Doświadczenie Atwood a

Wielkość: px
Rozpocząć pokaz od strony:

Download "Doświadczenie Atwood a"

Transkrypt

1 Doświadczenie Atwood a Dwa kocki o maach m 1 i m 2 = m 1 wiza na inie przewiezonej przez boczek. Oś boczka podwiezona jet do ufitu. Trzeci kocek o maie m 3 zota po ożony na pierwzym kocku tak że oba poruzaja ie w dó. Ruch rozpoczyna i e w chwii t = 0 z po ożenia = 0 i z pr edkości a v = 0. Tarcie boczka o oś oraz ma e boczka naeży zaniedbać. Zaniedbujac również ma e iny poicz: a) przyśpiezenie a kocków; b) cza t 1 po jakim kocki przemiezcza i e o 1 ; c) i e naciagu iny ; d) i e z jaka bok dzia a na ufit, F B ; e) i e z jaka kocek 3 nacika na kocek 1 F 3. W przypadku gdy ma e iny m nie można zaniedbać napiz f) równanie ruchu uk adu. Przy za ożeniu, że w po ożeniu = 0 ina o ca kowitej d ugości wii w ten poób że po obu tronach boczka znajduja i e odcinki iny o tej amej d ugości. m 1 = m 2 = 1.0 kg m 3 = 0.25 kg 1 = 2 m 0 m 3 m 1 m 2 a) Przypiezenie kocków może być obiczone z równania ruchu da ca ego uk adu trzech kocków po aczonych ina: m a = F Dodatni kierunek wpó rz ednej wybieramy w kierunku ruchu każdego eementu uk adu, tzn. w gór e da kocka 2 oraz w dó da kocków 1 i 3. Maa uk adu jet uma ma kocków: m = + m 3 Aby obiczyć wypadkowa i e F dzia aj ac a na uk ad naeży uwzg ednić wzytkie i y dzia aj ace na uk ad, przy czym i y wewn etrzne z jakimi dzia aj a na iebie pozczegóne eementy uk adu z godnie z III zaada dymamiki znoza i e. Jedynymi i ami zewn etrznymi a ci eżary ma m 1 i m 3 dzia aj ace w dodatnim kierunku wpó rz ednej oraz ci eżar may m 2 dzia aj acy w kierunku ujemnym: F = m 1 g + m 3 g m 2 g = (m 1 + m 3 m 2 )g Podtawiajac wyrażenia na m i F do równania ruchu, da m 1 = m 2 dotajemy: Przypiezenie ma wartość (2m 1 + m 3 )a = m 3 g a = m 3 /(2m 1 + m 3 )g = 1.09 m/ 2 b) Przypiezenie a jet ta e, wi ec zaeżność po ożenia kocków od czau wyraża i e wzorem: = a 2 t2 + v 0 t + 0, przy warunkach poczatkowych v 0 = 0 i 0 = 0. Do chwii czau t 1 kocki przeb ed a odeg ość: 1 = a 2 t2 1, zatem cza t 1 dany jet wzorem: t 1 = 21 a = 1.92

2 c) Si a naciagu iny jet i a wewn etrzn a dzia aj ac a pomi edzy kockiem 2 a kockami 1 i 3. Si a ta dzia a na obie grupy kocków w przeciwnych kierunkach i może być wyznaczona z równania ruchu da każdej grupy kocków z oobna. Rozpatrzmy ewy koniec iny dodajac tam nieznana i e. Rozpatrujac jedynie ewy koniec iny z maami m 1 i m 3, i a taje i e i a zewn etrzn a dzia aj ac a na kocki 1 i 3. Równanie ruchu ewej trony wygada nat epuj aco: Stad i a naciagu wynoi: (m 1 + m 3 )a = (m 1 + m 3 )g = ( )(g a) = 10.9 N Si e naciagu można również obiczyć pizac równanie ruchu da prawej trony: m 2 a = m 2 g + m 3 m 1 g (m 1 + m 3 )g = m 2 (g + a) = 10.9 N Z trzeciej zaady dynamiki Newtona wynika oczywiście że (ewa) = (prawa) m 2 g ub ( )(g a) = m 2 (g + a) m 2 g co jet równoważne (m 1 m 2 + m 3 )g = ( + m 3 )a To jet dok adnie równanie ruchu ca ego uk adu otrzymane w punkcie a). d) Suma wzytkich i dzia aj acych na boczek mui być równa 0 F B + F B = 0. Zatem: F B = 2 = 21, 8 N e) Aby obiczyć i e naciku kocka 3 na kocek 1 naeży napiać równanie ruchu tyko da kocka 3. Ci eżar kocka wynoi m 3 g. Przeciwtawia i e mu i a reakcji pod oże F 3. m 3 a = m 3 g F 3 F 3 = m 3(g a). Si a naciku F 3 zgodnie z trzecia zaada dynamiki ma wartość i y F 3 i jet przeciwnie do niej kierowana. F 3 = m 3 (g a) = 2.18 N F 3 m 3 m 3 g

