O klasyfikacji skończonych grup prostych

Wielkość: px
Rozpocząć pokaz od strony:

Download "O klasyfikacji skończonych grup prostych"

Transkrypt

1 ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria II: WIADOMOŚCI MATEMATYCZNE XXXVIII(2002) C. Bagiński(Białystok) M. Łuba(Białystok) O klasyfikacji skończonych grup prostych. Wprowadzenie. Jednym z najbardziej fascynujących osiągnięć matematyki XX wieku jest zakończenie klasyfikacji skończonych grup prostych (SGP). Całość klasyfikacji można ująć w jednym, pozornie nieskomplikowanym twierdzeniu: Twierdzenie. Grupa G jest skończoną grupą prostą wtedy i tylko wtedy, gdy jest izomorficzna z jedną z następujących grup: (a)cyklicznągrupą C p zespolonychpierwiastkówstopnia pzjedynki, gdzie p jest liczbą pierwszą; (b)grupąa n permutacjiparzystychzbiorun-elementowego,n 5; (c) grupą prostą typu Liego; (d) jedną z dwudziestu sześciu sporadycznych grup prostych. Dowód tego twierdzenia jest czymś wyjątkowym w całej historii matematyki. W obecnie znanym kształcie mieści się na 0 5 tysiącach stron rozrzuconych w około 500 artykułach ponad stu autorów. Jest on zatem nie tyle dowodem konkretnego twierdzenia, co całym obszernym działem współczesnej matematyki. Zaraz po tym, gdy w lutym 98 roku wąska grupa najwybitniejszych specjalistów zaangażowanych w klasyfikację uznała, że jest ona zakończona, ukazała się książka[6], której autor, Daniel Gorenstein, zapowiedział pełną rewizję całego dowodu, mającą rozwiać wątpliwości sceptyków. Dzięki wysiłkomgorensteina( )iinnych,napoczątkulat90-tychrozpoczętorealizację projektu, którego celem jest uporządkowanie całej teorii. W ramach projektu zapowiedziano ukazanie się dwunastu tomów zawierających pełny dowód klasyfikacji, o łącznej objętości szacowanej na 3 4 tysiące stron. W latach ukazały się cztery pierwsze książki zapowiadanej serii[7]. Ogrom wykonanej pracy, piękne twierdzenia i płodne idee, jakich pełno w publikacjach poświęconych klasyfikacji SGP, wcześniej czy później odciśnie swoje piętno na innych działach matematyki, głównie algebry, teorii ( )Gorensteinzmarłw992roku.

2 38 C. Bagiński, M. Łuba liczb i kombinatoryki. Na liście tych, którzy zostawili swój ślad w teorii skończonych grup prostych nie ma nazwisk matematyków polskich. Warto więc tę tematykę popularyzować, zwłaszcza wśród ludzi rozpoczynających swoją pracę naukową lub poszukujących nowych idei w obszarach dotykających teorii grup. 2. Trochę historii. Grupy proste spełniają analogiczną rolę do tej, jaką odgrywają liczby pierwsze w teorii liczb, albo cząstki elementarne w fizyce. Wyjaśnia to twierdzenie Jordana Höldera, jeden z najstarszych wyników uzyskanych w teorii grup skończonych: Twierdzenie 2. Jeżeli G jest grupą skończoną, to istnieje w niej skończony ciąg podgrup =G 0 <G < <G n =G taki,żedla0 i n : (a)g i jestnormalnąpodgrupąwg i+ oraz (b)g i+ /G i jestgrupąprostą. Ponadto, jeśli =H 0 <H < <H m =G spełniarównieżwarunki (a)i (b),to m=nipoewentualnejzmianie numeracjih i+ /H i jestizomorficznazg i+ /G i. Skończone grupy proste są więc materiałem, z którego zbudowane są wszystkie inne grupy skończone i właśnie z tego powodu ich klasyfikacja jest tak istotna. Jej początki sięgają czasów E. Galois(8 832), który stworzył pojęciowe podstawy teorii grup, jako pierwszy sformułował pojęcie grupyprostejizauważył,żetakągrupąjestgrupaa 5 wszystkichpermutacji parzystych zbioru pięcioelementowego. Za początek systematycznej klasyfikacji należy jednak uznać rezultat C. Jordana( ) z 870 roku. W swojej książce Traité des Substitutions, pierwszej jaką kiedykolwiek napisano z teorii grup, Jordan podaje pięć nieskończonych serii skończonych nieabelowychgrupprostych.pierwsząznichjestseriagrupalternującycha n, n 5,wszystkichpermutacjiparzystychzbiorun-elementowego.Druga, torodzinaspecjalnychprojektywnychgrupliniowychpsl n (p)nadciałem p-elementowym,gdziepjestliczbąpierwsząoraz(n,p) {(2,2),(2,3)}. Pozostałeserie,togrupyortogonalneO n (p),unitarnepsu n (p)isymplektycznepsp n (p)nadciałemp-elementowym. Pierwszymi znaczącymi wynikami, które do samego końca klasyfikacji były intensywnie wykorzystywane, są powszechnie znane twierdzenia Sylowa z 872 roku. Ich niebanalny dowód wykorzystuje pojęcie działania grupy na zbiorze, a więc traktowanie grupy jako podgrupy grupy permutacji pewnego

3 O klasyfikacji skończonych grup prostych 39 zbioru. W tamtym czasie grupy skończone były rozważane przede wszystkim w takim charakterze. Taką postać mają w szczególności niełatwe w konstrukcji grupy Mathieu, odkryte w latach sześćdziesiątych XIX wieku, które później okazały się być pierwszymi sporadycznymi grupami prostymi. Mimo tych wyników stan wiedzy z teorii grup skończonych był bardzo skromny, a problematyka jeszcze przez wiele późniejszych lat niedoceniana i daleka odmodnychnurtów.dośćwspomniećoartykulea.cayleya( 2 )(patrz[9], str ),wktórymwymieniatrzy( 3 )nieizomorficznegrupyrzędu6 oraz o artykule[5], w którym tylko marginalnie wspomniano o dokonaniach w teorii grup jednej z najznamienitszych postaci tej teorii, W. Burnside a (patrz także[2]). Tematyką grup skończonych Burnside zainteresował się na początku lat dziewięćdziesiątych XIX wieku. Jego pierwsza praca opublikowana w 893 roku zawierała dowód tego, że jedyną grupą prostą, której rząd jest iloczynem czterech(niekoniecznie różnych) liczb pierwszych, jesta 5.Nawetdzisiajjesttoniełatwezadanie,jeśliuświadomićsobie,że jedynym mocniejszym rezultatem, z którego Burnside korzystał, były twierdzenia Sylowa. W ciągu kilku dalszych lat pojawiła się cała seria ważnych dla klasyfikacji wyników Burnside a, odnoszących się głównie do wpływu struktury podgrup Sylowa oraz znaczenia rzędu grupy dla jej prostoty. Odnotujmy kilka z nich, obecnie uważanych za elementarne. Twierdzenie 3.(a) Jeśli 2-podgrupa Sylowa grupy G jest cykliczna, to Gniejestprosta. (b) Jeśli p-podgrupa Sylowa P grupy G jest zawarta w centrum swojego normalizatora,toistniejenormalnapodgrupahwgtaka,żeh P={} ihp=g. (c) Jeśli G jest grupą prostą, której rząd jest iloczynem pięciu liczb pierwszych,to G {23 3 7,22 3 5, }. Na dalsze badania Burnside a znaczący wpływ miało odkrycie teorii charakterów dokonane w 896 roku. Autor tego odkrycia, Ferdynand Georg Frobenius(847 97), zajął sie teorią grup skończonych już w 880 roku publikując zręczny dowód twierdzenia Sylowa. Zainteresowania Frobeniusa teorią grup były motywowane pewnymi pytaniami z teorii liczb postawionymi w pracach Dedekinda i Kroneckera. Taką motywację miały także badania, które w końcu doprowadziły do odkrycia teorii charakterów grup skończonych,awkonsekwencji teoriireprezentacji( 4 ).SwoistywyścigBurnside a ( 2 )ArtykułukazałsięwpierwszymnumerzeAmericanJournalofMathematicsw878 roku. ( 3 )Dowolnagruparzędu6jestcyklicznaalboizomorficznazgrupąizometriitrójkąta równobocznego. ( 4 )Zaskakującymożewydaćsięfakt,iżpodstawyteoriicharakterówstworzoneprzez Frobeniusa nie wykorzystywały pojęcia liniowej czy macierzowej reprezentacji grupy i o co najmniej rok wyprzedziły pojawienie się teorii reprezentacji, co więcej, dopiero w 900 roku Burnside a wyprowadza obecnie znane naturalne zależności tych teorii(patrz[4]).

