DMVPN, czyli Transport Independent Design dla IWAN. Adam Śniegórski Systems Engineer, CCIE R&S Solutions & Innovation
|
|
- Helena Janik
- 2 lat temu
- Przeglądów:
Transkrypt
1 DMVPN, czyli Transport Independent Design dla IWAN Adam Śniegórski Systems Engineer, CCIE R&S Solutions & Innovation
2 AVC MPLS 3G/4G-LTE ASR1000- AX Chmura prywatna Wirtualna chmura prywatna Oddział WAAS Akamai PfRv3 Internet Chmura publiczna Zarządzanie i orkiestracja Niezależność od transportu Inteligentna kontrola ścieżki Optymalizacja aplikacji Bezpieczeństwo informacji! Sieć nakładkowa (+IPSec)! Spójny model operacyjny! Optymalny routing aplikacji! Efektywne zużycie pasma! Monitorowanie aplikacji! Optymalizacja i caching! Szyfrowanie NG! Ochrona sieci DMVPN Performance Routing AVC, WAAS, Akamai Suite-B, CWS, ZBFW 2
3 Tradycyjnie IWAN Active/Standby Active/Active GETVPN/MPLS DMVPN/Internet Data Center ASR 1000 ASR 1000 Data Center ASR 1000 ASR 1000 DMVPN ISP A SP V ISP A SP V Dwie domeny rutingowe MPLS: ebgp lub Static Internet: ibgp, EIGRP lub OSPF Redystrybucja Ryzyko pętli DMVPN Internet GETVPN MPLS DMVPN Internet DMVPN MPLS Jedna domena rutingowa ibgp, EIGRP, lub OSPF ISR-G2 Branch ISR-G2 Branch 3
4 AVC PfR QoS Wybór ścieżki Overlay Routing Protocol (BGP, EIGRP) Routing klasyczny Transport Independent Design (DMVPN) Sieć nakładkowa MPLS Internet ZBFW CWS Warstwa transportowa 4
5 Funkcjonalność Standard IPSec GRE over IPSec DMVPN Typ Sieci Hub & Spoke mesh mała skala Hub & Spoke mesh mała skala Redundancja Failover Stateful Failover Routing Stateless Failover Hub & Spoke duża skala z dynamicznymi tunelami każdy-zkażdym Active/Active bazujące na dynamicznym routingu Kompatybilność Multivendor Multivendor Routery Cisco IP Multicast Brak wsparcia Wspierane Replikacja Multicast na hub QoS Wspierane Wspierane Per Tunnel QoS, Hub do Spoke Kontrola Polityki Zarządzane lokalnie Zarządzane lokalnie Zarządzane lokalnie Technologia Tunelowany VPN Tunele Punkt-Punkt IKEv1 Tunelowany VPN Tunele Punkt-Punkt IKEv1 Tunelowany VPN Tunel Multi-Point GRE IKEv1 Infrastruktura Sieciowa Transport Prywatny i Publiczny Transport Prywatny i Publiczny Transport Prywatny i Publiczny IPv6 5
6 Generic Route Encapsulation (GRE) (Protokół IP 47) Przenosi: IP broadcast, IP multicast, protokoły nie-ip GRE umożliwia zastosowanie (przenoszenie) adresacji prywatnej na bazie sieci publicznej Tworzy interfejs Przenosi protokoły routingu Wspiera mechanizm keepalive ów 6
7 L3 Tunel GRE Tunel IPsec IP HDR Dane IP HDR GRE HDR IP HDR Dane IP HDR ESP HDR IP HDR GRE HDR Zaszyfrowane IP HDR Dane IPsec (ESP) przenosi jedynie unicastowy ruch IP GRE zapewnia hermetyzację również ruchu L3 innego niż IP, oraz multicastów i broadcastów Przy szyfrowaniu IPSec tuneli GRE stosowany jest tryb tunelowy Trybu tunelowego IPsec używamy zamiast transportowego, bo: Przy wsparciu akceleratora sprzętowego jest tak naprawdę szybszy Nowa funkcjonalność (np. LAF) wymagają trybu tunelowego 7
8 /24.2 H Hub Internet Spoke /24 Spoke 2.2 H /24.2 H3 8
9 Tryb tunelowy crypto isakmp policy 1 authentication pre-share crypto isakmp key cisco47 address crypto isakmp key cisco48 address crypto ipsec transform-set trans2 esp-3des esp-md5-hmac mode tunnel Profil IPsec Ochrona ruchu na interfejsie GRE crypto ipsec profile vpnprof set transform-set trans2 interface Tunnel0 ip address ip mtu 1400 tunnel source GigabitEthernet0/0 tunnel destination tunnel protection ipsec profile vpnprof interface Tunnel1 ip address ip mtu 1400 tunnel source GigabitEthernet0/0 tunnel destination tunnel protection ipsec profile vpnprof interface GigabitEthernet0/0 ip address interface GigabitEthernet0/1 ip address router eigrp 1 network network auto-summary ip classless ip route
10 crypto isakmp policy 1 authentication pre-share crypto isakmp key cisco47 address Tryb tunelowy Profil IPsec Ochrona ruchu na interfejsie GRE crypto ipsec transform-set trans2 esp-3des esp-md5-hmac mode transport crypto ipsec profile vpnprof set transform-set trans2 interface Tunnel0 ip address ip mtu 1400 tunnel source FastEthernet0/0 tunnel destination tunnel protection ipsec profile vpnprof interface FastEthernet0/0 ip address interface FastEthenet0/1 ip address router eigrp 1 network network auto-summary ip classless ip route
11 crypto isakmp policy 1 authentication pre-share crypto isakmp key cisco48 address Tryb tunelowy Profil IPsec Ochrona ruchu na interfejsie GRE crypto ipsec transform-set trans2 esp-3des esp-md5-hmac mode transport crypto ipsec profile vpnprof set transform-set trans2 interface Tunnel0 ip address ip mtu 1400 tunnel source FastEthernet0/0 tunnel destination tunnel protection ipsec profile vpnprof interface FastEthernet0/0 ip address interface FastEthenet0/1 ip address router eigrp 1 network network auto-summary ip classless ip route
12 DMVPN czyli rozwiązanie działające w oparciu o Cisco IOS stworzone do budowania tuneli IPSec+GRE w prosty, dynamiczny i skalowalny sposób VPN Hub Spoke n Redukcja konfiguracji i wdrożenie bezdotykowe Spoke 1 Dynamiczne tunele typu spoke-to-spoke dla częściowej/pełnej topologii typu mesh Może być użyte bez szyfrowania IPSec (opcjonalnie) Różnorodność opcji i rozwiązań Spoke 2 Tunele dynamiczne Tunele statyczne Statyczny adres IP Dynamiczny adres IP 12
13 Umożliwia tworzenie dynamicznych topologii full-mesh lub partial-mesh na żądanie przy zachowaniu prostej konfiguracji gwiazdy VPN Hub Spoke n Wspiera oddziały z dynamicznym adresem na interfejsie WAN Spoke 1 Nie wymagają konfiguracji Hub a przy dodawaniu kolejnych oddziałów Automatyczne budowanie tuneli IPSEC inicjowane przez oddział Spoke 2 Tunele dynamiczne Tunele statyczne Statyczny adres IP Dynamiczny adres IP 13