3 f) W przypadku gdy nie można zaniedbać ma e iny, w równaniu ruchu naeży uwzg ednić ci eżar iny. Ca kowita maa uk adu wzrośnie o ma e iny m = + m 3 + m. Dodatkowymi i ami b ed a ci eżary zwiajacych kawa ków in. Jeśi kocki przemiezcza i e o to po prawej tronie d ugość iny wynieie /2 a po ewej tronie /2+. Wypadkowa i a wyrazi i e wzorem: 2 F = (m 1 + m m )g (m m )g m 2 Zatem równaniem ruchu przybieże potać: ( + m 3 + m )a = (m 1 + m 3 m 2 )g + 2 m g 0 m 1 m 3 2 Przypiezenie a zaeży zatem od po ożenia, co oznacza że ruch kocków jet ruchem ze zmiennym przypiezeniem. tego równania wykracza poza ramy tego kuru.

4 Si y wi ezów Poczta pneumatyczna przy użyciu pr eżonego powietrza tranportuje przey ki w gór e ze ta a pr edkości a v wewnatrz rury o promieniu krzywizny r = h/2, jak na ryunku obok. Przey ka ma ma e m. Z jaka i a ścianki rury dzia aj a na przey k e w punktach A, B i C? Przey ka poruza i e po okr egu ze ta a pr edkości a, zatem k adowa tyczna przypiezenie a = dv wynoi zero. Z dt tego wynika, że wypadkowa i a tyczna do toru paczki jet również równa 0. Wytarczy zatem rozpatrzeć jedynie ruch w kierunku radianym. Równanie ruchu da k adowej radianej w ruchu po okr egu jet nat epuj ace: m a r = F r, gdzie a r = m v2 r. Znak oznacza że przypiezenie a r jet kierowane zawze do środka okr egu. Zwrot i wartość i y wyznaczamy z równania ruchu: F r = m g + g C A B h A W punkcie A rozpoczyna i e ruch po okr egu. Si a ci eżkości kierowana jet na zewnatrz, wi ec jej wartość jet dodatnia. = m(g + v2 r ) < 0 mg > 0 Si a ma zwrot do środka okr egu. B W punkcie B i a ci eżkości nie ma k adowej w kierunku radianym datego nie wyt epuje ona w równaniu ruchu w kierunku radianym: = m v2 r < 0 Si a ma zwrot do środka okr egu i amotnie pe nia ro e i y dośrodkowej. C W punkcie C zwrot i y zaeży od pr edkości przey ki v. Si a ci eżkości kierowana jet do środka okr egu i ma wartość ujemna. = mg m v2 r = m(g v2 r ) mg < 0 Z tego równania wynika, że w zczegónym wypadku = 0 da g v2 = 0 czyi r v2 = gr. v = gr jet pr edkości a da której ścianki rury nie wywieraja żadnej i y na przey k e a ro e i y dośrodkowej pe ni amotnie i a ci eżkości. Da v > v mamy < 0 czyi i a ma zwrot do środka okr egu. Da v < v mamy > 0 czyi i a ma zwrot na zewnatrz okr egu.