4 40 C. Bagiński, M. Łuba i Frobeniusa z przełomu XIX i XX wieku szybko ujawnił ogromne znaczenie tychteoriidlabadaniagrupskończonych( 5 ),ajejtzw.wersjamodularna, rozwinięta przez Brauera kilkadziesiąt lat później, doprowadziła do zakończenia klasyfikacji SGP. Wśród wielu twierdzeń udowodnionych przed około stu laty istnieją takie, których do dziś nie udało się udowodnić z pominięciem teorii charakterów, a wiele z nich przez dziesiątki lat opierało się innym technikom, jak chociażby twierdzenie Burnside a o rozwiązalności grup, których rząd dzieli się przez co najwyżej dwie różne liczby pierwsze. Podsumowanie dokonań pierwszego okresu klasyfikacji zamyka drugie wydanie książki Burnside a([3]) z 9 roku. Składają się na nie wyniki m.in.o.höldera,f.n.cole a,e.h.moore a,l.e.dicksonaioczywiście Burnside a oraz Frobeniusa. Oprócz wyników o charakterze ogólniejszym, jak chociażby wyżej wymienione twierdzenia Burnside a, czy dowód prostoty klasycznych grup liniowych nad dowolnymi ciałami skończonymi, podany w latach przez Dicksona, sporo uwagi poświęcono klasyfikacji grup prostych małych rzędów. Jednakże do 9 roku sklasyfikowano zaledwie te grupy proste, których rząd nie przekraczał Poszerzenie tego przedziału szło dość opornie. Do 924 roku sklasyfikowano grupy o rzędzie nie przekraczającym 6 232(z pominięciem grup prostych rzędów i6048 patrzniżejtwierdzenie5).podalszych20latachprzedziałten poszerzono do , stwierdzając, że nie istnieje grupa prosta o rzędzie należącymdoprzedziałuod6232do20000.badaniaotakimcharakterze kończy wynik M. Halla z 975 roku zawierający klasyfikację grup o rzędach nie większych od , z pominięciem kilku przypadków uzupełnianych do roku 980. Badania prowadzone przez Burnside a, a dotyczące tego, jakie liczby mogą być rzędami grup prostych, już w 895 roku doprowadziły do sformułowania hipotezy głoszącej, że nie istnieją nieabelowe grupy proste nieparzystego rzędu. Sam Burnside dostarczył wielu argumentów potwierdzających tę hipotezę. Pokazał między innymi, że Twierdzenie 4.(a) Nie istnieje nieabelowa grupa prosta, której rząd jest liczbą nieparzystą mniejszą od (b)jeśli G jestliczbąnieparzystąpodzielnąprzez3alenieprzez9,to G zawiera podgrupę normalną o indeksie 3. (c) Jeśli G jest grupą prostą nieparzystego rzędu i p jest liczbą pierwszą dzielącą G,toalbop 4,albop 3 ip 2 +p+sądzielnikami G. Metody Burnside a, oparte głównie na pojęciu transferu, kombinatorycznych spostrzeżeniach i raczej elementarnych własnościach reprezentacji, szybko wyczerpały swoją siłę, ale jego idee wyznaczyły kierunki badań ( 5 )Wewstępiedopierwszegowydaniaswojejksiążki[3]z897rokuBurnsidewyraża poważne wątpliwości co do przydatności reprezentacji liniowych w badaniach grup skończonych.

5 O klasyfikacji skończonych grup prostych 4 nawielelat,nietylkowteoriigrupskończonych.jednąznichbyłosięgnięcie do metod grup i algebr Liego, stworzonych głównie przez S. Liego, W. Killinga i E. Cartana. Burnside czerpał z nich przede wszystkim inspiracje dla rozwijania teorii reprezentacji. Jego naśladowcy w istotnym stopniu wykorzystali je do klasyfikacji SGP. Jak wspomnieliśmy wyżej, już na początku wieku L. E. Dickson dowiódł prostoty klasycznych grup liniowych. Ponadto, wykorzystując klasyfikację grup prostych Liego, podał dwie dalsze serie skończonych grup prostych, będące analogonami dwóch tzw. wyjątkowych prostych grup Liego. Do tych idei powrócono w latach pięćdziesiątych. W 955 roku ukazała się ważna praca Chevalleya, w której przedstawił głęboką analizę półprostych algebr Liego nad ciałem C liczb zespolonych, dzięki czemu znalazł ogólne analogie między grupami prostymi Liego i SGP, i podał kilka nowych, nieznanych dotąd, nieskończonych serii grup prostych. Klasyfikacja prostych grup Liego jest znana od lat dziewięćdziesiątych XIX wieku. Istniejączterynieskończonerodzinytakichgrup:A n (C),B n (C),C n (C)iD n (C) odpowiadającekolejnospecjalnymgrupomliniowymsl n (C),grupomortogonalnymnieparzystegostopniaO 2n+ (C),symplektycznymSp 2n (C)iortogonalnymstopniaparzystegoO 2n (C).Ponadtoistniejepięćwyjątkowych grupprostychliegooznaczonychsymbolamig 2 (C),F 4 (C),E 6 (C),E 7 (C) ie 8 (C).Chevalleydowiódłistnieniacałkowito-liczbowejbazywprostejalgebrze Liego, co pozwoliło mu zastąpić ciało C dowolnym ciałem skończonym i w konsekwencji uzyskał SGP będące odpowiednikami wszystkich wymienionychwyżejgrupliego.czterypierwszeserieorazg 2 (q)ie 6 (q)były już znane od czasów Dicksona. Chevalley dał ich pełną jednolitą prezentację. Wszystkie dziewięć serii znanych jest pod nazwą grup Chevalleya lub nieskręconych skończonych grup prostych typu Liego. W 959 roku R. Steinberg przeprowadził dalszą analizę metody Chevalleya. Dla niektórych grup prostych Liego istnieją ich analogony nad ciałem R liczb rzeczywistych. Steinberg dostrzegł odpowiedniki tych analogii dla grup Chevalleya i skonstruował dalsze serie SGP analogony grup Chevalleya: 2 D n (q) drugarodzinagruportogonalnychparzystegostopnia, 2 E 6 (q) i 3 D 4 (q).wtenschematsteinbergawpisująsięodkryteprzezdicksona grupyunitarne,oznaczaneodtegoczasusymbolem 2 A n (q). W96rokuR.Reezauważyłdalszeanalogiekonstruującserie 2 G 2 (3 n ) i 2 F n (2 n ).Zwróciłrównieżuwagę,żeskonstruowanew957rokugrupy Suzuki(patrzponiżej)sątakżewariacjamigrupChevalleyaB n (q),stądich obecneoznaczenie 2 B 2 (2 n ).WszystkiesiedemseriiodkrytychprzezSuzuki, Steinberga i Ree noszą nazwę skręconych grup prostych typu Liego. W 968 roku Steinberg dał jednolitą charakteryzację wszystkich szesnastuseriigruptypuliego.zauważyłmianowicie,żekażdaznichmożebyć przedstawiona jako grupa punktów stałych odpowiedniego automorfizmu grupy algebraicznej nad algebraicznym domknięciem ciała skończonego.

