Zagadnienie Keplera F 12 F 21

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zagadnienie Keplera F 12 F 21"

Transkrypt

1 Zagadnienie Keplera To zagadnienie bedzie potraktowane bardzo skrótowo i planuje podanie w tym miejscu jedynie podstawowych informacji. Zagadnienie Keplera jest dyskutowane w każdym podreczniku mechaniki. Polecam na przyk lad rozdzia l V pierwszego tomu Wstepu do fizyki A. K. Wróblewskiego i J. K. Zakrzewskiego, PWN, Warszawa 1984 lub rozdzia l III s lynnej ksiażki L. Landaua i E. Lifszica, Mechanika, PWN, Warszawa Rozważmy najpierw dwie punktowe masy m 1 i m 2. Zgodnie z prawem powszechnego ciażenia oddzia luj a one na siebie si lami F 12 i F 21, przy czym zgodnie z III zasada dynamiki Newtona zachodzi F 21 = F 12. m 1 m 2 F 12 F 21 r 1 r 2 Mamy wiec do czynienia z uk ladem równań (1) i (2) O m 1 d 2 r 1 dt 2 = F 12 (1) m 2 d 2 r 2 dt 2 = F 21 = F 12, (2) który można w zasadzie bezpośrednio rozwiazać (np. numerycznie) lub zredukować najpierw do jednego równania korzystajac z faktu, że si ly zależa jedynie od wektora r = r 1 r 2 wzajemnej odleg lości miedzy masami m 1 i m 2. Ta redukcja odbywa sie w sposób nastepuj acy. Jeśli dodamy równania (1) i (2) stronami to dostaniemy co można też zapisać jako d 2 dt 2 (m 1 r 1 + m 2 r 2 ) =, () d 2 dt 2 Oznacza to, ze środek masy obu punktów materialnych ( ) m1 r 1 + m 2 r 2 R m 1 + m 2 porusza sie ruchem jednostajnym ( R i V to sta le wektory) ( ) m1 r 1 + m 2 r 2 =. (4) m 1 + m 2 (5) R(t) = R + V t (6) 1

2 i najprościej przyjać, że uk lad dwóch mas jako ca lość spoczywa ( R(t) = ). Pozostaje wiec do rozwiazania jedno równanie na po lożenie wzgledne r. Dzielac (1) przez m 1, a (2) przez m 2 i odejmujac równanie (2) od równania (1) dostaniemy czyli d 2 ( 1 dt ( r 2 1 r 2 ) = + 1 ) F12. (7) m 1 m 2 m d2 dt 2 r = F 12. (8) gdzie m m 1m 2 m 1 +m 2. Po znalezieniu r(t) i dla wcześniej zdefiniowanego R(t) po lożenia obu punnktów materialnych dane sa w postaci r 1 = R m 2 + r (9) m 1 + m 2 r 2 = R m 1 m 1 + m 2 r. (1) Mamy wiec jakby do czynienia z ruchem jednego punktu materialnego o masie m pod wp lywem si ly F F r r 12 = Gm 1 m 2 κ r r (11) y r v F(r) m O x Dla takiego ruchu energia ca lkowita, E m 2 v 2 κ r m ( v 2 2 x + vy 2 + vz 2 oraz moment pedu liczony wzgledem punktu O ) κ x2 + y 2 + z 2 (12) L O r p m r v, (1) pozostaja sta le w czasie. Jest też jasne, że ruch odbywa sie w ustalonej p laszczyźnie. Bez straty ogólności możemy przyjać. że jest to p laszczyzna xy, wiec z(t) = i v z (t) =. W takim przypadku tylko sk ladowa L z wektora L L z = mxv y myv x (14) 2