5 Równia pochy a Kocek o maie m 1 oraz kocek o maie m 2, po aczone nitka, zuwaja i e po równi pochy ej nachyonej do poziomu pod katem α w taki poób, że ina mi edzy nimi jet tae napi eta. Wpó czynnik tarcia kinetycznego mi edzy kockiem m 1 a równia wynoi µ 1, natomiat mi edzy kockiem m 2 a równia wynoi µ 2. a) Podaj jakie warunki muza p eniać wpó czynniki tarcia µ 1 i µ 2 aby warunki zadania by y pe nione. b) Jakie jet napr eżenie iny i przypiezenie kocków? R 1 T 1 Za óżmy, że naciag nitki wynoi N a kocek m 1 znajduje i e powyżej kocka m 2, wtedy kocki poruzaja ie z przypiezeniem a wzd uż równi. Równania ruchu kocków wzd uż równi maja potać m 1 a = m 1 g in α T 1 + N, T 1 = µ 1 m 1 g coα R 2 N T 2 N m 1 g m 2 a = m 2 g in α T 2 N, T 2 = µ 2 m 2 g coα α m 2 g Dodajac tronami te równania otrzymamy Kocki poruzaja i e z przypiezeniem ( )a = ( )g in α (µ 1 m 1 + µ 2 m 2 )g coα Jeżei kocki maja i e poruzać to a > 0 czyi a = g in α µ 1m 1 + µ 2 m 2 g coα g in α µ 1m 1 + µ 2 m 2 g coα > 0 g in α > µ 1m 1 + µ 2 m 2 g coα µ 1 m 1 + µ 2 m 2 < tan α Naciag nitki obiczymy podtawiajac obiczona wartość a do jednego z dwóch pierzych równań N = m 1 a m 1 g in α + µ 1 m 1 g coα Jeśi nić jet napr eżona to N > 0 N = m 1m 2 (µ 1 µ 2 )g coα m 1 m 2 (µ 1 µ 2 )g coα > 0 µ 1 > µ 2

6 Si a dośrodkowa Samochód poruza i e po g adkim zakrzywionym torze nachyonym pod katem α w tounku do poziomu. Z jaka pr edkości a mui jechać amochód aby poruza i e po okr egu o promieniu R bez pośizgu? Dane: α = 30, R = 75 m, g = 10 m/ 2 Samochód poruza i e z pr edkości a v po poziomym okr egu o promieniu R zatem wypadkowa i a dzia aj aca na amochód mui być pozioma i a dośrodkowa o wartości mv 2 /R, gdzie m jet maa amochodu. W tym wypadku ro e i y dośrodkowej pe ni pozioma k adowa i y reakcji pod oȧ N R N mg α Równanie ruchu amochodu da k adowej poziomej ma potać ma = mv 2 /R = N in α a da k adowej pionowej 0 = N co α mg N = mg co α Podtawiajac wyrażenie na N do pierwzego równania otrzymamy v = gr tan α = 20.8 m/

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

Zbiór zadań z fizyki

Zbiór zadań z fizyki Grzegorz Paweł Korbaś Zbiór zadań z fizyki część 1 Opole 2011 Wydawnictwo czytnia.pl Copyright by Grzegorz Paweł Korbaś & czytnia.pl Projekt okładki: Agniezka Paprotna-Bąk Powielanie całości lub części

Bardziej szczegółowo

2. Obliczenie sił działających w huśtawce

2. Obliczenie sił działających w huśtawce . Obiczenie sił działających w huśtawce Rozważone zostaną dwa aspekty rozwiązania tego zadania. Dokonanie obiczeń jest ważne ze wzgędu na dobór eementów, które zostaną wykorzystane w koncepcjach reguacji

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie.

176 Wstȩp do statystyki matematycznej = 0, 346. uczelni zdaje wszystkie egzaminy w pierwszym terminie. 176 Wtȩp do tatytyki matematycznej trści wynika że H o : p 1 przeciwko hipotezie H 3 1: p< 1. Aby zweryfikować tȩ 3 hipotezȩ zatujemy tet dla frekwencji. Wtedy z ob 45 1 150 3 1 3 2 3 150 0 346. Tymczaem

Bardziej szczegółowo

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I

SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I SPRAWDZIAN WIADOMOŚCI I UMIEJĘTNOŚCI Z DYNAMIKI KLASA I GIMNAZJUM GRUPA I 1. (3p) Jaki rodzaj oddziaływań zachodzi w podanych ytuacjach? a) Spadanie jabłka z drzewa -... b) Uderzenie łotkie w gwóźdź...