14 Next Hop Resolution Protocol (NHRP) Proces NHRP Registration Procesy NHRP Resolution oraz NHRP Redirect Multipoint GRE Tunnel Interface (mgre) Jeden interfejs GRE wspiera wiele tuneli GRE/IPSec Eliminuje złożoność konfiguracji routera Szyfrowanie poprzez IPSec Tunnel Protection Dynamicznie tworzy i aplikuje reguły szyfrowania Procesy routingu Dynamiczny routing między węzłami Wiele protokołów: EIGRP, RIP, OSPF, BGP, ODR 14
15 Statyczne tunele Spoke-to-hub /24 Dynamiczne tunele Spoke-to-spoke Statyczny znany adres IP Dynamiczne nieznane adresy Spoke A /24 Physical: dynamic Tunnel0: Physical: Tunnel0: Spoke B Physical: dynamic Tunnel0: /24 15
16 Tunel Spoke-Hub Tunel Spoke-spoke Hub-and-spoke (Faza 1) Spoke-to-spoke (Faza 2) Podczas prezentacji omówimy fazę pierwszą oraz fazę drugą Hierarchia (Faza 3) 16
17 Faza (13)T Połączenia hub-to-spoke Interfejsy point-to-point GRE na spoke, mgre dla hub Uproszczona i mała konfiguracja hub Wsparcie dla dynamicznych IP CPEs (NAT) Wsparcie dla protokołów routingu i multicast Lokalizacje typu spoke nie wymagają pełnej tablicy routingu, sumaryzacja na hub Faza (4)T (Faza 1 +) Dodanie połączenia typu spoke-to-spoke Interfejsy mgre na spoke Bezpośrednia komunikacja spoke-to-spoke (redukcja przesyłu danych na hub) Router spoke musi posiadać pełną tablicę routingu; brak sumaryzacji Tunel spoke-to-spoke uruchamiany przez spoke Ograniczenia routingu Faza (6)T (Faza 2 +) Lepsza skalowalność Routery spoke nie wymagają pełnej tablicy routingu Tunel spoke-to-spoke wyzwalany przez hub Usunięcie ograniczeń protokołów routingu NHRP route/next-hops w RIB (15.2(1)T) 17
18 Spoke-to-hub tunnels Spoke-to-spoke tunnels 2547oDMVPN tunnels IWAN 1.0 Supported IWAN 1.0 Tested IWAN 2.0 Supported Hub and spoke (Phase 1) Spoke-to-spoke (Phase 2) VRF-lite IWAN 2.0 Supported Server Load Balancing Hierarchical (Phase 3) 2547oDMVPN 18
19 Routery oddziałowe rejestrują się w hubie jako klienci serwera NHRP (RFC 2332) używając statyczne mapowanie NHRP Hub tworzy dynamiczny wpis w tabeli NHRP i mapuje prywatny adres tunelu GRE spoke a do dynamicznego (lub statycznego) adresu publicznego spoke a Routery oddziałowe rozgłaszają swoje prywatne sieci LAN do huba a hub uczy się adresacji w poszczególnych spoke ach Tunele spoke-to-hub są tunelami dynamicznymi oraz permanentnymi VPN Brak tuneli spoke-to-spoke ruch między oddziałami przesyłany przez hub 19
20 Mapowanie NHRP Tablica routingu = Dynamiczne tunele IPsec Adr. fiz.: Tunnel0: / à à /24 à bezp /24 à /24 à Adr. fiz.: (dynamiczny) Adr. fiz.: (dynamiczny) 1726 Tunnel0: Tunnel0: /24 Spoke A Spoke B / à à /24 à /24 à /24 à bezp /24 à /24 à /24 à bezp. 20
21 Profil Crypto (brak peer a oraz ACL) Podsieć /24 Konfiguracja NHRP Routing w Hub and Spoke Tunel mgre Szyfrowanie tunelu Brak ACL i crypto map crypto ipsec profile vpnprof set transform-set t1 interface Tunnel0 bandwidth 1000 ip address ip mtu 1400 ip nhrp authentication test ip nhrp map multicast dynamic ip nhrp network-id ip nhrp holdtime 360 no ip split-horizon eigrp 1 ip summary-address eigrp /16 delay 1000 ip tcp adjust-mss 1360 tunnel source Serial1/0 tunnel mode gre multipoint tunnel key tunnel protection ipsec profile vpnprof interface Serial1/0 ip address
22 Profil Crypto (brak peer a oraz ACL) Podsieć /24 Konfiguracja NHRP Tunel p-pgre Szyfrowanie tunelu Brak ACL i crypto map crypto ipsec profile vpnprof set transform-set t1 interface Tunnel0 bandwidth 1000 ip address ip mtu 1400 ip nhrp authentication test ip nhrp map ip nhrp network-id ip nhrp holdtime 360 ip nhrp nhs delay 1000 tunnel source Serial1/0 ip tcp adjust-mss 1360 tunnel destination tunnel key tunnel protection ipsec profile vpnprof interface Serial1/0 ip address negotiated 22
23 Profil Crypto (brak peer a oraz ACL) Podsieć /24 Konfiguracja NHRP Tunel p-pgre Szyfrowanie tunelu Brak ACL i crypto map crypto ipsec profile vpnprof set transform-set t1 interface Tunnel0 bandwidth 1000 ip address ip mtu 1400 ip nhrp authentication test ip nhrp map ip nhrp network-id ip nhrp holdtime 360 ip nhrp nhs delay 1000 tunnel source Serial1/0 ip tcp adjust-mss 1360 tunnel destination tunnel key tunnel protection ipsec profile vpnprof interface Serial1/0 ip address negotiated 23
24 C C C D D /30 is directly connected, Serial1/ /24 is directly connected, Tunnel /24 is directly connected, Ethernet0/ /24 [90/ ] via , 22:39:04, Tunnel /24 [90/ ] via , 22:39:10, Tunnel0... S* /0 [1/0] via D /16 is a summary, 00:04:13, Null0 Hub C /30 is directly connected, Serial1/0 C /24 is directly connected, Tunnel0 C /24 is directly connected, Ethernet0/0 S* /0 is directly connected, Serial1/0 D /16 [90/ ] via , 00:00:08, Tunnel0 Spoke A C /30 is directly connected, Serial1/0 C /24 is directly connected, Tunnel0 C /24 is directly connected, Ethernet0/0 S* /0 is directly connected, Serial1/0 D /16 [90/ ] via , 00:00:05, Tunnel0 Spoke B 24
25 10 20% ruchu wymaga relacji spoke-to-spoke Są pewne rodzaje ruchu IP, które z definicji występują w relacji spoke to-spoke (np. ruch audio/video) Powoduje to obciążenie routerów centralnych oraz obciążenie łączy w węźle centralnym W Fazie 1 tracimy zalety podkładowej (transportowej) sieci IP VPN (np. MPLS lub Internet) Problem rozwiązuje zastosowanie interfejsów mgre w spoke ach a także mechanizmy NHRP Resolution oraz NHRP Redirect VPN 25