3 jest różna od zera. Jej wartość bezwzgledn a oznaczamy L. Wielkości E i L decyduja o parametrach toru czastki. Należy zwrócić uwage, że E może być dodatnia, ujemna lub przyjmować wartość zero. Ostatecznie poszukujemy wiec czterech wielkości: x(t), ẋ(t) x (t) d x(t), y(t) i ẏ(t) dt y (t) d y(t). dt Wycieczka do uk ladu biegunowego Problem Keplera wygodnie jest rozważać w uk ladzie biegunowym, bo w nim si la ma tylko jedna sk ladow a. Poniżej podam wyprowadzenie ważnego wzoru Bineta. Odpowiednikiem uk ladu równań jest teraz mẍ = F x (x,y) mÿ = F y (x,y) ma ϕ m (2 ρ ϕ + ρ ϕ) = F ϕ = ma ρ m ( ρ ρ ϕ ϕ) = F ρ (ρ) F(ρ) Równanie z a ϕ można zapisać także w innej postaci: Oznacza to, że wielkość 1 ρ d ( mρ2 ϕ ) = dt mρ 2 ϕ jest sta la w czasie ruchu. Jest to inaczej zapisana sk ladowa momentu pedu L z L, bo L = m(xẏ yẋ) = m (ρ cos ϕ( ρ sin ϕ + ρ cos ϕ ϕ) ρ sin ϕ( ρ cos ϕ ρ sin ϕ ϕ)) = mρ 2 ϕ. Zak ladamy dalej, że L, bo w przeciwnym wypadku ruch odbywa lby sie po linii prostej. Zachodzi wiec ϕ = L mρ 2. Równanie toru we wspó lrz ednych biegunowych jest postaci ρ = ρ(ϕ). Dlatego ρ = dρ dt = dρ dϕ dϕ dt = dρ L dϕ mρ = L d 2 m dϕ ( ) 1. ρ

4 Dalej mamy ρ = d d ρ dϕ ( ρ) = dt dϕ dt = d dϕ ( L d m dϕ ( )) 1 dϕ ρ d 2 dt = L m dϕ 2 Wstawiajac ten wynik do wzoru z a ρ, dostajemy m L2 d 2 ( ) 1 mρ L2 m 2 ρ 2 dϕ 2 ρ m 2 ρ = F(ρ) 4 i ostatecznie wzór Bineta: d 2 dϕ 2 ( ) ρ ρ = mρ2 L F(ρ). 2 ( ) 1 L ρ mρ = L2 d 2 2 m 2 ρ 2 dϕ 2 ( ) 1. ρ Powyższy wzór umożliwia znalezienie si ly centralnej, jeśli znane jest równanie toru ρ(ϕ). I odwrotnie: jeśli znamy zależność si ly centralnej od ρ i ϕ, to można określić ρ(ϕ). Zgodnie z I prawem Keplera planety poruszaja sie po eliptycznych orbitach, w których w jednym z ognisk znajduje sie S lońce. Takie równanie elipsy ma we wspó lrz ednych biegunowych postać p ρ = 1 + e cos ϕ, gdzie mimośród elipsy e i jej parametr p dane sa wzorami Dla takiej zależności ρ(ϕ) mamy i wiec ze wzoru Bineta dostajemy d 2 dϕ 2 d 2 dϕ 2 e = a2 b 2, a p = a(1 e 2 ). ( ) 1 = e cos ϕ ρ p ( ) ρ ρ = 1 p, L2 F(ρ) = mp ρ 2, czyli si la jest odwrotnie proporcjonalna do kwadratu odleg lości i przyciagaj aca. 1 Oprócz pozycji dotyczacych problemu Keplera wymienionych na poczatku wyk ladu, goraco polecam także dostepn a w sieci przedwojenna ksiażk e znakomitego matematyka Stefana Banacha, Mechanika: 1 Bezpośrednie podstawienie ρ = r = const nie pozwala na znalezienie postaci funkcyjnej F(ρ). 4