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

10 RUCH JEDNOSTAJNY PO OKRĘGU

10 RUCH JEDNOSTAJNY PO OKRĘGU Włodzimiez Wolczyński Miaa łukowa kąta 10 RUCH JEDNOSTAJNY PO OKRĘGU 360 o =2π ad = = 2 s 180 o =π ad 90 o =π/2 ad = jednostka adian [1 = 1 = 1] Π ad 180 o 1 ad - x o = 180 57, 3 57 18, Ruch jednostajny

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

1 W ruchu jednostajnym prostoliniowym droga:

1 W ruchu jednostajnym prostoliniowym droga: TEST z działu: Kineatyka iię i nazwiko W zadaniac 8 każde twierdzenie lub pytanie a tylko jedną prawidłową odpowiedź Należy ją zaznaczyć data W rucu jednotajny protoliniowy droga: 2 jet wprot proporcjonalna

Bardziej szczegółowo

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie

3. RUCHY CIAŁ (KINEMATYKA) Pojęcie ruchu, układ odniesienia, tor, droga, przemieszczenie 3. RUCHY CIAŁ (KINEMATYKA) Zakre wiadomości Pojęcie ruchu, układ odnieienia, tor, droga, przemiezczenie Względność ruchu Klayfikacja ruchów Prędkość średnia i chwilowa Ruch jednotajny protoliniowy (równanie

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM Konkury w województwie podkarpacki w roku zkolny 2005/2006... pieczątka nagłówkowa zkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, Witaj na I etapie konkuru

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

1 W ruchu jednostajnym prostoliniowym prędkość:

1 W ruchu jednostajnym prostoliniowym prędkość: TEST z działu: Kineatyka iię i nazwiko W zadaniac 8 każde twierdzenie lub pytanie a tylko jedną prawidłową odpowiedź Należy ją zaznaczyć data W rucu jednotajny protoliniowy prędkość: 2 rośnie a tor jet

Bardziej szczegółowo

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły?

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły? Zaady dynaiki. 1. Jakie ogą być oddziaływania ciał? Świat jet pełen rozaitych ciał. Ciała te nie ą od iebie niezależne, nieutannie na iebie działają. Objawy tego działania, czy też, jak ówią fizycy, oddziaływania

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe)

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Pieczęć KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów województwa lubuskiego 23 marca 2012 r. zawody III stopnia (finałowe) Witamy Cię na trzecim etapie Konkursu Przedmiotowego z Fizyki i życzymy

Bardziej szczegółowo

11. O ROZWIĄZYWANIU ZADAŃ

11. O ROZWIĄZYWANIU ZADAŃ . O ROZWIĄZYWANIU ZADAŃ Oberwowanym w realnym świecie zjawikom rzyiuje ię rote modele idee. Idee te z lezą lub gorzą recyzją odzwierciedlają zjawika świata realnego zjawika fizykalne. Treści zadań rachunkowych

Bardziej szczegółowo

XXXV OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXXV OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXXV OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne Wybierz lub podaj prawidłowa odpowiedź (wraz z krótkim uzasadnieniem) na dowolnie wybrane przez siebie siedem z pośród poniższych dziesięciu punktów:

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody ytemowe i decyzyjne w informatyce Ćwiczenia lita zadań nr 1 Prote zatoowania równań różniczkowych Zad. 1 Liczba potencjalnych użytkowników portalu połecznościowego wynoi 4 miliony oób. Tempo, w

Bardziej szczegółowo

Modele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony

Modele odpowiedzi do arkusza próbnej matury z OPERONEM. Fizyka Poziom rozszerzony Modele odowiedzi do arkuza róbnej matury z OPEONEM Fizyka Poziom rozzerzony Grudzieƒ 007... za zaianie wzoru na nat enie ola grawitacyjnego kt GM za zaianie warunku kt m v GM m c, gdzie M maa lanety, romieƒ

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY Z MATEMATYKI

ARKUSZ EGZAMINACYJNY Z MATEMATYKI dysleksja Miejsce na naklejk z kodem szko y ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw 1 POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdajàcego 1. Sprawdê, czy arkusz zawiera 12 stron (zadania

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

Cel modelowania neuronów realistycznych biologicznie:

Cel modelowania neuronów realistycznych biologicznie: Sieci neuropodobne XI, modelowanie neuronów biologicznie realistycznych 1 Cel modelowania neuronów realistycznych biologicznie: testowanie hipotez biologicznych i fizjologicznych eksperymenty na modelach

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY CH ZASTOSOWANE Laboratorium nstrukcja do ćwiczenia nr Temat: Pomiar mocy wiązki laserowej 3. POMAR MOCY WĄZK LASEROWEJ LASERA He - Ne 3.1. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Wynagrodzenia i świadczenia pozapłacowe specjalistów

Wynagrodzenia i świadczenia pozapłacowe specjalistów Wynagrodzenia i świadczenia pozapłacowe specjalistów Wynagrodzenia i podwyżki w poszczególnych województwach Średnie podwyżki dla specjalistów zrealizowane w 2010 roku ukształtowały się na poziomie 4,63%.

Bardziej szczegółowo

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY

BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD TEMPERATURY Ć w i c z e n i e 30 BADANIE ZALEŻNOŚCI PRĘDKOŚCI DŹWIĘKU OD EMPERAURY 30.1 Wtęp teoretyczny 30.1.1. Prędkość dźwięku. Do bardzo rozpowzechnionych proceów makrokopowych należą ruchy określone wpólną nazwą

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI WD2250A. WATOMIERZ 0.3W-2250W firmy MCP

INSTRUKCJA OBSŁUGI WD2250A. WATOMIERZ 0.3W-2250W firmy MCP INSTRUKCJA OBSŁUGI WD2250A WATOMIERZ 0.3W-2250W firmy MCP 1. CHARAKTERYSTYKA TECHNICZNA Zakresy prądowe: 0,1A, 0,5A, 1A, 5A. Zakresy napięciowe: 3V, 15V, 30V, 240V, 450V. Pomiar mocy: nominalnie od 0.3

Bardziej szczegółowo

Wyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym

Wyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego cieczy za pomocą kalorymetru z grzejnikiem elektrycznym Nr. Ćwiczenia: 215 Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 20 IV 2009 Temat Ćwiczenia: Wyznaczenie sprawności grzejnika elektrycznego i ciepła właściwego

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6 XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem

Bardziej szczegółowo

Ćwiczenie: "Ruch harmoniczny i fale"

Ćwiczenie: Ruch harmoniczny i fale Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

P R Z E D M I A R R O B Ó T

P R Z E D M I A R R O B Ó T P R Z E D M I A R R O B Ó T Budowa : Budowa budynku Strażnicy Lotniskowej Straży Pożarnej na lotnisku Powidz Obiekt : Fundament pod separator DRO 031. Fundament pod separator IHDC 120. Adres : Powidz Inwestor

Bardziej szczegółowo

Kratownice Wieża Eiffel a

Kratownice Wieża Eiffel a Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,

Bardziej szczegółowo

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Miejce na naklejkę z kodem zkoły dylekja MFA-PAP-06 EGZAMIN MAURALNY Z FIZYKI I ASRONOMII POZIOM PODSAWOWY Cza pracy 0 minut Intrukcja dla zdającego. Sprawdź, czy arkuz egzaminacyjny zawiera 3 tron (zadania

Bardziej szczegółowo

1. Materiały. Drewno. 2.1.1. Wytrzymałości charakterystyczne drewna iglastego w MPa (megapaskale) podaje poniższa tabela.

1. Materiały. Drewno. 2.1.1. Wytrzymałości charakterystyczne drewna iglastego w MPa (megapaskale) podaje poniższa tabela. 1. Materiały Drewno Do konstrukcji drewnianych stosuje się drewno iglaste zabezpieczone przed szkodnikami biologicznymi i ogniem. Preparaty do nasycania drewna należy stosować zgodnie z instrukcją ITB

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

- MIEJSKIE MIASTECZKO ROWEROWE

- MIEJSKIE MIASTECZKO ROWEROWE PROJEKT TECHNICZNY BIEśNIA SŁUśĄCA DO REKREACJI - MIEJSKIE MIASTECZKO ROWEROWE Adres budowy : dz. nr 403/18 obr. 2 ul. Kaziemierza Wielkiego 12 Kętrzyn Inwestor : Urząd Miasta w Kętrzynie ul. Wojska Polskiego

Bardziej szczegółowo

ARIGOLD Paulina Kukla UL. ŚWIĘTOJAŃSKA 92-94C/4, 81-388 GDYNIA TEL. 733-460-745; FAX. (12) 376-77-67; biuro@arigold.pl

ARIGOLD Paulina Kukla UL. ŚWIĘTOJAŃSKA 92-94C/4, 81-388 GDYNIA TEL. 733-460-745; FAX. (12) 376-77-67; biuro@arigold.pl _ ARIGOLD Paulina Kukla UL. ŚWIĘTOJAŃSKA 92-94C/4, 81-388 GDYNIA TEL. 733-460-745; FAX. (12) 376-77-67; biuro@arigold.pl Nr egzemplarza 1 TEMAT OPRACOWANIA: PROJEKT STAŁEJ ORGANIZACJI RUCHU PRZEBUDOWA

Bardziej szczegółowo

Kod pracy. Po udzieleniu odpowiedzi do zadań 1 20, wypełnij tabelkę

Kod pracy. Po udzieleniu odpowiedzi do zadań 1 20, wypełnij tabelkę ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koisji Wojewódzkiego Konkursu Przediotowego z Fizyki Iię i nazwisko ucznia... Szkoła...

Bardziej szczegółowo

Samochody ciężarowe z wymiennym nadwoziem

Samochody ciężarowe z wymiennym nadwoziem Informacje ogólne na temat pojazdów z wymiennym nadwoziem Informacje ogólne na temat pojazdów z wymiennym nadwoziem Pojazdy z nadwoziem wymiennym są skrętnie podatne. Pojazdy z nadwoziem wymiennym pozwalają

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.

Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2. Z n a k s p r a w y G O S I R D Z P I 2 70 1 3 7 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e w r a z z r o z s t a w i e n i e m o g

Bardziej szczegółowo

Steelmate - System wspomagaj¹cy parkowanie z oœmioma czujnikami

Steelmate - System wspomagaj¹cy parkowanie z oœmioma czujnikami Steelmate - System wspomagaj¹cy parkowanie z oœmioma czujnikami Cechy: Kolorowy i intuicyjny wyœwietlacz LCD Czujnik wysokiej jakoœci Inteligentne rozpoznawanie przeszkód Przedni i tylni system wykrywania

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

Wyznaczanie współczynników tarcia poślizgowego i tocznego z wykorzystaniem równi pochyłej

Wyznaczanie współczynników tarcia poślizgowego i tocznego z wykorzystaniem równi pochyłej Wyznaczanie współczynników tarcia poślizgowego i tocznego z wykorzystaniem równi pochyłej Obowiązkowa znajomość zagadnień Mikro i makroskopowa istota zjawiska tarcia. Rodzaje tarcia (statyczne i kinetyczne

Bardziej szczegółowo

8. Zginanie ukośne. 8.1 Podstawowe wiadomości

8. Zginanie ukośne. 8.1 Podstawowe wiadomości 8. 1 8. ginanie ukośne 8.1 Podstawowe wiadomości ginanie ukośne zachodzi w przypadku, gdy płaszczyzna działania obciążenia przechodzi przez środek ciężkości przekroju pręta jednak nie pokrywa się z żadną

Bardziej szczegółowo

Września Dźwirzyno Września

Września Dźwirzyno Września Września Dźwirzyno Września 09.11.2012 11.11.2012 Ruch jednotajny W ruchu jednotajnym prędkość poruzającego ię ciała jet tała. W takim ruch zależność między prędkością, drogą i czaem opiuje wzór: v = t

Bardziej szczegółowo

Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych. Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych

Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych. Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych Transport Mechaniczny i Pneumatyczny Materiałów Rozdrobnionych Ćwiczenie 2 Podstawy obliczeń przenośników taśmowych Wydajność przenośnika Wydajnością przenośnika określa się objętość lub masę nosiwa przemieszczanego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

1. Poziome znaki drogowe

1. Poziome znaki drogowe 1 1. Poziome znaki drogowe Ze względu na funkcje i kształt, oznakowanie poziome dzieli się na kategorie j.n.: a) znaki podłużne (linie podłużne), b) znaki poprzeczne, c) strzałki kierunkowe i naprowadzające,

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Miejsce na naklejk z kodem ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA LISTOPAD ROK 2009 Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy 170 minut 1. Sprawdê, czy arkusz zawiera 15 stron. 2. W zadaniach

Bardziej szczegółowo

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N

ĆWICZENIE 1 CHARAKTERYSTYKI STATYCZNE DIOD P-N LBORTORM PRZYRZĄDÓW PÓŁPRZEWODNKOWYCH ĆWCZENE 1 CHRKTERYSTYK STTYCZNE DOD P-N K T E D R S Y S T E M Ó W M K R O E L E K T R O N C Z N Y C H 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe Projekt MES Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe 1. Ugięcie wieszaka pod wpływem przyłożonego obciążenia 1.1. Wstęp Analizie poddane zostało ugięcie wieszaka na ubrania

Bardziej szczegółowo

Przykład implementacji przeciażeń operatorów problem kolizji

Przykład implementacji przeciażeń operatorów problem kolizji Przykład implementacji przeciażeń operatorów problem kolizji Bogdan Kreczmer ZPCiR IIAiR PWr pokój 307 budynek C3 bogdan.kreczmer@pwr.wroc.pl Copyright c 2005 2008 Bogdan Kreczmer Niniejszy dokument zawiera

Bardziej szczegółowo

Segment B.XII Opór elektryczny Przygotował: Michał Zawada

Segment B.XII Opór elektryczny Przygotował: Michał Zawada Segment B.XII Opór elektryczny Przygotował: Michał Zawada Zad. 1 Człowiek może zostać porażony nawet przez tak słaby prąd, jak prąd o natężeniu 50 ma, jeżeli przepływa on blisko serca. Elektryk, pracując

Bardziej szczegółowo

1. Podstawy budowania wyra e regularnych (Regex)

1. Podstawy budowania wyra e regularnych (Regex) Dla wi kszo ci prostych gramatyk mo na w atwy sposób napisa wyra enie regularne które b dzie s u y o do sprawdzania poprawno ci zda z t gramatyk. Celem niniejszego laboratorium b dzie zapoznanie si z wyra

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk

Bardziej szczegółowo

PODNOŚNIK KANAŁOWY WWKR 2

PODNOŚNIK KANAŁOWY WWKR 2 Zastosowanie Dźwignik kanałowy, jeżdżący po obrzeżach kanału samochodowego, dzięki łatwości manewrowania poziomego (stosunkowo mały ciężar) i pionowego, znajduje szerokie zastosowanie w pracach obsługowo-naprawczych

Bardziej szczegółowo

Demontaż. Uwaga: Regulacja napięcia paska zębatego może być wykonywana tylko przy zimnym silniku.

Demontaż. Uwaga: Regulacja napięcia paska zębatego może być wykonywana tylko przy zimnym silniku. Demontaż Regulacja napięcia paska zębatego może być wykonywana tylko przy zimnym silniku. Zdemontować dźwiękochłonną osłonę silnika wyciągając ją do góry -strzałki-. Odłączyć elastyczny przewód cieczy

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ

3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ 1.Wprowadzenie 3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ Sprężarka jest podstawowym przykładem otwartego układu termodynamicznego. Jej zadaniem jest między innymi podwyższenie ciśnienia gazu w celu: uzyskanie

Bardziej szczegółowo

Projekt Studenckiego Koła Naukowego CREO BUDOWA GENERATORA WODORU

Projekt Studenckiego Koła Naukowego CREO BUDOWA GENERATORA WODORU Projekt Studenckiego Koła Naukowego CREO BUDOWA GENERATORA WODORU Stanowisko testowe Opracował Tomasz Piaścik Wprowadzenie Malejące zasoby naturalne, wpływ na środowisko naturalne i ciągle rosnące potrzeby

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B.

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B. kwiecień 009 Ćwiczenia III Zadania Zadanie 1 Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B Udowodnić że jeżeli ln Ω A (E A < ln Ω B(E B E A E B to energia przep lynie z uk

Bardziej szczegółowo

Nowoczesne systemy zabezpieczeń układów nawęglania

Nowoczesne systemy zabezpieczeń układów nawęglania Nowoczesne systemy zabezpieczeń układów nawęglania Dr inż. Dorota Brzezińska Żaneta Glonek Agnieszka Grzelak Politechnika Łódzka Katedra Inżynierii Bezpieczeństwa Pracy Łódź, 18-19 września 2012 r. XI

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

OPIS OCHRONNY PL 61792

OPIS OCHRONNY PL 61792 RZECZPOSPOLITA POLSKA EGZEMPLARZ ARCHIWALNY OPIS OCHRONNY PL 61792 WZORU UŻYTKOWEGO 13) Y1 Urząd Patentowy Rzeczypospolitej Polskiej f2n Numer zgłoszenia: 112484 @ Data zgłoszenia: 27.08.2001 0 Intel7:

Bardziej szczegółowo

Wykonanie materiałów reklamowych i dostarczenie ich do siedziby Zamawiającego

Wykonanie materiałów reklamowych i dostarczenie ich do siedziby Zamawiającego ORVII.272.73.2011 Zamawiający: Województwo Łódzkie al. Piłsudskiego 8 90-051 Łódź Prowadzący postępowanie: Urząd Marszałkowski w Łodzi Departament Organizacyjny al. Piłsudskiego 8 90-051 Łódź fax. (42)

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI MC-2810 CYFROWY SYSTEM GŁOŚNIKOWY 5.1 KANAŁÓW DO KINA DOMOWEGO

INSTRUKCJA OBSŁUGI MC-2810 CYFROWY SYSTEM GŁOŚNIKOWY 5.1 KANAŁÓW DO KINA DOMOWEGO MC-2810 CYFROWY SYSTEM GŁOŚNIKOWY 5.1 KANAŁÓW DO KINA DOMOWEGO GRATULUJEMY UDANEGO ZAKUPU ZESTAWU GŁOŚNIKOWEGO MC-2810 Z AKTYWNYM SUBWOOFEREM I GŁOŚNIKAMI SATELITARNYMI. ZESTAW ZOSTAŁ STARANNIE ZAPROJEKTOWANY

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15

Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego

Bardziej szczegółowo

PL 205289 B1 20.09.2004 BUP 19/04. Sosna Edward,Bielsko-Biała,PL 31.03.2010 WUP 03/10 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289

PL 205289 B1 20.09.2004 BUP 19/04. Sosna Edward,Bielsko-Biała,PL 31.03.2010 WUP 03/10 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 205289 (13) B1 (21) Numer zgłoszenia: 359196 (51) Int.Cl. B62D 63/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 17.03.2003

Bardziej szczegółowo

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac:

SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ. Ewa Madalińska. na podstawie prac: SYSTEM DIAGNOSTYCZNY OPARTY NA LOGICE DOMNIEMAŃ Ewa Madalińska na podstawie prac: [1] Lukaszewicz,W. (1988) Considerations on Default Logic: An Alternative Approach. Computational Intelligence, 44[1],

Bardziej szczegółowo

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty

Bardziej szczegółowo

Ksztaªt orbity planety: I prawo Keplera

Ksztaªt orbity planety: I prawo Keplera V 0 V 0 Ksztaªt orbity planety: I prawo Keplera oka»emy,»e orbit planety poruszaj cej si pod dziaªaniem siªy ci»ko±ci ze strony Sªo«ca jest krzywa sto»kowa, w szczególno±ci elipsa. Wektor pr dko±ci planety

Bardziej szczegółowo