostrzowych mogą być stosowane w szerokim zakresie

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy

Bardziej szczegółowo

1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM

1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM 1. POMIAR SIŁY HAMOWANIA NA STANOWISKU ROLKOWYM 1.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP obowiązujących w Laboratorium

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CIAŁA STAŁEGO Ć W I C Z E N I E N R FCS - 7 CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE

Bardziej szczegółowo

Narzędzia do toczenia poprzecznego

Narzędzia do toczenia poprzecznego Dragonskin 1335 / HCN1345 - toczenie stali 1335 i HCN1345 to nowe rodzaje powłok Dragonskin, jakie WNT wprowadza na rynek. Powłoka 1335 różni się od konkurencji nie tylko optycznie. Także jej wydajność

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS AKUSTYCZNY

ĆWICZENIE 3 REZONANS AKUSTYCZNY ĆWICZENIE 3 REZONANS AKUSTYCZNY W trakcie doświadczenia przeprowadzono sześć pomiarów rezonansu akustycznego: dla dwóch różnych gazów (powietrza i CO), pięć pomiarów dla powietrza oraz jeden pomiar dla

Bardziej szczegółowo