5 Zagadnienie Keplera z momentem pedu L Równanie toru możemy ogólnie zapisać we wspó lrz ednych biegunowych w postaci r = p 1 + e cos ϕ. (15) Przedstawia ono krzywa stożkowa o ognisku w poczatku uk ladu wspó lrz ednych, przy czym p i e sa parametrem i mimośrodem krzywej. p = L2 m κ (16) e = 1 + 2E L2 m κ 2. (17) Kat ϕ mierzony jest w taki sposób, że punkt o wspó lrz ednej ϕ = jest najbliższym punktem centrum si ly, tzw. peryhelium orbity. y y r O ϕ x x Dla E < mimośród e < 1, co oznacza, że orbita jest elipsa o pó losiach danych wzorami: b = a = p 1 e 2 = p 1 e = κ 2 (18) 2 E L 2m E. (19) Najmniejsza dopuszczalna wartość energii przy ustalonym L to E min = m κ2. Dla tej 2 L 2 wartości energii e =, czyli elipsa przechodzi w okrag o promieniu r = L2. m κ Zależność po lożenia od czasu na orbicie eliptycznej można podać jedynie w postaci parametrycznej. Wprowadzamy parametr ξ poprzez zależność r a = ae cos ξ (2) 5

6 4 orbita eliptyczna 2 y [1 6 km] 1-1 S x [1 6 km] 6

7 2 15 tor hiperboliczny wprost po odwroceniu czasu 1 5 y [1 6 km] -5 S x [1 6 km] 7

8 1 8 tor paraboliczny wprost po odwroceniu czasu 6 4 y [1 6 km] 2-2 S x [1 6 km] 8

9 Wówczas (ξ [, 2π]) r = a (1 e cos ξ) (21) ma t = (ξ e sin ξ) (22) κ x = a (cos ξ e) (2) y = b sin ξ. (24) W szczególności czas obiegu opo orbicie eliptycznej wynosi T = t(2π) t() = 2π ma κ (25) Dla toru parabolicznego wygodnym parametrem jest tan ϕ 2 (tan ϕ 2 (, )): ( t = mp2 tan ϕ 2L ϕ ) tan 2 p r = 1 + cosϕ = p ( 1 + tan 2 ϕ ) 2 2 x = r cos ϕ = p ( 1 tan 2 ϕ ) 2 2 (26) (27) (28) y = r sin ϕ = p tan ϕ 2. (29) Dla toru hiperbolicznego wprowadzamy parametr χ (χ (, )) i dostajemy r = a (e cosh χ 1) () ma t = (e sinh χ χ) (1) κ x = a (e cosh χ) (2) y = a e 2 1 sinhχ. () Należy pamietać, że dla hiperboli mamy inne zwiazki miedzy p, e, a i b: a = p (4) e 2 1 p b = e2 1. (5) 9

10 Ruch radialny w zagadnieniu Keplera Z orbitalnym momentem pedu L= O M R m v o r Chcemy znaleźć r(t), jeśli zachodzi r(t = ) = R oraz v(t = ) = v. Wygodnie jest użyć zasady zachowania energii i wyliczyć predkość v(t): E GMm R v(t) = + m 2 v2 = GMm r 2E m + 2GM r + m 2 v2 Z dok ladnościa do znaku mamy ± dr = v(t) dt W sytuacji zaznaczonej na rysunku, w poczatkowej fazie ruchu zachodzi (niezależnie od znaku E) < dr 2E dt = m + 2GM r i to równanie można rozwiazać analitycznie. Jest to równanie o zmiennych rozdzielonych. Najprostszy przypadek to E =. Nie tylko na poczatku, ale w dowolnej chwili czasu zachodzi dr >. Po prostych rachunkach dostajemy (notatki do wgl adu) dt r(t) = ( 2 2GM )2 v(t) = dr ( )2 dt = 2 2GM 2 t + 2R 2 2GM 2 t + 2R 2 2GM 1 Dla E > także mamy do czynienia z ucieczka masy m do nieskończoności. Także w tym wypadku w dowolnej chwili czasu zachodzi dr >, co prowadzi do dt r dt = dr B + Ar, 1