26 Komputer PC ( ) w podsieci węzła Spoke A, chce skontaktować się z serwerem web ( ) w podsieci węzła Spoke B. Wysyła pakiet w kierunku serwera /24 Physical: Tunnel0: Physical: Tunnel0: Spoke B.37 Spoke A /24 Physical: 1726 Tunnel0: PC /24 Web 26
27 Router w węźle Spoke A sprawdza routing do sieci docelowej ( ). Według tablicy routingu podsieć docelowa jest dostępna poprzez , poprzez interfejs tunnel /24 Physical: Tunnel0: Physical: Tunnel0: Spoke B /24 à /24 à Spoke A /24 Physical: 1726 Tunnel0: PC /24.37 Web 27
28 Router Spoke A sprawdza swoją tabelę NHRP pod względem adresu przeznaczenia i nie znajduje wpisu. Wysyła zapytanie NHRP query do serwera NHRP /24 Physical: Tunnel0: Physical: Tunnel0: Spoke B à Spoke A /24 Physical: 1726 Tunnel0: PC /24.37 Web 28
29 Serwer NHRP (węzeł Hub) rozwiązuje adres na odpowiedni adres publiczny (1726.2) i wysyła odpowiedź do routera Spoke A / à à Physical: Tunnel0: Physical: Tunnel0: Spoke B.37 Spoke A /24 Physical: 1726 Tunnel0: PC /24 Web 29
30 Router Spoke A odbiera odpowiedź NHRP i umieszcza ją w swojej tabeli mapowania NHRP - to uruchamia budowę tunelu GREoIPSec bezpośrednio do adresu Spoke A używa swojego adresu publicznego /24 Physical: Tunnel0: Physical: Tunnel0: à à Spoke A Physical: 1726 Tunnel0: /24 Spoke B /24 PC = Dynamiczny, tymczasowy tunel IPSec Spoke-to-spoke.37 Web 30
31 Tunel do Spoke B został zestawiony i rozpoczyna się przesyłanie danych ze Spoke A do Spoke B. UWAGA: tunel przesyła ruch tylko w jedną stronę /24 Physical: Tunnel0: Physical: Tunnel0: Spoke A /24 Physical: 1726 Tunnel0: PC Spoke B /24 Web = Dynamiczny, tymczasowy tunel IPSec Spoke-to-spoke 31
32 Serwer web otrzymuje pakiet od PC i wysyła odpowiedź do PC. Ruch zwrotny powoduje procedurę weryfikacji routingu oraz sprawdzenie NHRP dla routera Spoke A. Pakiet jest wysyłany bezpośrednio do Spoke A /24 Physical: Tunnel0: Physical: Tunnel0: Spoke A /24 Physical: 1726 Tunnel0: PC Spoke B /24 Web = Dynamiczny, tymczasowy tunel IPSec Spoke-to-spoke 32
33 Po upłynięciu skonfigurowanego limitu czasowego, wpisy NHRP przedawniają się i tunel IPSec od Spoke A do Spoke B przestaje istnieć /24 Physical: Tunnel0: Physical: Tunnel0: à à Spoke A /24 Physical: 1726 Tunnel0: PC Spoke B /24 Web = Dynamiczny, tymczasowy tunel IPSec Spoke-to-spoke 33
34 crypto isakmp policy 1 encr aes authentication pre-share group 2 crypto isakmp key cisco123 address crypto ipsec transform-set TSET esp-aes esp-sha-hmac mode transport crypto ipsec profile TP set transform-set TSET interface Tunnel ip address no ip redirects ip nhrp authentication cisco ip nhrp map multicast dynamic ip nhrp network-id 1111 ip nhrp redirect tunnel key 10 no ip split-horizon eigrp 10 ip summary-address eigrp tunnel source FastEthernet0/0 tunnel mode gre multipoint tunnel protection ipsec profile TP 34
35 crypto isakmp policy 1 encr aes authentication pre-share group 2 crypto isakmp key cisco123 address crypto ipsec transform-set TSET esp-aes esp-sha-hmac mode transport crypto ipsec profile TP set transform-set TSET interface Tunnel ip address no ip redirect ip nhrp authentication cisco ip nhrp map ip nhrp map multicast ip nhrp network-id 1111 ip nhrp nhs ip nhrp shortcut tunnel key 10 tunnel source FastEthernet0/0 tunnel mode gre multipoint tunnel protection ipsec profile TP 35
36 Keeping the Defaults in Separate VRFs EIGRP default default INSIDE Enable FVRF DMVPN on the Spokes default Internet Edge Block Allow the ISP learned Default Route in the FVRF and used for tunnel establishment VPN-DMZ OUTSIDE default Global Table contains Default Route learned via tunnel. User data traffic follow Tunnel to INSIDE interface on firewall EIGRP (200) default Internet Internet Allow for consistency for implementing corporate security policy for all users default 36 36
37 Since WAN interface is in a VRF, pre-shared key needs to be defined in the VRF Tunnel Destination lookup forced in VRF FVRF WAN interface defined in the VRF LAN interface stays in Global Table ip vrf FVRF rd 100:1! crypto keyring DMVPN vrf FVRF pre-shared-key address key cisco123! Interface Tunnel0 ip address ip nhrp authentication HBfR3lpl ip nhrp map multicast ip nhrp map ip nhrp network-id 1 ip nhrp nhs ip nhrp shortcut tunnel source GigabitEthernet0/0 tunnel mode gre multipoint tunnel vrf FVRF tunnel protection ipsec profile dmvpn! Interface GigabitEthernet 0/0 description WAN interface to ISP in vrf ip address dhcp ip vrf forwarding FVRF Interface GigabitEthernet 0/1 description LAN interface In Global Table 37
38 IWAN CVD Introduction to IWAN (2015 Melbourne) https://www.ciscolive.com/online/connect/sessiondetail.ww?session_id=82772&backbtn=true Intelligent WAN (IWAN) Architecture (2015 Milan) https://www.ciscolive.com/online/connect/sessiondetail.ww?session_id=81978&backbtn=true IWAN and AVC Management with Cisco Prime Infrastructure (2015 Milan) https://www.ciscolive.com/online/connect/sessiondetail.ww?session_id=81876&backbtn=true Whitepapers, presentations, case studies DMVPN ISR and ASR AX Ordering Guide 38
39 Dziękuję J Adam Śniegórski Systems Engineer, CCIE R&S Solutions & Innovation
Najczęściej stosowane rozwiązania IPSec PPTP SSL (OpenVPN)
Sieci nowej generacji Sieci VPN Marek Pałczyński Sieci VPN Cechy sieci VPN Tunel do przekazywania pakietów sieci LAN przez sieć WAN Przezroczystość dla użytkowników końcowych Bezpieczeństwo transmisji
Wirtualizacja sieci izolacja ruchu w LAN oraz sieciach MPLS
Wirtualizacja sieci izolacja ruchu w LAN oraz sieciach MPLS Łukasz Bromirski lbromirski@cisco.com CONFidence, maj 2007 Kraków 2006 Cisco Systems, Inc. All rights reserved. 1 Agenda Po co wirtualizacja?