6 42 C. Bagiński, M. Łuba Połowa lat pięćdziesiątych była przełomową dla klasyfikacji SGP jeszcze z jednego powodu, nie mniej istotnego, niż prace Chevalleya. Podłożem dla nowych idei stały się wyniki R. Brauera dotyczące modularnych reprezentacji grup skończonych, tzn. reprezentacji liniowych nad ciałami, których charakterystyka dzieli rząd grupy. Pierwsze prace Brauera poświęcone reprezentacjom modularnym powstały w latach Zapowiedzią skuteczności idei Brauera były wyniki opublikowane na początku lat czterdziestych, dotyczące m.in. charakteryzacji skończonych grup prostych, których rząddzielisięprzezpewnąliczbępierwsząpiniedzielisięprzezp 2 orazgrup prostych, których rząd dzieli się przez dokładnie trzy różne liczby pierwsze. Wymienimy niektóre z elementarnie brzmiących rezultatów Brauera z tamtego okresu: Twierdzenie 5. Niech G będzie grupą prostą. (a)jeżeli G =566,toG =PSL 3 (3). (b)jeżeli G =6048,toG =PSU 3 (3). Twierdzenie6.JeśliGjestgrupąprostąi G =pqr m,gdziep,qir sąliczbamipierwszymi,to G =60lub G =68. Twierdzenie7.Niech Gbędziegrupąprostąi G =pq m t,gdzie p i q są liczbami pierwszymi, natomiast m i t liczbami naturalnymi, przy tym t<p.wówczas G =PSL 2 (p),gdzie p=2 n ±,p>3lub G =PSL 2 (2 n ),ip=2 n +,p>3. Cała seria znaczących prac Brauera, zarówno o charakterze ogólnym, jak i odnoszących się bezpośrednio do klasyfikacji SGP, znalazła podsumowanie na Międzynarodowym Kongresie Matematyków w 954 roku w Amsterdamie, gdzie w wygłoszonym wtedy wykładzie Brauer wyznaczył kierunki poszukiwań, które mogłyby przybliżyć klasyfikację. Do najważniejszych faktów, na których oparł swoje sugestie, należą następujące twierdzenia, pierwsze z nich udowodnione przez niego wspólnie z jego uczniem K. A. Fowlerem. Twierdzenie 8. Istnieje tylko skończona liczba skończonych grup prostych, które zawierają inwolucję o centralizatorze izomorficznym z wcześniej ustaloną grupą. Twierdzenie 9. Niech G będzie skończoną grupą prostą zawierającą inwolucję,którejcentralizatorjestizomorficznyzgl 2 (q),gdzieqjestpotęgą nieparzystejliczbypierwszej.wówczasg =PSL 3 (q),lubq=3igjest izomorficzna z grupą prostą Mathieu rzedu Idea Brauera, która z czasem przekształciła się w tzw. lokalną analizę, znalazła wielu zwolenników i ostatecznie doprowadziła do zakończenia klasyfikacji. W 957 roku M. Suzuki, prowadząc analizę grup prostych, w których

7 O klasyfikacji skończonych grup prostych 43 centralizator dowolnej inwolucji jest 2-grupą, skonstruował nieskończoną serię SGP. Udowodnił także, że grupa prosta, w której centralizator dowolnego elementu jest abelowy, musi mieć parzysty rząd. Trzy lata później W.Feit,M.HallJr.iJ.Thompsonpokazali,żewtwierdzeniuSuzukimożna zastąpić słowo przemienny słowem nilpotentny, a dalsze wysiłki W. Feita i J. Thompsona doprowadziły do udowodnienia w 962 roku hipotezy Burnside a o rozwiązalności grupy nieparzystego rzędu. Dowód o długości 257 stron, opublikowany w 963 roku, zajął cały numer czasopisma Pacific Journal of Mathematics. Lata sześćdziesiąte i początek lat siedemdziesiątych przyniosły całą serię bardzo ważnych i bardzo długich prac poświęconych klasyfikacji. Dla przykładu J. Thompson w serii sześciu prac opublikowanych w latach , o łącznej objętości 46 stron, sklasyfikował m.in. SGP,którychkażdawłaściwapodgrupajestrozwiązalna( 6 ). Twierdzenie 0. Jeśli każda właściwa podgrupa skończonej grupy prostej G jest rozwiązalna, to G jest izomorficzna z jedną z następujących grup: (a)psl 2 (p),gdziepjestliczbąpierwszą,p>3ip 2 niedzielisię przez 5; (b)psl 2 (2 p ),gdziepjestliczbąpierwszą; (c)psl 2 (3 p ),gdziepjestnieparzystąliczbąpierwszą; (d)psl 3 (3); (e)sz(2 p ),gdziepjestnieparzystąliczbąpierwszą. Z tej klasyfikacji wynika w szczególności, że Twierdzenie. Jeśli rząd skończonej grupy prostej G dzieli się przez dokładnie3różneliczbypierwszep,q,r,p<q<r,top=2,q=3ir {5,7,3,7}. Prace Brauera, a następnie Suzuki, Thompsona i innych dały możliwość identyfikacji grup o określonej wewnętrznej budowie według następującego toku myślenia. Jeśli dowolna podgrupa pewnej ustalonej rodziny podgrup grupyprostejgmaokreślonąwłasność,tognależydojednejzeznanych rodzin grup prostych albo ma takie czy inne reprezentacje permutacyjne lub liniowe, co z kolei daje możliwość jej konstrukcji jako podgrupy pewnej grupy liniowej, podgrupy grupy permutacji o pewnych dodatkowych własnościach lub automorfizmów swoistych obiektów kombinatorycznych. Np. w dwóch obszernych pracach D. Gorenstein i J. H. Walter udowodnili, że Twierdzenie 2. Jeżeli 2-podgrupy Sylowa skończonej grupy prostej G sągrupamidihedralnymi,togjestizomorficznazpsl 2 (q)dlanieparzystegoqlubg =A 7. ( 6 )ZatęseriępracJ.ThompsonotrzymałMedalFieldsanaMiędzynarodowymKongresie Matematyków w 974 roku.

8 44 C. Bagiński, M. Łuba Taka analiza pozwoliła także na uzupełnienie listy skończonych grup prostych listą tzw. sporadycznych grup prostych, tzn. takich grup, które nie występują w żadnej z nieskończonych serii SGP. W 895 Cole, w czasie prac nad opisem tranzytywnych grup permutacji, odkrył nieznaną wcześniej grupę prostą. Okazało się jednak, że była to jedna z pięciu tranzytywnych grup permutacji odkrytych w 86 roku przez E. Mathieu. Pozostałe cztery grupy również okazały się grupami prostymi. Ustalił to na przełomie lat Miller. Najmniejsza z grup Mathieu M marząd7920,natomiastrządnajwiększejm 24 przekracza240milionów. Grupy Mathieu okazały się pierwszymi, których nie dało się zaliczyć do żadnej nieskończonej rodziny grup prostych. Następną grupę sporadyczną znalazł dopiero w 966 roku Zvonimir Janko analizując lokalną strukturę grup prostych, których każda 2-podgrupa Sylowa jest abelowa, a pewna inwolucjamacentralizatorizomorficznyzz 2 PSL 2 (q).wciągunastępnych dziesięciu lat listę tą uzupełniono o kolejnych dwadzieścia grup. Ostatnią z grup sporadycznych, jakie znaleziono, okazała się grupa o monstrualnym rzędzierównym Ztego powodu nazwano ją grupą Monstrum(Monster group). Jej konstrukcja oraz dowód jednoznaczności zakończył klasyfikację SGP. Kwestia jednoznaczności grup ustalonego rzędu stanowiła istotny fragment klasyfikacji. Już Dickson pokazał, że istnieje nieskończenie wiele par nieizomorficznych grup prostych o równych rzędach. Najmniejszą z takich parjest(psl 3 (4),A 8 )rzędu2060,awspólnyrządgrupnastępnejpary jest równy Poniższe twierdzenie podaje nieskończoną listę takich par. Twierdzenie3.Dladowolnejliczbynaturalnejnmamy PSp 2n (q) = PΩ 2m+ (q).ponadto,jeślim 3,toPSp 2n (q) =PΩ2m+ (q)( 7 ). Lista par nieizomorficznych grup prostych tego samego rzędu, podana przez Dicksona, okazała się kompletna, wraz z zakończeniem klasyfikacji. W trakcie prac nad klasyfikacją SGP postawiono wiele innych uzupełniających pytań, na które odpowiedź znaleziono wraz z jej zakończeniem. Oto odpowiedzi na niektóre z nich. Twierdzenie 4. Grupa automorfizmów zewnętrznych skończonej grupy prostej jest rozwiązalna. Twierdzenie 5. Jeśli skończona grupa G ma automorfizm bez punktów stałych,togjestrozwiązalna. Twierdzenie 6. Każda skończona grupa prosta ma 2-elementowy zbiór generatorów. ( 7 )Znaczeniesymbolijestpodanewnastępnymrozdziale.

9 O klasyfikacji skończonych grup prostych 45 Twierdzenie 7. Jeśli G jest 4-tranzytywną prostą grupą permutacji, togjestizomorficznaza n,n 5,lubzjednązgrupprostychMathieu różnychodm 22. Wiele nowych wyników uzyskiwanych w teorii grup skończonych odwołuje się do twierdzenia klasyfikacyjnego, jak choćby rozwiązanie Osłabionego Problemu Burnside a([2]), za które E. Zelmanov otrzymał Medal Fieldsa w 994 roku. Jednakże istnieje całkiem spora grupa specjalistów, którzy z rezerwą odnoszą się do klasyfikacji sugerując, że jeśli nawet Twierdzenie zawiera pełną listę SGP, to istnieją luki w dowodzie. Trudno tych wątpliwości nie podzielać, skoro od zapowiedzi przedstawienia zwartej prezentacji dowodu upłynęło już dwadzieścia lat, a z zapowiadanej serii monografii ukazała się zaledwie jedna trzecia. Więcej na temat historii klasyfikacji SGP, w nieco bardziej specjalistycznym języku, można znaleźć w artykule[], który ukazał się już po wysłaniu niniejszego opracowania do Redakcji Wiadomości Matematycznych. Na początku artykułu R. Solomon zapowiada ukazanie się pracy M. Aschbachera i S. D. Smitha wyjaśniającej ostatnie merytoryczne wątpliwości. Solomon uznaje ją za ostateczne zakończenie klasyfikacji SGP. 3. Skończone grupy proste. W miarę przejrzysta prezentacja skończonych grup prostych w krótkim artykule przeglądowym adresowanym do szerszego odbiorcy nie jest łatwa, jeżeli w ogóle możliwa. Nie udało się nam znaleźć zadowalającego sposobu na taką prezentację, dlatego ograniczymy się do pobieżnego przedstawienia tylko niektórych aspektów na podstawie [6]i[7]. 3.. Nieskończone serie grup prostych. Tabela zawiera pełną listę nieskończonych serii SGP wraz z rzędami poszczególnych grup. Dwie pierwsze serie nie wymagają przedstawiania, ponieważ w kursowych wykładach algebry na ogół podawany jest opis ich podstawowych własności. Następne szesnaście serii to grupy typu Liego. Parametrami decydującymi o rzędzie grupysąstopieńnorazmocqskończonegociała F q.dlagrupoznaczonych symbolami F i G parametr n przyjmuje tylko jedną wartość(odpowiednio 4i2),adlagrupoznaczonychsymbolemE trzywartości:6,7lub8. Wszystkie grupy typu Liego można skonstruować jako grupy ilorazowe odpowiedniejpodgrupygrupymacierzystopniannadciałem F q.grupywymienione w pierwszych dziewięciu seriach nazywają się grupami Chevalleya lub nieskręconymi grupami prostymi typu Liego. Jednolity opis tych grup jako analogonów prostych grup Liego nad ciałem C jest podany w[2]. GrupaSL n (q)jestzbioremwszystkichmacierzystopniannadciałem q-elementowym, których wyznacznik jest równy. Ma ona na ogół nietrywialne centrum, złożone z macierzy skalarnych o wyznaczniku. Grupa A n (q)=psl n (q)jestgrupąilorazowągrupysl n (q)przezjejcentrum.

10 46 C. Bagiński, M. Łuba Tabela. Nieskończone serie skończonych grup prostych Oznaczenie Inne używane Rząd grupy oznaczenia Z p A n,n 5 Alt n 2 n! A n (q),n 2 PSL n(q),l n(q), L + n(q) B n(q),n 2 PΩ 2n+ (q),ω 2n+ (q) C n(q),n 2 PSp 2n (q) D n(q),n 3 PΩ + 2n (q),d+ n(q) E 6 (q) E + 6 E 7 (q) (n,q )(q ) p n i=0 (qn q i ) (2,q ) qn2 n i= (q 2i ) (2,q ) qn2 n i= (q 2i ) (4,q n ) qn(n ) (q n ) n i= (q2i ) (3,q ) q36 (q 2 )(q 5 )(q 6 )(q 8 ) (q 9 )(q 2 ) (2,q ) q63 (q 2 )(q 6 ) (q 8 )(q 0 )(q 2 ) (q 4 )(q 8 ) E 8 (q) q 20 (q 2 )(q 8 )(q 2 ) (q 4 ) (q 8 ) (q 20 )(q 24 )(q 30 ) F 4 (q) q 24 (q 2 )(q 6 )(q 8 )(q 2 ) G 2 (q) q 6 (q 2 )(q 6 ) 2 A n(q),n 2 PSU n+ (q),u n+ (q), L n+ (q) qn(n+) 2 n+ (n+,q+) i=2 (qi ( ) i ) 2 B 2 (q),q=2 2n+ Sz(q), 2 B 2 ( q) q 2 (q )(q 2 +) 2 D n(q),n 2 PΩ 2n (q),d n(q) (4,q n +) qn(n ) (q n +) n i= (q2i ) 3 D 4 (q) q 2 (q 2 )(q 6 )(q 8 +q 4 +) 2 G 2 (q),q=3 2n+ R(q), 2 G 2 ( q) q 3 (q )(q 3 +) 2 F 4 (q),q=2 2n+ 2 F 4 ( q) q 2 (q )(q 3 +)(q 4 )(q 6 +) 2 E 6 (q) E6 (q) (3,q+) q36 (q 2 )(q 5 +)(q 6 )(q 8 ) (q 9 +)(q 2 ) Grupę ortogonalną można zdefiniować jako podgrupę ogólnej grupy liniowejgl n (q),złożonąztychmacierzy,któredziałającnan-wymiarowej przestrzeniliniowejnadf q niezmieniająwartościustalonejniezdegenerowanej formy kwadratowej. Wszystkie formy kwadratowe nad ciałem liczb

11 O klasyfikacji skończonych grup prostych 47 zespolonych są równoważne i dlatego dla dowolnej liczby naturalnej n grupa SO n (C)macierzyortogonalnychowyznacznikujestokreślonajednoznacznie.NadciałamiskończonymiF q istniejązawszedwienierównoważneformy kwadratowe, wyznaczające dwie grupy macierzy ortogonalnych o wyznacznikuoznaczanesymbolamiso + n(q)iso n(q).dlaparzystychwartościn te grupy są nieizomorficzne, dla nieparzystych wartości n pokrywają się isąoznaczanesymbolemso + n (q)(lubso n(q)).grupytenaogółniesą proste.ichkomutantyoznaczamysymbolamiω + (q)iω (q),przyczym SO ± n (q):ω± (q) =,2lub4.CentrumgrupyΩ ± (q)jesttrywialnelub dwuelementowe. Jej grupa ilorazowa przez centrum jest oznaczana symbolami,odpowiednio,pω + (q)ipω (q),ijestgrupąprostą.otrzymujemy zatem trzy różne serie: B n (q)=pω 2n+ (q), D n (q)=pω + 2n (q), 2 D n (q)=pω 2n (q). Pierwsze dwie serie należą do nieskręconych grup typu Liego, a ostatnia do skręconych grup typu Liego, do których nawiążemy nieco dalej. GrupyC n (q)=psp n (q)definiowanesąanalogicznie.wogólnejgrupie liniowejrozważamypodgrupęsp n (q)wszystkichmacierzysymplektycznych, tzn. takich, które działając na przestrzeni symplektycznej, tzn. przestrzeni liniowej wraz z określoną na niej niezdegenerowaną dwuliniową formą alternującą,niezmieniająwartościtejformy.grupailorazowagrupysp n (q) przezjejcentrumjestgrupąc n (q). Pozostałe pięć serii grup Chevalleya, to analogony wyjątkowych grup prostych Liego nad C. Dladowolnegociałaskończonego F q 2,mającegoq 2 elementów,odwzorowanieϕ:x x q jestautomorfizmemrzędu2.wgrupiegl n (q 2 )rozważmy podgrupęgu n (q)elementówstałychzewzględunadziałanieautomorfizmu α tej grupy zdefiniowanego wzorem () α(x)=((x) t ), gdzie X jest macierzą, której wyrazy są obrazami odpowiednich wyrazów macierzyxzewzględunadziałanieautomorfizmuϕ,natomiasty Y t jest operacją transponowania macierzy. Nazywamy ją grupą unitarną. Niech SU n (q)=gu n (q) GL n (q 2 )i 2 A n (q)=psu n (q)będziejejgrupąilorazową przez jej centrum. Jest to grupa prosta należąca do skręconych grup prostych typu Liego. Analogiczne postępowanie pozwala otrzymać wspomniany wcześniejskręconywariant 2 D n (q)grupyortogonalnejzgrupyd 2n (q)oraz grupę 2 E 6 (q)zgrupye 6 (q).tąsamądrogąotrzymujemyrównieżgrupę 3 D 4 (q)zgrupyd 4 (q)zastępującautomorfizmϕautomorfizmemrzędu3 ciałaf q 3danegowzoremx x 3. SkręconewariantygrupB n (q),f 4 (q)ig 2 (q)istniejątylkodlaszczególnych wartości n i q. Odpowiedni automorfizm zadany wzorem() można znaleźćtylkowprzypadkachn=2,q=2 2k+ dlagrupyb n (q),q=2 2k+

12 48 C. Bagiński, M. Łuba dlagrupyf 4 (q)iq=3 2k+ dlagrupyg 2 (q).wpierwszymprzypadku otrzymujemygrupysuzukisz(2 2k+ )= 2 B 2 ( 2 2k+ ),awdwóchpozostałych grupyree 2 F 4 (2 2n+ )ir(3 2k+ )= 2 G 2 ( 3 2k+ ).Odnotujmy,że grupęsuzukisz(2 2k+ )możnazdefiniowaćjakopodgrupęgrupyb 2 (2 2k+ ) generowaną przez wszystkie macierze postaci a 0 0 a +θ +b a θ 0 a 2+θ +ab+b θ b a orazmacierzedonichtransponowane,gdziea,b,c F 2 2k+,natomiastθjest automorfizmemciała F 2 2k+takim,żeθ 2 =2(tzn.x θ2 =x 2 dlax F 2 2k+) Sporadyczne grupy proste. Prezentacja dwudziestu sześciu sporadycznych grup prostych jest nie mniej trudna, niż grup typu Liego. Dlatego także ograniczymy się do ich pobieżnego scharakteryzowania. Chętnych do zapoznania się z jednolitym opisem wszystkich sporadycznych SGP odsyłamydo[]. Wszystkie sporadyczne grupy proste, oprócz grup Mathieu, były odkrywane w kilku etapach. Najpierw, na podstawie pewnej konkretnej własności już znanych grup prostych, próbowano rozstrzygnąć problem opisu wszystkich grup prostych mających tę własność. To prowadziło czasami do obserwacji sugerujących istnienie, oprócz znanych grup, jeszcze innych grup prostych. Konkretyzacja tych obserwacji doprowadzała do opisu kluczowych wewnętrznych własności ewentualnej nowej grupy prostej, w tym własności p-podgrup Sylowa, rzędu grupy, czasami jej tablicy charakterów itd. Te własności z kolei stanowiły podstawę do konstrukcji grupy, tzn. jej realizacji jako grupy automorfizmów pewnej struktury, podgrupy ogólnej grupy liniowej, czy też podgrupy grupy permutacji. Ostatnim aktem odkrycia był dowód tego, że własności opisane jeszcze przed konstrukcją jednoznacznie określają nową grupę prostą. W latach E. Mathieu odkrył pięć k-tranzytywnych grup permutacji,k >2,nieizomorficznychanizgrupamisymetrycznymiS n ani alternującymia n.przypomnijmy,żepodgrupaggrupys(x)wszystkich permutacji zbioru X jest k-tranzytywna, jeśli dla dowolnych różnowartościowychciągów(x,x 2,...,x k )i(y,y 2,...,y k )elementówzbioruxistnieje elementg G,któryprzeprowadzaelementx i naelementy i,i=,...,k. OczywiściegrupasymetrycznaS n jestk-tranzytywnadladowolnegok n. Możnatakżełatwodowieść,żedladowolnegok n 2,k-tranzytywnajest takżegrupaalternującaa n. NaprzełomieXIXiXXwiekuokazałosię,żegrupytesąprosteinie należą do żadnej ze znanych wtedy, nieskończonych serii skończonych grup

13 O klasyfikacji skończonych grup prostych 49 Tabela 2. Sporadyczne grupy proste Oznaczenie Nazwa Rząd Data odkrycia M Mathieu M 2 Mathieu M 22 Mathieu M 23 Mathieu M 24 Mathieu J Janko J 2 Janko J 3 Janko J 4 Janko HS Higman Sims Mc McLaughlin Suz Suzuki Ly Lyons He Held Ru Rudvalis ON O Nann Co 3 Conway Co 2 Conway Co Conway M(22) Fischer M(23) Fischer M(24) Fischer F 3 Thompson F 5 Harada F 2 BabyMonster F Monster prostych.oznaczonojesymbolamim,m 2,M 22,M 23 im 24,gdziewskaźnik oznacza najmniejszy ze stopni grupy symetrycznej, w której dana grupa jest zawarta.

14 50 C. Bagiński, M. Łuba GrupyM im 23 sągrupami4-tranzytywnymi,natomiastgrupym 2 im 24 sągrupami5-tranzytywnymi.grupymathieusąjedynymiznanymi grupami4-i5-tranzytywnymi.niewiadomo,czydlak>5istniejągrupy k-tranzytywne nieizomorficzne ani z grupami symetrycznymi ani z alternującymi. GrupyMathieumożnaopisaćnawielesposobów.W[6]i[0]podane są permutacje odpowiednich grup symetrycznych generujące poszczególne grupy Mathieu. Np. Twierdzenie8.M 23 = d,e im 24 = d,e,f,gdzied,e,foznaczają następujące permutacje: d=(,2,3,4,5,6,7,8,9,0,,2,3,4,5,6,7,8,9,20,2,22,23), e=(3,7,0,7,9)(5,4,3,4,9)(,2,23,8,8)(2,6,5,20,22), f =(, 24)(2, 23)(3, 2)(4, 6)(5, 8)(6, 0)(7, 20)(8, 4)(9, 2)(, 7) (3,22)(9,5). Inny opis tych grup wykorzystuje pojęcie systemu trójek Steinera. Systemem Steinera S(k, m, n) na zbiorze n-elementowym Ω nazywamy taką rodzinęm-elementowychpodzbiorówzbioruω,złożonąz ( n m ) k)/( k podzbiorów takich, że każdy k-elementowy podzbiór zbioru Ω zawiera się w dokładnie jednym z podzbiorów tej rodziny. Twierdzenie 9. Istnieją jednoznacznie określone systemy trójek Steinera takie, że S(5,6,2), S(5,8,24), S(4,5,), S(4,7,23), S(3,6,22) Aut(S(5,6,2))=M 2, Aut(S(5,8,24))=M 24, Aut(S(4,5,))=M, Aut(S(4,7,23))=M 23, Aut(S(3,6,22))=Aut(M 22 ). Odnotujmy,żeM 22 mawgrupieaut(m 22 )indeks2. W 965 roku Z. Janko, analizując rodzinę grup prostych odkrytych przez Ree, odkrył pierwszą po grupach Mathieu sporadyczną grupę prostą. Każda grupatypureemacentralizator pewnejinwolucjiizomorficznyzz 2 PSL 2 (3 n ),ajej2-podgrupasylowajestizomorficznazelementarnągrupą abelową rzędu 8. Janko zbadał wszystkie grupy proste, które zawierają centralizatorinwolucjiizomorficznyzz 2 PSL 2 (p n ),aich2-podgrupysylowa sąizomorficznezz 2 Z 2 Z 2.Wrezultacieustalił,żealbop=3igrupajest typuree,albop n =5,grupamarząd75560imajednoznacznieokreśloną tablicę charakterów. Wynikiem jego rozważań jest następujące twierdzenie:

15 O klasyfikacji skończonych grup prostych 5 Twierdzenie 20. Jeżeli G jest grupą prostą z abelowymi 2-podgrupami Sylowarzędu8icentralizatorpewnejiwolucjiwGjestizomorficznyzZ 2 L 2 (5),to (a) G jest jednoznacznie określoną grupą prostą rzędu (b)gjestizomorficznazpodgrupągrupygl 7 ()generowanąprzezmacierzey izrzędu7i5: Y= , Z= Dla dowodu istnienia opisanej grupy należało jeszcze pokazać, że grupa Y, Z ma własności opisane w punkcie(a) powyższego twierdzenia. Nie było tołatwezadanie.dowiódłichm.a.wardjeszczew966roku. Dzięki idei wykorzystanej przez Z. Janko, polegającej na opisie własności grup prostych, w których centralizator pewnej inwolucji ma z góry zadaną postać, odkryto jeszcze 0 dalszych sporadycznych grup prostych: pozostałegrupyjankoj 2,J 3 ij 4,grupyHeldaHe,LyonsaLy,O NannaON, ThompsonaF 3,HaradyF 5,FisheraF 2 (BabyMonster)iGriessa FisheraF (Monster). Opis własności nowej grupy prostej, utożsamiany w literaturze z jej odkryciem, wyprzedzał jej konstrukcję i dowód jednoznaczności nawet okilkalat.dlaprzykładuopisgrupyj 4 zostałpodanyw975roku,adowód jednoznaczności w 980. Podobnie było z grupą Monster, która wśród wszystkich sporadycznych grup prostych charakteryzuje się największym rzędem i zawiera izomorficzne kopie dziewiętnastu pozostałych grup sporadycznych w charakterze podgrup lub grup ilorazowych jej podgrup. Są to: pięć grup Mathieu,trzygrupyConway a,suz,j 2,HS,Mc,He,F 2,F 3,F 5 oraz trzy grupy Fischera. Pierwsze ślady istnienia grupy Monster zostały odkryte niezależnie przez Amerykanina R. L. Griessa i Niemca B. A. Fischera w 974 roku. Zaraz potem dowiedziono, że każda nietrywialna reprezentacja liniowa tejgrupymastopieńniemniejszyniż96883,przyczymjestbardzoprawdopodobne, że reprezentacja o takim stopniu istnieje. W 980 roku Griess skonstruował grupę Monster jako grupę automorfizmów pewnej przemiennej

16 52 C. Bagiński, M. Łuba algebry o tym wymiarze. Jak wspomnieliśmy w poprzednim rozdziale, dowód jednoznaczności grupy Monster zakończył klasyfikację SGP. GrupyJ 2 ihjskonstruowalim.hallid.walesjakoprymitywnegrupy permutacji rangi 3(tzn. grupy permutacji pewnego skończonego zbioru Ω, której stabilizator dowolnego punktu należącego do Ω jest podgrupą maksymalną działającą tranzytywnie na trzech rozłącznych podzbiorach, na które rozpada się Ω). Intensywne badania, wywołane przez te konstrukcje, doprowadziły do odkrycia grup Higmana Simsa HS, Suzuki Suz, McLaughlinaMciRudvalisaRu. GrupyFischeraM(22),M(23)iM(24) zostałyodkrytewramachcharakteryzacji grup skończonych generowanych przez klasę sprzężoności inwolucjitaką,żeiloczyndwóchdowolnychelementówtejklasymarząd,2 lub3.wartododać,żegrupafischeraf 2,zwanaBabyMonster,możebyć otrzymana w ramach podobnej charakteryzacji nieco szerszej klasy grup, a mianowicie grup generowanych przez klasę sprzężoności inwolucji, dla którejiloczyndwóchdowolnychelementówmarząd,2,3lub4. Odnotujmy na koniec, że J. Conway odkrył swoje trzy sporadyczne grupy proste analizując grupę automorfizmów tzw. kraty Leecha o wymiarze 24. Bibliografia []M. Aschbacher, SporadicGroups,CambridgeUniv.Press,Cambridge,994. [2]C. Bagiński, OproblemachBurnside a,wiadom.mat.33(997), [3]W. Burnside, TheoryofGroupsofFiniteOrder,CambridgeUniv.Press,Cambridge, 9. [4]C.W. Curtis, PioniersofRepresentationTheory:Frobenius,Burnside,Schur, and Brauer, Amer. Math. Soc., London Math. Soc., 999. [5]A.R. Forsyth, WilliamBurnside,J.LondonMath.Soc.3(928), [6]D. Gorenstein, FiniteSimpleGroups.AnIntroductiontoTheirClassification, Plenum Press, New York, London, 982. [7]D. Gorenstein, R. Lyons, R. Solomon, TheClassificationoftheFinite SimpleGroupsI,II,III,Amer.Math.Soc.SurveysandMonographs40,Providence, Rhode Island( ). [8]B. Huppert, EndlicheGruppenI,Springer,Berlin,Heidelberg,NewYork,967. [9]T.Y. Lam, Representationsoffinitegroups:ahundredyears,PartI,II,Notices Amer. Math. Soc. 45(998), no. 3-4, [0]J. Mozrzymas, Zastosowaniateoriigrupwfizyce,PWN,Wrocław,976. []R.Solomon, Abriefhistoryoftheclassificationofthefinitesimplegroups,Bull. Amer. Math. Soc. 38(200), no. 3, [2]R. Steinberg, LecturesonChevalleyGroups,YaleUniv.,967.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Teoria ciała stałego Cz. I

Teoria ciała stałego Cz. I Teoria ciała stałego Cz. I 1. Elementy teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3

Bardziej szczegółowo

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k 1. ... [a n,b n ] kn =(a 1 b 1 a 1 4. Wykład 4: Grupy rozwiązalne i nilpotentne. Definicja 4.1. Niech (G, ) będzie grupą. Wówczas (1) ciąg podgrup grupy G zdefiniowany indukcyjnie wzorami G (0) = G, G (i) =[G (i 1),G (i 1) ], dla i N nazywamy

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Notatki do wykładu Geometria Różniczkowa I

Notatki do wykładu Geometria Różniczkowa I Notatki do wykładu Geometria Różniczkowa I Katarzyna Grabowska, KMMF 1 listopada 013 1 Odwzorowanie styczne i cofnięcie formy cd: 1.1 Transport pola wektorowego i cofnięcie formy W poprzednim paragrafie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 9: Grupy skończone Gniewomir Sarbicki Grupy cykliczne Definicja: Jeżeli każdy element grupy G jest postaci a n dla pewnego a G, to mówimy, że grupa G jest grupą cykliczną o

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

spis treści 1 Zbiory i zdania... 5

spis treści 1 Zbiory i zdania... 5 wstęp 1 i wiadomości wstępne 5 1 Zbiory i zdania............................ 5 Pojęcia pierwotne i podstawowe zasady 5. Zbiory i zdania 6. Operacje logiczne 7. Definicje i twierdzenia 9. Algebra zbiorów

Bardziej szczegółowo

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny)

1. R jest grupą abelową względem działania + (tzn. działanie jest łączne, przemienne, istnieje element neutralny oraz element odwrotny) Rozdział 1 Pierścienie i ideały Definicja 1.1 Pierścieniem nazywamy trójkę (R, +, ), w której R jest zbiorem niepustym, działania + : R R R i : R R R są dwuargumentowe i spełniają następujące warunki dla

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

1 Określenie pierścienia

1 Określenie pierścienia 1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

L A TEX krok po kroku

L A TEX krok po kroku L A TEX krok po kroku Imię i nazwisko Spis treści 1 Sekcja pierwsza 1 1.1 Lista numerowana.......................... 1 2 Wymagania podstawowe 2 2.1 Lista numerowana.......................... 2 3 Troszkę

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

Grupy generowane przez mep-pary

Grupy generowane przez mep-pary Grupy generowane przez mep-pary Witold Tomaszewski (przy współudziale Zbigniewa Szaszkowskiego i Marka Żabki) Zakład Algebry Instytut Matematyki Politechnika Śląska e-mail: Witold.Tomaszewski@polsl.pl

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4A/15 Liczby Fibonacciego Spośród ciągów zdefiniowanych rekurencyjnie, jednym z najsłynniejszych jest ciąg Fibonacciego (z roku 1202)

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii

Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Topologia Algebraiczna - Pomocnik studenta. 1. Język teorii kategorii Agnieszka Bojanowska Stefan Jackowski 24 listopada 2010 1 Podstawowe pojęcia Bedziemy uzywać następujących pojęć i przykładów dotyczących

Bardziej szczegółowo

Grupy, pierścienie i ciała

Grupy, pierścienie i ciała Grupy, pierścienie i ciała Definicja: Niech A będzie niepustym zbiorem. Działaniem wewnętrznym (lub, krótko, działaniem) w zbiorze A nazywamy funkcję : A A A. Niech ponadto B będzie niepustym zbiorem.

Bardziej szczegółowo

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub WYKŁAD 2 1 2. FUNKCJE. 2.1.PODSTAWOWE DEFINICJE. Niech będą dane zbiory i. Jeżeli każdemu elementowi x ze zbioru,, przyporządkujemy jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy

Bardziej szczegółowo

Wielomiany jednej zmiennej rzeczywistej algorytmy

Wielomiany jednej zmiennej rzeczywistej algorytmy Rozdział 15 Wielomiany jednej zmiennej rzeczywistej algorytmy 15.1 Algorytm dzielenia Definicja 15.1 Niech dany będzie niezerowy wielomian f K[x] (K jest ciałem) f = a 0 x m + a 1 x m 1 +... + a m, gdzie

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

5. Logarytmy: definicja oraz podstawowe własności algebraiczne.

5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 5. Logarytmy: definicja oraz podstawowe własności algebraiczne. 78. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 a) 4 2+log 27 = (2 2 ) log 27 4 = 28 2 = 784 29 listopada 2008

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2

Teoria węzłów matematycznych - warkocze. Karolina Krzysztoń 10B2 Teoria węzłów matematycznych - warkocze Karolina Krzysztoń 10B2 Pojęcie węzła W matematyce węzły to zamknięte pętle umieszczone w przestrzeni trójwymiarowej, czyli zaplątane sznurki z połączonymi końcami.

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005 RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009

Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 Zadania z Algebry liniowej 3 semestr zimowy 2008/2009 1. Niech V będzie przestrzenią wektorową nad ciałem K i niech 0 K oraz θ V będą elementem zerowym ciała K i wektorem zerowym przestrzeni V. Posługując

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)

Bardziej szczegółowo

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009

Systemy baz danych. Notatki z wykładu. http://robert.brainusers.net 17.06.2009 Systemy baz danych Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna PROSTOKĄTY ŁACIŃSKIE

MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna  PROSTOKĄTY ŁACIŃSKIE MATEMATYKA DYSKRETNA (0/0) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ PROSTOKĄTY ŁACIŃSKIE PROSTOKĄTY ŁACIŃSKIE Prostokąt łaciński o wymiarze pq o elementach

Bardziej szczegółowo

Rozdział 7 Relacje równoważności

Rozdział 7 Relacje równoważności Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony

Bardziej szczegółowo

Jeśli lubisz matematykę

Jeśli lubisz matematykę Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Uniwersytet w Białymstoku. Wykład monograficzny

Uniwersytet w Białymstoku. Wykład monograficzny Uniwersytet w Białymstoku Wydział Matematyczno-Fizyczny Instytut Matematyki dr hab. Ryszard Andruszkiewicz Wykład monograficzny Wykład monograficzny prowadzony dla studentów V roku matematyki przez dr

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

O centralizatorach skończonych podgrup

O centralizatorach skończonych podgrup O centralizatorach skończonych podgrup GL(n, Z) Rafał Lutowski Instytut Matematyki Uniwersytetu Gdańskiego III Północne Spotkania Geometryczne Olsztyn, 22-23 czerwca 2009 1 Wprowadzenie Grupy podstawowe

Bardziej szczegółowo

Wybrane własności półgrup

Wybrane własności półgrup Wybrane własności półgrup Arkadiusz Męcel Seminarium magisterskie: Klasyczne struktury algebraiczne 16 października 2008r. 1 Pojęcie półgrupy. Proste przykłady. Celem tego referatu jest przedstawienie

Bardziej szczegółowo

Metody matematyczne fizyki

Metody matematyczne fizyki Metody matematyczne fizyki Tadeusz Lesiak Wykład VI Elementy teorii grup Wstęp do teorii grup Teoria grup (TG) = matematyka symetrii liczne zastosowania w fizyce i chemii Odpowiada na ważne pytanie: jakie

Bardziej szczegółowo

1. Określenie pierścienia

1. Określenie pierścienia 1. Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Historia kwadratów magicznych

Historia kwadratów magicznych Kwadraty magiczne Magiczne kwadraty to liczby tak ułożone, że suma każdej kolumny i rzędu jest równa tej samej liczbie. Składają się one z czterech lub więcej pól. Najpopularniejsze maja 9 lub 16 pól.

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

TEORIA WĘZŁÓW. Natalia Grzechnik 10B2

TEORIA WĘZŁÓW. Natalia Grzechnik 10B2 TEORIA WĘZŁÓW Natalia Grzechnik 10B2 Słowem wstępu zastosowanie teorii węzłów Biologiczna rola węzłów w białkach Wyznaczanie topologii białek Kryptografia Biofizyka Opis struktur DNA, RNA, białek DNA a

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY

ALGEBRA Z GEOMETRIĄ PIERŚCIENIE, CIAŁA I HOMOMORFIZMY ALGEBRA Z GEOMETRIĄ 1/10 PIERŚCIENIE, CIAŁA I HOMOMORFIZMY Piotr M. Hajac Uniwersytet Warszawski Wykład 3, 16.10.2013 Typeset by Jakub Szczepanik. Definicja pierścienia 2/10 Zbiór R wyposażony w dwa działania

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Wzory skróconego mnożenia w zadaniach olimpijskich

Wzory skróconego mnożenia w zadaniach olimpijskich Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Rzędy Elementów Grupy Abelowej Andrzej Nowicki 16 września 2015, wersja rz-15

Rzędy Elementów Grupy Abelowej Andrzej Nowicki 16 września 2015, wersja rz-15 Materiały Dydaktyczne 2015 Rzędy Elementów Grupy Abelowej Andrzej Nowicki 16 września 2015, wersja rz-15 Niech G będzie grupą z elementem neutralnym e i niech a G. Załóżmy, że istnieje co najmniej jedna

Bardziej szczegółowo

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które

Bardziej szczegółowo

0.1 Pierścienie wielomianów

0.1 Pierścienie wielomianów 0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

WYKŁAD PROF. DR HAB. INŻ. TADEUSZA KACZORKA

WYKŁAD PROF. DR HAB. INŻ. TADEUSZA KACZORKA W pracy tej zostaną przedstawione: - warunki konieczne i wystarczające cykliczności macierzy A normalności macierzy transmitancji T(s); - warunki istnienia i metody doboru sprzężeń zwrotnych od stanu tak,

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni. Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia

Bardziej szczegółowo

RobertSkiba PatrykMiziuła ZBIÓRZADAŃ ZANALIZYIALGEBRY

RobertSkiba PatrykMiziuła ZBIÓRZADAŃ ZANALIZYIALGEBRY RobertSkiba PatrykMiziuła ZBIÓRZADAŃ ZANALIZYIALGEBRY Toruń2013 Recenzenci prof. dr hab. Grzegorz Graff prof. dr hab. Artur Michalak Redaktor Elżbieta Kossarzecka Projekt okładki Jacek Owczarz, Studio

Bardziej szczegółowo

Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych) zmiennych. Może zatem wyglądać na przykład tak:

Zadeklarowanie tablicy przypomina analogiczną operację dla zwykłych (skalarnych) zmiennych. Może zatem wyglądać na przykład tak: Tablice Tablice jednowymiarowe Jeżeli nasz zestaw danych składa się z wielu drobnych elementów tego samego rodzaju, jego najbardziej naturalnym ekwiwalentem w programowaniu będzie tablica. Tablica (ang.

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Algebra liniowa z geometrią Kod przedmiotu/

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Metody dowodzenia prostoty grup

Metody dowodzenia prostoty grup Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Daniel Malinowski Nr albumu: 292680 Metody dowodzenia prostoty grup Praca licencjacka na kierunku MATEMATYKA Praca wykonana pod kierunkiem

Bardziej szczegółowo

Sumy kwadratów. Twierdzenie Fermata-Eulera. Lemat Minkowskiego

Sumy kwadratów. Twierdzenie Fermata-Eulera. Lemat Minkowskiego Sumy kwadratów TWIERDZENIE LAGRANGE A Każda liczba naturalna da się przedstawić w postaci sumy czterech kwadratów. Twierdzenie Fermata-Eulera Każda liczba pierwsza postaci 4k + 1 daje się przedstawić w

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Algebra. Wykłady dla Studiów Doktoranckich. Kazimierz Szymiczek

Algebra. Wykłady dla Studiów Doktoranckich. Kazimierz Szymiczek Algebra Wykłady dla Studiów Doktoranckich Kazimierz Szymiczek 29.11.2010 Spis treści Przedmowa v 1 Grupy 1 1.1 Grupy, podgrupy, homomorfizmy.................... 1 1.1.1 Definicja i przykłady grup....................

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Matematyka I Wszystkie specjalności Data wydruku: 21.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane

Bardziej szczegółowo