11 gdzie A = 2 E > i B = 2GM >. m r Ar B + Ar dr B + Ar = A 2 B A 2 log [ 2 ( Ar + B + Ar )] f 1 (r) Dostajemy wiec t + C = f 1 (r). Tej zależności nie da sie odwrócić, by uzyskać r(t)! Warunek poczatkowy + C = f 1 (R) pozwala na wyliczenie sta lej C i podanie ostatecznego rozwiazania w postaci t = t(r) = f 1 (r) f 1 (R). Rozważmy jeszcze ostatni przypadek, E <. W tym wypadku r nie może rosnać do nieskończoności i ruch jest ograniczony: r B A = GMm E r max. Obiekt o masie m najpierw oddala sie od masy M, a potem powraca. Ca lkowanie równania różniczkowego prowadzi do r dr B Ar = B arctan Trzeba pamietać, że dla powrotu A 2 Ar B Ar v(t) = dr dt <. (B Ar)r A f 2 (r) Definiujemy czas t max w taki sposób, że r(t max ) = r max. Ostatecznie, uwzgledniaj ac warunek poczatkowy dostajemy t(r) = { f 2 (r) f 2 (R), t < t max. t max + f 2 (r max ) f 2 (r), t t max Prosze nie wierzyć ślepo podanym wyrażeniom! 11

12 Precesja peryhelium Merkurego Poprawka do prawa powszechnego ciażenia Orbita Merkurego ma znaczny mimośród e, równy W peryhelium przybliża sie ta planeta na r prh = AU do S lońca, a w aphelium jej odleg lość od S lońca wynosi r aph = AU. Okres obiegu Merkurego dooko la S lońca wynosi T = lat ziemskich. W przypadku Merkurego nie mamy w laściwie do czynienia z zamkniet a orbita, bo peryhelium Merkurego zmienia swoja pozycje po każdym obiegu tej planety wokó l S lońca. Ten efekt jest niewielki i wynosi jedynie 566 sekundy luku na 1 ziemskich lat, co oznacza pe lny obrót peryhelium w czasie oko lo 2 lat. Cześć tego efektu (oko lo 52 sekund luku na 1 lat) można wyt lumaczyć na gruncie klasycznej mechaniki newtonowskiej wp lywem innych planet. Brakujace 4 sekundy luku na 1 lat zosta lo wyjaśnione przez Ogólna Teorie Wzgledności (OTW) Einsteina. Efektywnie poprawke OTW można sprowadzić w pierwszym przybliżeniu do dodatkowego sk ladnika w prawie powszechnego ciażenia: ( r F 12 = Gm 1 m 2 r 1 + α ) r 2, (6) gdzie dla Merkurego α AU 2. Spróbujemy prześledzć numerycznie ten efekt. Bardzo ważna sprawa jest w laściwy wybór warunków poczatkowych. Znajac odleg lości Merkurego od S lońca w aphelium i peryhelium, możemy policzyć d lugość d luższej pó losi a a = 1 2 (r aph + r prh ) =.879 AU. Dalej wiemy, że okres T obiegu planety wokó l S lońca jest zwiazany z a T = 2π a Gm 2. W końcu wykorzystujemy zwiazek miedzy a i ca lkowit a energia E a = Gm 1m 2 2 E po to, by znaleźć predkość Merkurego w aphelium: ( 2 v aph = Gm 2 1 ). r aph a Skoro znamy już warunki poczatkowe (w tym przypadku w aphelium), możemy teraz wykorzystać którykolwiek z programów liczacych orbite ko low a Ziemi. Wystarczy w tym 12