ZADANIE.07. Procesy Bezpieczeństwa Sieciowego v.2011alfa ZADANIE.07. VPN RA Virtual Private Network Remote Access (Router) - 1 -
Imię Nazwisko ZADANIE.07 VPN RA Virtual Private Network Remote Access (Router) - 1 - 212.191.89.192/28 ISP LDZ dmz security-level 50 ISP BACKBONE 79.96.21.160/28 outside security-level 0 subinterfaces,
Systemy bezpieczeństwa sieciowego
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Instytut Teleinformatyki i Automatyki Przedmiot: Systemy bezpieczeństwa sieciowego Sprawozdanie z ćwiczenia laboratoryjnego. TEMAT: Konfigurowanie
ZADANIE.02 Korporacyjne Sieci Bez Granic v.2013 ZADANIE.02. VPN L2L Virtual Private Network site-to-site (ASA) - 1 -
Imię Nazwisko ZADANIE.02 VPN L2L Virtual Private Network site-to-site (ASA) - 1 - 212.191.89.192/28 ISP LDZ dmz security-level 50 ISP BACKBONE 79.96.21.160/28 outside security-level 0 subinterfaces, trunk
Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont...
Routing dynamiczny... 2 Czym jest metryka i odległość administracyjna?... 3 RIPv1... 4 RIPv2... 4 Interfejs pasywny... 5 Podzielony horyzont... 5 Podzielony horyzont z zatruciem wstecz... 5 Vyatta i RIP...
Institute of Telecommunications. koniec wykładu VIII. mariusz@tele.pw.edu.pl
koniec wykładu VIII przykład data client office + firewall depot management mapa z google map POP points of presence SP data client POP POP office depot POP POP management VPN warstwy 2 (VPLL, VPLS) i
PBS. Wykład 6. 1. Filtrowanie pakietów 2. Translacja adresów 3. authentication-proxy
PBS Wykład 6 1. Filtrowanie pakietów 2. Translacja adresów 3. authentication-proxy mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl mgr inż. Łukasz Sturgulewski
Jarosław Kuchta Administrowanie Systemami Komputerowymi. Dostęp zdalny
Jarosław Kuchta Dostęp zdalny Zagadnienia Infrastruktura VPN Protokoły VPN Scenariusz zastosowania wirtualnej sieci prywatnej Menedżer połączeń Dostęp zdalny 2 Infrastruktura VPN w WS 2008 Klient VPN Windows
Internet. Bramka 1 Bramka 2. Tunel VPN IPSec
Topologia sieci: LAN 1 LAN 2 Internet Bramka 1 Bramka 2 Tunel VPN IPSec Adresacja: Bramka 1 WAN: 10.0.0.1/24 LAN: 192.168.10.1/24 Założenia: Pierwsza faza Tryb Main Autoryzacja AES Szyfrowanie SHA1 DH2
Podstawy MPLS. pijablon@cisco.com. PLNOG4, 4 Marzec 2010, Warszawa 1
Podstawy MPLS Piotr Jabłoński pijablon@cisco.com 1 Plan prezentacji Co to jest MPLS i jak on działa? Czy moja sieć potrzebuje MPLS? 2 Co to jest MPLS? Jak on działa? 3 Co to jest MPLS? Multi Protocol Label
Konfiguracja aplikacji ZyXEL Remote Security Client:
Połączenie IPSec VPN pomiędzy komputerem z zainstalowanym oprogramowaniem ZyWALL Remote Security Client, a urządzeniem serii ZyWALL. Przykład konfiguracji. Konfiguracja aplikacji ZyXEL Remote Security
EFEKTYWNOŚĆ TECHNIKI DMVPN W ZAPEWNIANIU POUFNOŚCI DANYCH W SIECIACH KOMPUTEROWYCH
RADOSŁAW WIELEMBOREK rwielemborek7@gmail.com DARIUSZ LASKOWSKI dlaskowski71@gmail.com Wydział Elektroniki i Telekomunikacji Wojskowa Akademia Techniczna w Warszawie EFEKTYWNOŚĆ TECHNIKI DMVPN W ZAPEWNIANIU
Badanie protokołów routingu
lp wykonawca nr w dzienniku (dz) 1. Grzegorz Pol 2. Michał Grzybowski 3. Artur Mazur grupa (g) 3 Topologia: zadanie Protokół routingu wybór 1. RIPng 2. OSPFv3 x 3. EIGRP Tabela 1. Plan adresacji: dane
Inteligentny WAN. Adam Śniegórski Systems Engineer, CCIE R&S Solutions & Innovation
Inteligentny WAN Adam Śniegórski Systems Engineer, CCIE R&S Solutions & Innovation IWAN NIE-Groźny J Nowości Sprzętowe AX, czyli Application experience Podstawowe Komponenty IWAN Podsumowanie 2 3 I Enterprise
BEFSR11 / 41. Routing statyczny Routing dynamiczny (RIP-1 / RIP-2)
Routery BEFSR11 / 41 WAN (Internet): 1xRJ-45 FE 10/100 LAN: przełącznik FE 1 / 4xRJ-45 (AutoMDI / MDI-X) Rodzaje połączenia WAN: Obtain IP address automatically - klient serwera DHCP Static IP - adres
Połączenie VPN LAN-LAN IPSec (tryb agresywny)
1. Konfiguracja serwera VPN (Vigor2960) 2. Konfiguracja klienta VPN (Vigor2920) Procedura konfiguracji została oparta na poniższym przykładzie. Główne założenia: typ tunelu: LAN-LAN z routingiem pomiędzy
Zarządzanie systemem komendy
Zarządzanie systemem komendy Nazwa hosta set system host name nazwa_hosta show system host name delete system host name Nazwa domeny set system domain name nazwa_domeny show system domain name delete system
PODSTAWOWA KONFIGURACJA LINKSYS WRT300N
PODSTAWOWA KONFIGURACJA LINKSYS WRT300N 1. Topologia połączenia sieci WAN i LAN (jeśli poniższa ilustracja jest nieczytelna, to dokładny rysunek topologii znajdziesz w pliku network_konfigurowanie_linksys_wrt300n_cw.jpg)
1 2004 BRINET Sp. z o. o.
W niektórych routerach Vigor (np. serie 2900/2900V) interfejs WAN występuje w postaci portu Ethernet ze standardowym gniazdem RJ-45. Router 2900 potrafi obsługiwać ruch o natężeniu kilkudziesięciu Mbit/s,
ZiMSK. Charakterystyka urządzeń sieciowych: Switch, Router, Firewall (v.2012) 1
ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl Charakterystyka urządzeń sieciowych:
VPN TRUNK Backup. Procedura konfiguracji została oparta na poniższym przykładzie.
1. Konfiguracja serwera VPN 1.1. Tunel VPN I 1.2. Tunel VPN II 2. Konfiguracja klienta VPN 2.1. Tunel VPN I 2.2. Tunel VPN II 2.3. VPN TRUNK - Backup 2.3.1. Ustawienia zaawansowane Web 2.3.2. Ustawienia
Konfiguracja połączenia G.SHDSL punkt-punkt w trybie routing w oparciu o routery P-791R.
Konfiguracja połączenia G.SHDSL punkt-punkt w trybie routing w oparciu o routery P-791R. Topologia sieci: Lokalizacja B Lokalizacja A Niniejsza instrukcja nie obejmuje konfiguracji routera dostępowego
Połączenie VPN LAN-LAN IPSec (tryb agresywny)
1. Konfiguracja serwera VPN (Vigor2920) 2. Konfiguracja klienta VPN (Vigor2130) Procedura konfiguracji została oparta na poniższym przykładzie. Główne założenia: typ tunelu: LAN-LAN z routingiem pomiędzy
Vigor 2900 ZyWall 70 konfiguracja połączenia LAN-LAN (IPSec)
Uwaga! Przykład zakłada, że na obu routerach funkcjonuje już dostęp do Internetu, iżze wszystkie funkcje sieciowe niezbędne do komunikacji sieci LAN z Internetem zostały prawidłowo ustawione (adresy na
Wykład Nr 4. 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia
Sieci komputerowe Wykład Nr 4 1. Sieci bezprzewodowe 2. Monitorowanie sieci - polecenia Sieci bezprzewodowe Sieci z bezprzewodowymi punktami dostępu bazują na falach radiowych. Punkt dostępu musi mieć
Formularz Oferty Technicznej
... Nazwa (firma) wykonawcy albo wykonawców ubiegających się wspólnie o udzielenie zamówienia Załącznik nr 3a do SIWZ (Załącznik nr 1 do OPZ) Formularz Oferty Technicznej 1. Minimalne wymagania techniczne
KROK 1. KONFIGURACJA URZĄDZEŃ KOŃCOWYCH (SERWERÓW)
PODSTAWOWA KONFIGURACJA URZĄDZEŃ SIECIOWYCH WSTĘP 1) Cel ćwiczenia uczenie się: prawidłowego łączenia i konfiguracji urządzeń za pomocą okablowania Ethernet i kabli szeregowych, prawidłowej konfiguracji:
Posiadając dwa routery z serii Vigor 2200/2200X/2200W/2200We postanawiamy połączyć dwie odległe sieci tunelem VPN. Przyjmujemy następujące założenia:
Posiadając dwa routery z serii Vigor 2200/2200X/2200W/2200We postanawiamy połączyć dwie odległe sieci tunelem VPN. Przyjmujemy następujące założenia: Vigor1: publiczny, stały adres IP: 81.15.19.90, podsieć
Konfiguracja bezpiecznego tunelu IPSec VPN w oparciu o bramę ZyWall35 i klienta ZyXEL RSC (Remote Security Client).
. ZyXEL Communications Polska, Dział Wsparcia Technicznego Konfiguracja bezpiecznego tunelu IPSec VPN w oparciu o bramę ZyWall35 i klienta ZyXEL RSC (Remote Security Client). Niniejszy dokument przedstawia
Tworzenie połączeń VPN.
Tworzenie połączeń VPN. Lokalne sieci komputerowe są jedną z najistotniejszych funkcji sieci komputerowych. O ile dostęp do sieci rozległej (Internet) jest niemal wymagany do codziennego funkcjonowania
Połączenie VPN LAN-LAN PPTP
1. Konfiguracja serwera VPN (Vigor2960) 2. Konfiguracja klienta VPN (Vigor2920) 3. Status połączenia Procedura konfiguracji została oparta na poniższym przykładzie. Główne założenia: typ tunelu: LAN-LAN
ZiMSK. VLAN, trunk, intervlan-routing 1
ZiMSK dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń, asiersz@kis.p.lodz.pl dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl VLAN, trunk, intervlan-routing
MPLS VPN. Architektura i przegląd typów. lbromirski@cisco.com rafal@juniper.net. PLNOG, Kraków, październik 2012
MPLS VPN Architektura i przegląd typów Łukasz Bromirski Rafał Szarecki lbromirski@cisco.com rafal@juniper.net PLNOG, Kraków, październik 2012 1 Zawartość (z grubsza)* VPNy z lotu ptaka Architektura VPNów
IPsec bezpieczeństwo sieci komputerowych
IPsec bezpieczeństwo sieci komputerowych Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź,18maja2006 Wstęp Jednym z najlepiej zaprojektowanych protokołów w informatyce jestprotokółipoczymświadczyfakt,żejestużywany
Warstwa sieciowa rutowanie
Warstwa sieciowa rutowanie Protokół IP - Internet Protocol Protokoły rutowane (routed) a rutowania (routing) Rutowanie statyczne i dynamiczne (trasowanie) Statyczne administrator programuje trasy Dynamiczne
Planowanie telefonii VoIP
Planowanie telefonii VoIP Nie zapominając o PSTN Składniki sieci telefonicznej 1 Centrale i łącza między nimi 2 Nawiązanie połączenia Przykład sygnalizacji lewy dzwoni do prawego 3 4 Telefonia pakietowa
Podstawy Sieci Komputerowych Laboratorium Cisco zbiór poleceń
Podstawy Sieci Komputerowych Laboratorium Cisco zbiór poleceń Tryby wprowadzania poleceń... 2 Uzyskanie pomocy... 2 Polecenia interfejsu użytkownika... 4 Wyświetlanie banerów (komunikatów)... 4 System
Koncepcja komunikacji grupowej
IP multicast Koncepcja komunikacji grupowej Adresy grupowe IPv4 Próg TTL Reverse Path Forwarding Protokół IGMP Protokół PIM Konfigurowanie IGMP i PIM w ruterach Cisco Zadania 1 Koncepcja komunikacji grupowej
Załącznik nr 1 do umowy znak sprawy: 11/DI/PN/2015 SZCZEGÓŁOWY OPIS, ZAKRES I WARUNKI REALIZACJI PRZEDMIOTU UMOWY
Załącznik nr 1 do umowy znak sprawy: 11/DI/PN/2015 SZCZEGÓŁOWY OPIS, ZAKRES I WARUNKI REALIZACJI PRZEDMIOTU UMOWY 1 Spis treści I. Definicje... 3 II. Warunki świadczenia usług... 3 III. Wymagania dot.
Bezpieczeństwo Systemów Sieciowych
Bezpieczeństwo Systemów Sieciowych dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Andrzej Frączyk, a.fraczyk@kis.p.lodz.pl BSS - 2013 1 Co dalej? VPN IDS, IPS Application
Vigor 2900 Vigor 3300 konfiguracja połączenia LAN-LAN (IPSec)
Uwaga! Przykład zakłada, że na obu routerach funkcjonuje już dostęp do Internetu, oraz że wszystkie funkcje sieciowe niezbędne do komunikacji sieci LAN z Internetem zostały prawidłowo ustawione (adresy
Księgarnia PWN: Mark McGregor Akademia sieci cisco. Semestr piąty
Księgarnia PWN: Mark McGregor Akademia sieci cisco. Semestr piąty Rozdział 1. Przegląd sieci skalowalnych 19 Model projektu skalowalnej sieci hierarchicznej 19 Trójwarstwowy model projektu sieci 20 Funkcja
Sieci komputerowe. Router. Router 2012-05-24
Sieci komputerowe - Routing 2012-05-24 Sieci komputerowe Routing dr inż. Maciej Piechowiak 1 Router centralny element rozległej sieci komputerowej, przekazuje pakiety IP (ang. forwarding) pomiędzy sieciami,
Protokół BGP Podstawy i najlepsze praktyki Wersja 1.0
Protokół BGP Podstawy i najlepsze praktyki Wersja 1.0 Cisco Systems Polska ul. Domaniewska 39B 02-672, Warszawa http://www.cisco.com/pl Tel: (22) 5722700 Fax: (22) 5722701 Wstęp do ćwiczeń Ćwiczenia do
Internet Protocol v6 - w czym tkwi problem?
NAUKOWA I AKADEMICKA SIEĆ KOMPUTEROWA Internet Protocol v6 - w czym tkwi problem? dr inż. Adam Kozakiewicz, adiunkt Zespół Metod Bezpieczeństwa Sieci i Informacji IPv6 bo adresów było za mało IPv6 co to
CZĘŚĆ IV ZAMÓWIENIA OBLIGATORYJNE WYMAGANIA TECHNICZNE
Załącznik nr 1 do umowy nr z dnia CZĘŚĆ IV ZAMÓWIENIA OBLIGATORYJNE WYMAGANIA TECHNICZNE Router/Firewall: szt. 6 Oferowany model *... Producent *... L.p. 1. Obudowa obudowa o wysokości maksymalnie 1U dedykowana
Sieci komputerowe. Routing. dr inż. Andrzej Opaliński. Akademia Górniczo-Hutnicza w Krakowie. www.agh.edu.pl
Sieci komputerowe Routing Akademia Górniczo-Hutnicza w Krakowie dr inż. Andrzej Opaliński Plan wykładu Wprowadzenie Urządzenia Tablice routingu Typy protokołów Wstęp Routing Trasowanie (pl) Algorytm Definicja:
Zestawienie tunelu VPN po protokole IPSec pomiędzy klientem VPN - Draytek Smart VPN Client za NAT-em, a routerem Draytek
Zestawienie tunelu VPN po protokole IPSec pomiędzy klientem VPN - Draytek Smart VPN Client za NAT-em, a routerem Draytek Aby zestawić VPN po protokole IPSec, pomiędzy komputerem podłączonym za pośrednictwem
SIECI KOMPUTEROWE. Dariusz CHAŁADYNIAK Józef WACNIK
MODUŁ: SIECI KOMPUTEROWE Dariusz CHAŁADYNIAK Józef WACNIK NIE ARACHNOFOBII!!! Sieci i komputerowe są wszędzie WSZECHNICA PORANNA Wykład 1. Podstawy budowy i działania sieci komputerowych WYKŁAD: Role
Routing i polityka bezpieczeństwa w Śląskiej Akademickiej Sieci Komputerowej
POLITECHNIKA ŚLĄSKA Wydział Automatyki, Elektroniki i Informatyki Kierunek: Informatyka Routing i polityka bezpieczeństwa w Śląskiej Akademickiej Sieci Komputerowej Promotor: dr inż. Adam Domański Wykonał:
Korporacyjne Sieci Bez Granic Corporate Borderless Networks
Korporacyjne Sieci Bez Granic Corporate Borderless Networks dr inż. Łukasz Sturgulewski, luk@kis.p.lodz.pl, http://luk.kis.p.lodz.pl/ dr inż. Artur Sierszeń KSBG (v2013) 1 Korporacyjne sieci LAN Model
SZCZEGÓŁOWE OKREŚLENIE Urządzenie typu FIREWALL
Załącznik nr 5 do specyfikacji BPM.ZZP.271.479.2012 SZCZEGÓŁOWE OKREŚLENIE Urządzenie typu FIREWALL Sprzęt musi być zgodny, równowaŝny lub o wyŝszych parametrach technicznych z wymaganiami określonymi
Stały IP BiznesNet24 (z modemem ST510) na routerze Cisco klienta.
Stały IP BiznesNet24 (z modemem ST510) na routerze Cisco klienta. Zmiana domyślnej konfiguracji routera ST510 na bridge... 1 Wersja Cisco IOS... 2 Konfiguracja routera... 2 Uruchamianie konfiguracji...
Adresy IP v.6 IP version 4 IP version 6 byte 0 byte 1 byte 2 byte 3 byte 0 byte 1 byte 2 byte 3
Historia - 1/2 Historia - 2/2 1984.1 RFC 932 - propozycja subnettingu 1985.8 RFC 95 - subnetting 199.1 ostrzeżenia o wyczerpywaniu się przestrzeni adresowej 1991.12 RFC 1287 - kierunki działań 1992.5 RFC
BADANIE BEZPIECZEŃSTWA ZABEZPIECZONEJ USŁUGI MPLS VPN O ZESTAW PROTOKOŁÓW IPSEC
MARCIN PÓLKOWSKI polkowski.marcin@gmail.com DARIUSZ LASKOWSKI dlaskowski@wat.edu.pl Wydział Elektroniki, Instytut Telekomunikacji Wojskowa Akademia Techniczna w Warszawie BADANIE BEZPIECZEŃSTWA ZABEZPIECZONEJ
WYMAGANE PARAMETRY TECHNICZNE OFEROWANYCH URZĄDZEŃ ZABEZPIECZAJĄCYCH
Załącznik nr 3 Do SIWZ DZP-0431-550/2009 WYMAGANE PARAMETRY TECHNICZNE OFEROWANYCH URZĄDZEŃ ZABEZPIECZAJĄCYCH 1 typ urządzenia zabezpieczającego Wymagane parametry techniczne Oferowane parametry techniczne
OSPF... 3 Komunikaty OSPF... 3 Przyległość... 3 Sieć wielodostępowa a punkt-punkt... 3 Router DR i BDR... 4 System autonomiczny OSPF...
OSPF... 3 Komunikaty OSPF... 3 Przyległość... 3 Sieć wielodostępowa a punkt-punkt... 3 Router DR i BDR... 4 System autonomiczny OSPF... 4 Metryka OSPF... 5 Vyatta i OSPF... 5 Komendy... 5 Wyłączenie wiadomości
Protokoły sieciowe - TCP/IP
Protokoły sieciowe Protokoły sieciowe - TCP/IP TCP/IP TCP/IP (Transmission Control Protocol / Internet Protocol) działa na sprzęcie rożnych producentów może współpracować z rożnymi protokołami warstwy
Plan wykładu. Wyznaczanie tras. Podsieci liczba urządzeń w klasie C. Funkcje warstwy sieciowej
Wyznaczanie tras (routing) 1 Wyznaczanie tras (routing) 2 Wyznaczanie tras VLSM Algorytmy rutingu Tablica rutingu CIDR Ruting statyczny Plan wykładu Wyznaczanie tras (routing) 3 Funkcje warstwy sieciowej
Podziękowania... xv. Wstęp... xvii
Spis treści Podziękowania... xv Wstęp... xvii Instrukcja budowy laboratorium... xvii Przygotowanie komputerów Windows Server 2008... xviii Korzystanie z dołączonego CD... xviii Instalowanie testów ćwiczeniowych...
Sieci Komputerowe Laboratorium 08 OSPF
Sieci Komputerowe Laboratorium 08 OSPF Rafał Chodarcewicz Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagielloński Kraków, 2015 1.0.0.0/24 2.0.0.0/24 3.0.0.0/24 4.0.0.0/24 5.0.0.0/24 R1.2.3.4
Sieci Komputerowe Laboratorium 10. Redystrybucja_OSPF_EIGRP_RIP
Sieci Komputerowe Laboratorium 10 Redystrybucja_OSPF_EIGRP_RIP Rafał Chodarcewicz Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagielloński Kraków, 2015 RIP 1.0.0.0/24 2.0.0.0/24 3.0.0.0/24
Warstwa sieciowa. Model OSI Model TCP/IP. Aplikacji. Aplikacji. Prezentacji. Sesji. Transportowa. Transportowa
Warstwa sieciowa Model OSI Model TCP/IP Aplikacji Prezentacji Aplikacji podjęcie decyzji o trasowaniu (rutingu) na podstawie znanej, lokalnej topologii sieci ; - podział danych na pakiety Sesji Transportowa
Praktyczne aspekty implementacji IGP
Praktyczne aspekty implementacji IGP Piotr Jabłoński pijablon@cisco.com 1 Ogólne rekomendacje Jeden proces IGP w całej sieci. Idealnie jeden obszar. Wiele obszarów w całej sieci w zależności od ilości
Instrukcja do laboratorium 1. Podstawowa konfiguracja środowiska MPLS (Multi-Protocol Label Switching)
Instrukcja do laboratorium 1 Podstawowa konfiguracja środowiska MPLS (Multi-Protocol Label Switching) Przed zajęciami proszę dokładnie zapoznać się z instrukcją i materiałami pomocniczymi dotyczącymi laboratorium.
1 Dostarczony system bezpieczeństwa musi zapewniać wszystkie wymienione poniżej funkcje bezpieczeństwa oraz funkcjonalności dodatkowych.
1 Dostarczony system bezpieczeństwa musi zapewniać wszystkie wymienione poniżej funkcje bezpieczeństwa oraz funkcjonalności dodatkowych. Integralność systemu musi być zapewniona także w przypadku różnych
Vigor 2900 Asmax BR-408V II - przykład VPN (tunel IPSec) I. WPROWADZENIE
I. WPROWADZENIE Zakładamy, że mamy dwie odległe lokalizacje, w których dostęp do Internetu obsługują routery szerokopasmowe Vigor 2900 i Asmax BR 804-V II. Aby połączyć odległe sieci LAN tunelem VPN, wybieramy
WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 filia w EŁKU, ul. Grunwaldzka
14 Protokół IP WYŻSZA SZKOŁA ZARZĄDZANIA I MARKETINGU BIAŁYSTOK, ul. Ciepła 40 Podstawowy, otwarty protokół w LAN / WAN (i w internecie) Lata 70 XX w. DARPA Defence Advanced Research Project Agency 1971
Vigor Cisco ISDN PPP (CHAP)
Vigor Cisco ISDN PPP (CHAP) Cisco 1721+ WIC BRI S/T, IOS ver. 12.2 Vigor 2200X, firmware ver. 2.3.6 192.168.4.1 Cisco ISDN: 30 ISDN ISDN: 20 Vigor 192.168.5.1 192.168.4.10 192.168.5.10 I. Konfiguracja
Adresy w sieciach komputerowych
Adresy w sieciach komputerowych 1. Siedmio warstwowy model ISO-OSI (ang. Open System Interconnection Reference Model) 7. Warstwa aplikacji 6. Warstwa prezentacji 5. Warstwa sesji 4. Warstwa transportowa
Packet Tracer - Podłączanie routera do sieci LAN
Topologia Tabela adresacji Urządz enie Interfejs Adres IP Maska podsieci Brama domyślna Cele G0/0 192.168.10.1 255.255.255.0 Nie dotyczy R1 G0/1 192.168.11.1 255.255.255.0 Nie dotyczy S0/0/0 (DCE) 209.165.200.225
SIECI KOMPUTEROWE WWW.EDUNET.TYCHY.PL. Protokoły sieciowe
Protokoły sieciowe Aby komputery połączone w sieć mogły się ze sobą komunikować, muszą korzystać ze wspólnego języka, czyli tak zwanego protokołu. Protokół stanowi zestaw zasad i standardów, które umożliwiają
1 2006 BRINET Sp. z o. o.
Interfejs LAN Fizycznie interfejs LAN routera DrayTek jest dostępny w postaci 4 portów przełącznika 10/100 Mbit/s, a w wybranych modelach oznaczonych symbolem G, dodatkowo rozszerzony o koncentrator WLAN.
LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl)
Wydział Elektroniki i Telekomunikacji POLITECHNIKA POZNAŃSKA fax: (+48 61) 665 25 72 ul. Piotrowo 3a, 60-965 Poznań tel: (+48 61) 665 22 93 LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl) Konfiguracja
Wprowadzenie do MPLS*
Wprowadzenie do MPLS* Marcin Krysiński Przygotowano na podstawie Podstawy MPLS Piotr Jabłoński www.krysinski.eu/materialy/ Plan prezentacji Co to jest MPLS i jak on działa? Czy moja sieć potrzebuje MPLS?
ZP-92/022/D/07 załącznik nr 1. Wymagania techniczne dla routera 10-GIGABIT ETHERNET
1. Konfiguracja Wymagania techniczne dla routera 10-GIGABIT ETHERNET Lp. moduł Opis Ilość 1 moduł routingu moduł odpowiedzialny za routing; - przynajmniej 2Ghz CPU - przynajmniej 4 GB DRAM 2 2 moduł przełączania
Ochrona sieci operatorów internetowych
Ochrona sieci operatorów internetowych Dobre praktyki Łukasz Bromirski lbromirski@cisco.com Wrocław, 21 października 2006 1 Agenda Ochrona sieci operatora...i słów parę o ochronie samych urządzeń Ochrona
ZADANIE.03 Cisco.&.Juniper Routing dynamiczny i statyczny (OSPF, trasa domyślna) 1,5h
Imię Nazwisko ZADANIE.03 Cisco.&.Juniper Routing dynamiczny i statyczny (OSPF, trasa domyślna) 1,5h 1. Zbudować sieć laboratoryjną 2. Czynności wstępne 3. Włączyć i skonfigurować routing dynamiczny 4.
OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1
OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 OSI Network Layer Network Fundamentals Rozdział 5 Version 4.0 2 Objectives Identify the role of the Network Layer, as it describes communication
Konfiguracja połączeń sieciowych
Konfiguracja połączeń sieciowych PAWEŁ PŁAWIAK Training and Development Manager for Microsoft Technology Compendium - Centrum Edukacyjne pawel.plawiak@compendium.pl Informacje techniczne Pomocy technicznej
LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl)
Wydział Elektroniki i Telekomunikacji POLITECHNIKA POZNAŃSKA fax: (+48 61) 665 25 72 ul. Piotrowo 3a, 60-965 Poznań tel: (+48 61) 665 22 93 LABORATORIUM SIECI KOMPUTEROWYCH (compnet.et.put.poznan.pl) Protokoły
Sieci wirtualne VLAN cz. I
Sieci wirtualne VLAN cz. I Dzięki zastosowaniu sieci VLAN można ograniczyć ruch rozgłoszeniowy do danej sieci VLAN, tworząc tym samym mniejsze domeny rozgłoszeniowe. Przykładowo celu zaimplementowania
Vigor 2900 Nortel VPN router (tunel IPSec) I. WPROWADZENIE
I. WPROWADZENIE Zakładamy, że mamy dwie odległe lokalizacje, w których dostęp do Internetu obsługują routery Vigor 2900 i Nortel VPN router. Przykład odnosi się do całej rodziny produktów typu Nortel VPN
PBS. Wykład Zabezpieczenie przełączników i dostępu do sieci LAN
PBS Wykład 7 1. Zabezpieczenie przełączników i dostępu do sieci LAN mgr inż. Roman Krzeszewski roman@kis.p.lodz.pl mgr inż. Artur Sierszeń asiersz@kis.p.lodz.pl mgr inż. Łukasz Sturgulewski luk@kis.p.lodz.pl
Zarządzanie Jakością Usług w Sieciach Teleinformatycznych
Zarządzanie Jakością Usług w Sieciach Teleinformatycznych do sieci R. Krzeszewski 1 R. Wojciechowski 1 Ł. Sturgulewski 1 A. Sierszeń 1 1 Instytut Informatyki Stosowanej Politechniki Łódzkiej http://www.kis.p.lodz.pl
Bezpieczeństwo Systemów Komputerowych. Wirtualne Sieci Prywatne (VPN)
Bezpieczeństwo Systemów Komputerowych Wirtualne Sieci Prywatne (VPN) Czym jest VPN? VPN(Virtual Private Network) jest siecią, która w sposób bezpieczny łączy ze sobą komputery i sieci poprzez wirtualne
Laboratorium 6.1.5 Konfiguracja oraz weryfikacja protokołu RIP
Laboratorium 6.1.5 Konfiguracja oraz weryfikacja protokołu RIP Urządzenie Nazwa hosta Interfejs Adres IP Maska podsieci R1 R1 Serial 0/0/0 (DCE) 172.17.0.1 255.255.255.224 Fast Ethernet 0/0 172.16.0.1
Artykuł sponsorowany przez
Od poprawnego skonfigurowania routera będzie zależeć praca naszej sieci, a co za tym idzie dostępu do Internetu. Na wstępie warto jednak zacząć od wyjaśnienia funkcji, jaką router ma do spełnienia i co
Połączenie VPN Host-LAN IPSec wykorzystaniem DrayTek Smart VPN Client
1. Konfiguracja serwera VPN 1.1. Profil dla klienta ze zmiennym IP 1.2. Profil dla klienta ze stałym IP 2. Konfiguracja klienta VPN 3. Zainicjowanie połączenia Procedura konfiguracji została oparta na
1 2006 BRINET Sp. z o. o.
VPN (ang. Virtual Private Network) to oddzielny wachlarz możliwości komunikacyjnych routera Vigor. Warto zwrócić na niego uwagę, ponieważ pod tym względem DrayTek od dawna wyprzedza proste implementacje
Adresacja IP w sieciach komputerowych. Adresacja IP w sieciach komputerowych
Adresacja IP w sieciach komputerowych 1. Model odniesienia OSI. Przyczyny powstania: - Gwałtowny rozwój i sieci komputerowych na początku lat 70. XX wieku, - Powstanie wielu niekompatybilnych ze sobą protokołów
VPLS - Virtual Private LAN Service
VPLS - Virtual Private LAN Service 1.1 Opis usługi VPLS (Virtual Private LAN Service), czyli usługa wirtualnej prywatnej sieci LAN, jest najnowszym i najbardziej zaawansowanym produktem z kategorii transmisji
Aneks do instrukcji obsługi routera Asmax Br-804v II
Aneks do instrukcji obsługi routera Asmax Br-804v II 1. Aneks do filtrowania WAN (firmware V0.05) 2. Aneks do filtrowania LAN IP Filters (firmware A0.05) 3. Aneks do filtrowania LAN MAC Filters (firmware
Połączenie VPN Host-LAN IPSec wykorzystaniem routera Vigor jako klienta VPN
1. Konfiguracja serwera VPN 2. Konfiguracja klienta VPN 3. Status połączenia Procedura konfiguracji została oparta na poniższym przykładzie. Główne założenia: typ tunelu: Host-LAN protokół VPN: IPSec (tryb
GSM/GPRS w przemyśle. Cezary Ziółkowski
Bezprzewodowa komunikacja GSM/GPRS w przemyśle Cezary Ziółkowski Plan prezentacji Przegląd produktów Tryby pracy modemów Tryby pracy modemów IP Bramy IP i Routery: dostęp do sieci Routery bezprzewodowe
Komunikacja bezprzewodowa w technologiach GSM/GPRS/EDGE/UMTS/HSPA
Komunikacja bezprzewodowa w technologiach GSM/GPRS/EDGE/UMTS/HSPA Piotr Gocłowski 21.05.2013 Agenda Sieć Komórkowa Oferta modemów przemysłowych Moxa Zakres Funkcjonalności Sieć Komórkowa GSM Global system
Moxa Solution Day 2011
Moxa Solution Day 2011 Bezprzewodowa komunikacja GSM/GPRS w przemyśle Cezary Kalista 31.05.2011 Plan prezentacji Przegląd produktów Tryby pracy modemów Tryby pracy modemów IP Bramy IP i Routery: dostęp