13 celu zmienić odpowiednio warunki poczatkowe oraz zmodyfikowac dwa spośród czterech równań uk ladu. Dla zbadania precesji peryhelium (w laściwie w naszym przypadku precesji aphelium, ale to jest równoważne), wygodnie jest wypisywać pozycje Merkurego po kolejnych okresach. Ponieważ efekt po jednym okresie jest bardzo niewielki, zalecane sa w laściwie dwie drogi postepowania 1. Wykonanie obliczeń z różnymi wartościami α znacznie wiekszymi od wartości prawdziwej, a nastepnie ekstrapolacja wyników do prawdziwej wartości α. 2. Prześledzenie po lożenia Merkurego po bardzo wielu okresach (kilkaset tysiecy), co jest zupe lnie wykonalne. W tym przypadku należy jednak upewnić sie, że zmiany po lożenia Merkurego nie biora sie z numerycznych niedok ladności akumulujacych sie wskutek bardzo d lugiego przedzia lu ca lkowania. W tym celu, dla referencji w laściwe jest wykonanie równoleg lych obliczeń z α =. Jeśli zmiany po lożenia Merkurego po bardzo wielu okresach dla α = bed a wciaż ma le, mamy pewność, że obserwujemy w laściwy efekt. Energia ca lkowita uk ladu E tot, E tot = E kin Gm 1 m 2 1 r Gm 1m 2 α r (7) czyli suma energii kinetycznej E kin oraz odpowiednio zmienionej energii potencjalnej powinna być sta la w czasie Również moment pedu L z = mxv y myv x (8) jest zachowany, bo pomimo zmian wciaż mamy do czynienia z zachowawcza si l a centralna. y 2a 2b O c=ea S v aph x r prh r aph (c) Jacek Golak,

14 y [AU] α=.1 (AU) t max = T x [AU] y [AU] t max = 2T x [AU] y [AU] t max = T x [AU] y [AU] t max = 4T x [AU]

15 Stabilnosc rozwiazania z α=, t max = T x [AU] Obrot aphelium Merkurego, α= (AU) 2, t max = T x [AU]

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Transformacja Lorentza - Wyprowadzenie

Transformacja Lorentza - Wyprowadzenie Transformacja Lorentza - Wyprowadzenie Rozważmy obserwatorów zwiazanych z różnymi inercjalnymi uk ladami odniesienia, S i S. Odpowiednie osie uk ladów S i S sa równoleg le, przy czym uk lad S porusza sie

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Ksztaªt orbity planety: I prawo Keplera

Ksztaªt orbity planety: I prawo Keplera V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium Zastosowanie Robotów laboratorium Ćwiczenie 6 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.002.01, 7 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Fizyka I. Kolokwium

Fizyka I. Kolokwium Fizyka I. Kolokwium 13.01.2014 Wersja A UWAGA: rozwiązania zadań powinny być czytelne, uporządkowane i opatrzone takimi komentarzami, by tok rozumowania był jasny dla sprawdzającego. Wynik należy przedstawić

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06A

Geometria odwzorowań inżynierskich rzut środkowy 06A Scriptiones Geometrica Volumen I (2014), No. 6A, 1 10. Geometria odwzorowań inżynierskich rzut środkowy 06A Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Rzut środkowy i jego niezmienniki Przyjmijmy

Bardziej szczegółowo

Prawo to opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stałą Newtona:

Prawo to opisuje zarówno spadanie jabłka z drzewa jak i ruchy Księżyca i planet. Grawitacja jest opisywana przez jeden parametr, stałą Newtona: Grawitacja Prawo powszechnego ciążenia Prawo powszechnego ciążenia Newtona (1687) mówi, że siła przyciągania grawitacyjnego między dwoma ciałami jest proporcjonalna do iloczynu ich mas i odwrotnie proporcjonalna

Bardziej szczegółowo

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA M WYZNACZANE MOMENTU BEZWŁADNOŚC WAHADŁA OBERBECKA opracowała Bożena Janowska-Dmoch Do opisu ruchu obrotowego ciał stosujemy prawa dynamiki ruchu obrotowego, w których występują wielkości takie jak: prędkość

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Pojȩcie przestrzeni metrycznej

Pojȩcie przestrzeni metrycznej ROZDZIA l 1 Pojȩcie przestrzeni metrycznej Definicja 1.1. Dowolny niepusty zbiór X z funkcja ρ : X X [0, ), spe lniaja ca naste puja ce trzy warunki M1: ρ(x, y) = 0 x = y, M2: ρ(x, y) = ρ(y, x), M3: ρ(x,

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!) Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Kinematyka ruchu

Bardziej szczegółowo

Po lożenie punktu w przestrzenie w chwili czasowej t może być opisane jako wektor x(t), reprezentujacy

Po lożenie punktu w przestrzenie w chwili czasowej t może być opisane jako wektor x(t), reprezentujacy 1. Bry la sztywna Symulacja komputerowa ruchu bry ly sztywnej jest ważnym zagadnieniem podczas modelowania i weryfikacji różnych systemów fizycznych. Mówiac bry la sztywna, mamy na myśli bry l e, która

Bardziej szczegółowo

Wykład 2 Mechanika Newtona

Wykład 2 Mechanika Newtona Wykład Mechanika Newtona Dynamika jest nauką, która zajmuję się ruchem ciał z uwzględnieniem sił, które działają na ciało. Podstawą mechaniki klasycznej są trzy doświadczalne zasady, które po raz pierwszy

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B.

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B. kwiecień 009 Ćwiczenia III Zadania Zadanie 1 Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B Udowodnić że jeżeli ln Ω A (E A < ln Ω B(E B E A E B to energia przep lynie z uk

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

MECHANIKA II. Praca i energia punktu materialnego

MECHANIKA II. Praca i energia punktu materialnego MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO.

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. JOLANTA SUCHAŃSKA. CEL POMIARU: KONCEPCJA TESTU Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. 2. RODZAJ TESTU: Jest to test sprawdzający, wielostopniowy,

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa

Bardziej szczegółowo

Algorytm określania symetrii czasteczek

Algorytm określania symetrii czasteczek O czym to b Podzi 21 września 2007 O czym to b O czym to b Podzi 1 2 3 O czym to b Podzi W lasności symetrii hamiltonianu: zmniejszenie z lożoności obliczeń i wymagań pami eciowych, utrzymanie tożsamościowych

Bardziej szczegółowo

Geometria odwzorowań inżynierskich Wyk lad 03B

Geometria odwzorowań inżynierskich Wyk lad 03B Scriptionis Geometrica Volumen I (2014), No. 3B, 1 9. Geometria odwzorowań inżynierskich Wyk lad 03B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Cienie wzajemne w aksonometrii Przyk lad 1 Wyznaczyć

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Mikro II: Technologia, Maksymalizacja zysku i Minimalizacja

Mikro II: Technologia, Maksymalizacja zysku i Minimalizacja Mikro II: Technologia, Maksymalizacja zysku i Minimalizacja kosztów Krzysztof Makarski 18 Technologia Wst ep Przypomnijmy: Teoria konsumenta w szczególności krzywa popytu Teraz krzywa podaży (analogicznie)

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Zastosowanie Robotów. Ćwiczenie 4. Mariusz Janusz-Bielecki. laboratorium

Zastosowanie Robotów. Ćwiczenie 4. Mariusz Janusz-Bielecki. laboratorium Zastosowanie Robotów laboratorium Ćwiczenie 4 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.001.00, 11 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne r. akad. 005/ 006 IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne Jan Królikowski Fizyka IBC 1 r. akad. 005/ 006 Pole elektryczne i magnetyczne Pole elektryczne

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013 Kierunek studiów: Zarządzanie i inżynieria

Bardziej szczegółowo

Jeden przyk lad... czyli dlaczego warto wybrać MIESI.

Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Równania różniczkowe zwyczajne Zadania z odpowiedziami Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń.

Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sterowanie minimalnoczasowe dla uk ladów liniowych. Krzywe prze l aczeń. Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania

Bardziej szczegółowo

60 C Od jazdy na rowerze do lotu w kosmos. Dionysis Konstantinou Corina Toma. Lot w kosmos

60 C Od jazdy na rowerze do lotu w kosmos. Dionysis Konstantinou Corina Toma. Lot w kosmos 60 C Od jazdy na rowerze do lotu w kosmos Dionysis Konstantinou Corina Toma C Lot w kosmos Od jazdy na rowerze do lotu w Length kosmos of the CDay61 WPROWADZENIE Wyobraź sobie, że ludzie mogą podróżować

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

V.6 Pęd i energia przy prędkościach bliskich c

V.6 Pęd i energia przy prędkościach bliskich c r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia

Bardziej szczegółowo

Geometria odwzorowań inżynierskich rzut środkowy 06B

Geometria odwzorowań inżynierskich rzut środkowy 06B Scriptiones Geometrica Volumen I (2014), No. 6B, 1 17. Geometria odwzorowań inżynierskich rzut środkowy 06B Edwin Koźniewski Zak lad Informacji Przestrzennej 1. K lad p laszczyzny Rys. 6B-01: Konstrukcja

Bardziej szczegółowo

AB = x a + yb y a + zb z a 1

AB = x a + yb y a + zb z a 1 1. Wektory w przestrzeni trójwymiarowej EFINICJA. Uporzadkowana pare punktów (A, B) nazywamy wektorem i oznaczamy AB. Punkt A to poczatek wektora, punkt B to koniec wektora. EFINICJA. Je±li B = A, to wektor

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1).

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1). kwiecień 9 Ćwiczenia IV Zadania Zadanie Obliczyć kanoniczna sum e statystyczna funkcj e podzia lu, energi e swobodna i ciep lo w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly Rozwiazanie :

Bardziej szczegółowo

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej.

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Zagadnienie diety. Jak wymieszać wymieszać pszenice, soje i maczk e rybna by uzyskać najtańsza

Bardziej szczegółowo

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t

lub też (uwzględniając fakt, że poruszają się w kierunkach prostopadłych) w układzie współrzędnych kartezjańskich: x 1 (t) = v 1 t y 2 (t) = v 2 t Zad. 1 Dwa okręty wyruszyły jednocześnie z tego samego miejsca w drogę w kierunkach do siebie prostopadłych, jeden z prędkością υ 1 = 30 km/h, drugi z prędkością υ 2 = 40 km/h. Obliczyć prędkość wzajemnego

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony. Listopad 2015 kod wewnątrz Zadanie 1. (0 1) KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Fizyka Poziom rozszerzony Listopad 2015 Vademecum Fizyka fizyka ZAKRES ROZSZERZONY VADEMECUM MATURA 2016 Zacznij przygotowania

Bardziej szczegółowo

Rachunek różniczkowy i całkowy 2016/17

Rachunek różniczkowy i całkowy 2016/17 Rachunek różniczkowy i całkowy 26/7 Zadania domowe w pakietach tygodniowych Tydzień 3-7..26 Zadanie O. Czy dla wszelkich zbiorów A, B i C zachodzą następujące równości: (A B)\C = (A\C) (B\C), A\(B\C) =

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki.

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 9 Analiza pewnego problemu i krótkie przypomnienie, czyli Powtarzanie jest matka nauki. 1 Zadanie (29) zawar l umowe kredytu w momencie ukończenia

Bardziej szczegółowo

Dynamika molekularna - gaz van der Waalsa

Dynamika molekularna - gaz van der Waalsa Hamiltonian uk ladu Dynamika molekularna - gaz van der Waalsa Sk lada siȩ z N atomów u, oddzia luj acych parami miȩdzy sob a oraz ze ściankami sferycznego naczynia. Oddzia lywania opisuje potencja l Lennarda-

Bardziej szczegółowo

Wprowadzenie do teorii sterowania

Wprowadzenie do teorii sterowania Wprowadzenie do teorii sterowania Literatura podstawowa T. Kaczorek i inni, Podstawy teorii sterowania, WNT, Warszawa 2005. T. Kaczorek, Teoria sterowania i systemów, PWN, Warszawa 1996. T. Kaczorek, Teoria

Bardziej szczegółowo

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Wielkości dynamiczne w ruchu postępowym. a. Masa ciała jest: - wielkością skalarną, której wielkość jest niezmienna

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

VI.3 Problem Keplera

VI.3 Problem Keplera VI.3 Problem Keplera 1. Prawa Keplera 2. Zastosowanie III prawa Keplera 3. Układ Słoneczny numeryczne całkowanie r. ruchu wszystkich planet, stabilność rozwiązań. Jan Królikowski Fizyka IBC 1 Prawa Keplera

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo