Na pewno zrozumiesz!! Jacek Kratkowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Na pewno zrozumiesz!! Jacek Kratkowski"

Transkrypt

1 Na pewno zrozumiesz!! Jacek Kratkowski

2 Instrukcja obsługi programu - przejścia między slajdami kliknięcie myszką lub naciśnięcie klawisza ENTER - powrót do poprzedniego slajdu lub powtórzenie animacji naciśnięcie klawisza BACKSPACE

3 Optyka 0 Optyka to dział fizyki zajmujący się światłem i jego oddziaływaniem z materią. Niniejsze pracowanie jest podzielone na dwie części. W pierwszej z nich zakładamy, że światło, w ośrodkach jednorodnych optycznie, rozchodzi się po linach prostych, które będziemy rysować jako promienie, ulegające prawom odbicia i załamania - optyka geometryczna.w drugiej części okaże się, że światło wykazuje własności charakterystyczne dla fal i że można je w ten sposób traktować. Powiemy także kilka słów na temat dwoistej (falowo - korpuskularnej) natury światła.

4 Wstęp 02 Na początek zajmiemy się omówieniem reguł konstrukcji obrazów w przyrządach optycznych. Bardzo ważną zasadą rządzącą prawami rozchodzenia się światła jest zasada Fermata, która głosi, że światło między dwoma punktami przestrzeni porusza się po takiej drodze, że czas jej przebycia jest możliwie najkrótszy. Należy pamiętać, że nie zawsze oznacza to najkrótszą drogę.

5 Zwierciadła płaskie 03 W przypadku zwierciadła płaskiego obraz powstaje przez symetrię względem płaszczyzny lustra. Obrazem punktu A jest punkt A' symetryczny względem płaszczyzny zwierciadła. Leży on jednocześnie w punkcie przecięcia przedłużeń promieni odbitych od lustra, wychodzących z punktu A (Rys ). Promienie odbijają się od zwierciadła zgodnie z zasadą, że kąt odbicia (β) jest równy kątowi padania (α) (Rys 2). Wtedy czas przebycia drogi przez światło jest najkrótszy. Uwaga: Rzeczywisty bieg promieni rysujemy liniami ciągłymi, a ich przedłużenia (czyli pozorny obraz) przerywanymi.

6 Obraz punktu w zwierciadle płaskim 04 A A Rys. Obrazem punktu A jest punkt A' symetryczny względem płaszczyzny zwierciadła. Leży on jednocześnie w punkcie przecięcia przedłużeń promieni odbitych od lustra, wychodzących z punktu A. Kliknij aby uruchomić animację!

7 Prawo odbicia 05 Normalna Promień padający Promień odbity α β β α Rys.2 Kliknij aby uruchomić animację! Promienie odbijają się od zwierciadła zgodnie z zasadą, że kąt odbicia (β) jest równy kątowi padania (α). Promień padający, normalna oraz promień odbity leżą w jednej płaszczyźnie.

8 Zadania problemowe 06 Przykład. Znajdź obszar w przestrzeni, z którego obraz przedmiotu AB jest całkowicie widoczny w zwierciadle. B A A B Kliknij aby uruchomić animację! Analogicznie postępujemy z punktem B. Szukany obszar będzie częścią wspólną otrzymanych obszarów - miejscem, skąd widać zarówno punkt A, jak i B. Aby przedmiot AB był w całości widziany, muszą być widziane oba jego końce (A i B). Zajmijmy się najpierw punktem A. Obrazem punktu A jest A. Punkt A jest widziany w zwierciadle z zakreskowanego obszaru, który powstaje przez poprowadzenie prostych przez punkt A oraz końce zwierciadła.

9 Zadania problemowe 07 Przykład 2. Zakładając, że człowiek ma oczy na czubku głowy, znajdź minimalną wysokość lustra, w którym może się on przejrzeć w całości. Wysokość człowieka wynosi H. Górna krawędź lustra znajduje się na wysokości oczu. B C H D A

10 Zadania problemowe 08 Aby człowiek widział się w całości, musi widzieć swoje stopy (punkt A ). Najpierw skonstruujemy obraz człowieka A B, wiedząc, że lustro jest zawieszone w punkcie C. Minimalna wysokość lustra jest taka, że oczy człowieka (B), dolna krawędź lustra (D) oraz obraz stóp (A ) leżą na jednej prostej. B C B H D A A Kliknij aby uruchomić animację!

11 Zadania problemowe 09 Teraz w prosty sposób można wyznaczyć wysokość lustra korzystając z twierdzenia Talesa: BC CD h h H BB' A' B' 2 H 2 BC BB' 2, ponieważ punkt B jest w symetrii z punktem B względem prostej CD, czyli BC CB' BB'; CD h, A' B' 2 H. Minimalna wysokość lustra stanowi połowę wysokości człowieka. Ciekawe, że wynik nie zależy od odległości człowieka od lustra.

12 Zadania problemowe 0 Przykład 3. Znajdź obrazy przedmiotu Z w zwierciadłach z rysunku 3. Oczywiste, że powstają obrazy Z, Z 2 ale nie są to wszystkie obrazy. Powstaje jeszcze obraz Z 3, który jest odbiciem punktu Z w zwierciadle b i jednocześnie punktu Z 2 w zwierciadle a (rys.4.). a a Z Z Z b b Rys.3 Z 3 Z 2 Rys.4 Kliknij aby uruchomić animację!

13 Zwierciadła sferyczne Są to zwierciadła zarówno wklęsłe, jak i wypukłe, których powierzchnie odbijające to części kuli (Rys.5). W przypadku zwierciadeł o dowolnym kształcie, a więc także sferycznych, zjawisko odbicia zachodzi zgodnie z zasadą, że kąt padania jest równy kątowi odbicia. W tym przypadku kąty te mierzymy od prostopadłej do krzywizny zwierciadła wystawionej w punkcie padania. Prosta GOO nazywa się główną osią optyczną zwierciadła. Leży na niej biegun zwierciadła (B), środek jego krzywizny (O) oraz punkt zwany ogniskiem (F). Jest to punkt, w którym skupiają się wszystkie promienie biegnące równolegle do GOO, dostatecznie blisko tej osi (promienie przyosiowe). W przypadku, gdy ich odległość od GOO jest zbyt duża, zachodzi zjawisko zwane aberracją sferyczną, polegające na tym, że promienie nie ogniskują w jednym punkcie. Zjawisko to nie zachodzi w przypadku zwierciadeł parabolicznych. Zwierciadła sferyczne są dobrymi ich przybliżeniem, jeżeli rozpatrujemy promienie w pobliżu GOO.

14 Rysunki 2 Prosta GOO nazywa się główną osią optyczną zwierciadła. Leży na niej biegun zwierciadła (B), środek jego krzywizny (O) oraz punkt zwany ogniskiem (F). Jest to punkt, w którym skupiają się wszystkie promienie biegnące równolegle do GOO, dostatecznie blisko tej osi (promienie przyosiowe). Główna oś optyczna GOO GOO O F B B F O Rys.5 Kliknij aby uruchomić animację!

15 Bieg promieni w zwierciadle wypukłym 3 Z tym samym zjawiskiem będziemy mieli do czynienia w przypadku soczewek. Należy pamiętać, że w przypadku zwierciadła wypukłego w ognisku zbiegają się nie odbite promienie, lecz ich przedłużenia. B F O GOO Kliknij aby uruchomić animację!

16 Aberracja sferyczna 4 Aberracja sferyczna, polega na tym, że promienie nie ogniskują w jednym punkcie. GOO O F

17 Konstrukcja obrazu przedmiotu w zwierciadle wklęsłym 5 Zajmiemy się teraz konstrukcją obrazu przedmiotu w zwierciadle sferycznym. Jak widać, w celu wykreślenia obrazu punktu rysujemy kilka promieni charakterystycznych (wystarczy dwa). Przecięcie ich odbić (lub przedłużeń odbić) wyznaczy obraz tego punktu. N M O M F α α B GOO N Kliknij aby uruchomić animację!

18 Równanie zwierciadła, powiększenie obrazu przedmiotu 6 H M B y f M h N F r O GOO Położenie przedmiotu i jego obrazu związane są ze sobą równaniem zwierciadła: x + y f, f r 2 N x gdzie f - nazywa się ogniskową i jest to odległość ogniska od bieguna, a x oraz y są współrzędnymi przedmiotu i obrazu na osi GOO liczonymi od bieguna zwierciadła. Ponadto z geometrii wynika, że ognisko leży w środku - pomiędzy biegunem B a środkiem krzywizny O. Należy pamiętać, że współrzędne x i y, a także ogniskowa oraz promień krzywizny, mogą być ujemne. Kolejną istotną wielkością, związaną z odbiciem w zwierciadle, jest powiększenie, czyli stosunek wymiarów obrazu przedmiotu do jego wymiarów rzeczywistych. Zgodnie z powyższymi oznaczeniami możemy napisać wzór na powiększenie: p y x I I - moduł p h H

19 Zadania problemowe 7 Przykład 4. Promień krzywizny zwierciadła kulistego wklęsłego wynosi r 24 cm. W jakiej odległości x od zwierciadła należy umieścić żarówkę, aby ostry jej obraz był powiększony na ekranie p 4 razy? Dane: r 24 cm, p 4 Szukane x? Najpierw znajdujemy ogniskową f /2 r. Ponadto, znając powiększenie, mamy zależność y px. Moduły mogliśmy opuścić, gdyż jest to zwierciadło wklęsłe dające, jak wiemy, obraz rzeczywisty (x > 0, y > 0). Powyższe wnioski podstawiamy do równania zwierciadła: x + y f, + x px, r 2 p + px 2, r ( p + ) r x, 2 p [ x] cm Na koniec podstawiamy wartości: ( 4 + ) 24cm x 3 5cm 2 4 Odp. Żarówkę należy umieścić 5 cm przed zwierciadłem. 5cm.

20 Załamanie światła 8 Rozdział ten stanowi wstęp do omówienia soczewek i pryzmatów, w których występuje zjawisko załamania światła.

21 Załamanie światła 9 Rysunek 7 przedstawia zjawisko załamania światła na granicy dwóch ośrodków. Światło rozchodzi się z różnymi prędkościami w różnych ośrodkach. Omawiane zjawisko zachodzi zgodnie z zasadą Fermata. O Ś R O D E K Kąt padania Normalna I α O Ś R O D E K II β Kąt załamania Rys.7 Kliknij aby uruchomić animację!

22 Prawo załamania światła - Prawo Snelliusa 20 Rozpatrzmy pomocniczy przykład i wyobraźmy sobie, że znajdujemy się na plaży w punkcie A i zauważamy człowieka tonącego w morzu w punkcie B (Rys.8). Okazuje się, że gdy pośpieszymy na pomoc po linii prostej, to droga w wodzie, gdzie przecież poruszamy się znacznie wolniej, jest zbyt długa. P L A Ż A M O R Z E Rys.8. A α β B Możemy zoptymalizować czas dotarcia do punktu B, poruszając się po drodze zaznaczonej na rysunku takiej, że: sin α sin β Gdzie v oraz v 2 są odpowiednio prędkościami poruszania się na plaży i w morzu. Powyższe prawo obowiązuje również dla światła i często jest przedstawione w postaci: sin α sin β v v Gdzie n i n 2 są współczynnikami załamania światła w odpowiednich ośrodkach względem próżni. Taki współczynnik jest zdefiniowany jako iloraz prędkości światła w próżni i prędkości światła w danym ośrodku. Tak więc: c n, n2 v c v 2. 2, n2 n n 2

23 Całkowite wewnętrzne odbicie 2 O Ś R O D E K R Z A D S Z Y β β 2 O Ś R O D E K α α 2 α gr α 3 α 3 G Ę S T S Z Y α α α α 2 gr 3

24 Zastosowanie całkowitego wewnętrznego odbicia 22 Pryzmat α α α α α α Światłowód Rurka szklana

25 Załamanie światła 22 Jeśli prędkość rozchodzenia się światła w ośrodku jest większa od jego prędkości w ośrodku 2, to mówimy, że ośrodek jest rzadszy optycznie.jest to równoważne nierówności: n < n 2 Stąd mamy n n 2 >, czyli na mocy naszego prawa: sin α sin β > sin α > sin β α > β. Doszliśmy do wniosku, że przy przejściu światła z ośrodka rzadszego optycznie do gęstszego (np. z powietrza do wody) kąt załamania jest mniejszy od kąta padania. Przy przejściu do ośrodka rzadszego jest odwrotnie. sin α n 2 n2 Oprócz wzoru sin β n, rządzącym zjawiskiem załamania, jest fakt, że promień padający, załamany oraz normalna do płaszczyzny padania leżą w jednej płaszczyźnie.

26 Zadania problemowe 23 Przykład 5. Na płasko-równoległą płytkę szklaną pada w powietrzu promień światła pod kątem α. Obliczyć przesunięcie x, jakiego doznaje promień po przejściu przez płytkę, jeśli współczynnik załamania światła dla szkła wynosi n oraz grubość płytki wynosi d. Dane: α, d, n, Szukane: x? B C α β D d β α A x Kliknij aby uruchomić animację!

27 Przykład 5 c.d. 24 Jak widzimy, promień po przejściu przez płytkę jest równoległy do promienia, który pada na płytkę. Kąty padania i załamania spełniają zależność: sin α n sin β ( ponieważ drugim ośrodkiem jest powietrze, dla którego przyjmujemy n ). Z trójkąta ABC dostajemy zależność: cos β AB AC AC AB cos β AD Z trójkąta ACD natomiast: sin( α β ) AD AC sin( α β ) AC.Podstawiamy AD x, AB d oraz rozpisujemy wzór na sinus różnicy kątów: sin(α - β) sinα cosβ - sinβ cosα, x d cos β Z warunku załamania mamy ( sin α cos β sin β cosα ) d sin α sin β sin α n Oraz wiemy, że sin β cosα cos β cos β 2 2 sin α sin β n 2 n n 2 sin 2 α sin α cosα cosα Podstawiamy: x d sin α n, czyli x d sin α n sin α n n sin α

28 Częściowe załamanie światła, kąt graniczny, wewnętrzne odbicie 25 W rzeczywistości nigdy nie zachodzi całkowite załamanie promienia, co przyjęliśmy w poprzednim rozdziale.część światła ulega odbiciu zgodnie z poznanymi prawami. I α α Odbita część promienia II β Załamana część promienia Kliknij aby uruchomić animację!

29 Soczewki sferyczne 26 Soczewki sferyczne są to przezroczyste bryły ograniczone powierzchniami wypukłymi, wklęsłymi lub płaskimi. W związku z tym rozróżniamy m.in. soczewki dwupłytowe, płasko-wypukłe, wklęsło-wypukłe, dwuwklęsłe.

30 Przejście promieni przyosiowych przez soczewki 27 Soczewki załamują promienie światła zgodnie z zasadami omówionymi w poprzednim rozdziale. Wiązka promieni równoległych do głównej osi ogniskowej załamuje się tak, że dalszy bieg tych promieni lub ich przedłużenia skupiają się w jednym punkcie, zwanym tak jak w przypadku zwierciadeł ogniskiem. F F GOO F F GOO Soczewki cienkie często będziemy oznaczać symbolicznie tak jak na rysunku0. Rys.0a - soczewka skupiająca, rys0b - soczewka rozpraszająca. Rys.0a Kliknij aby uruchomić animację! Rys.0b

31 Konstrukcje obrazów w soczewce 28 Przykład 6. Poza skupieniem wiązki promieni równoległych w ognisku głównym lub pobocznym, istotną własnością soczewek jest niezałamywanie promieni przechodzących przez środek soczewki. Te własności przećwiczymy teraz, znajdując obrazy przedmiotów w soczewkach. Omówię rozwiązanie tego zadania dla soczewki rozpraszającej (Rys.a). Analogiczne rozwiązanie dla soczewki skupiającej jest Rys.b. Układ z rysunku b stanowi najprostszy przyrząd optyczny zwany lupą. B B A F A F GOO Aby znaleźć obraz przedmiotu AB, wystarczy znaleźć obraz punktu B. W tym celu przeprowadzamy jeden promień, który nie ulega załamaniu, przez środek soczewki.jako drugi prowadzę promień równoległy do GOO. Załamuje się on w ten sposób, że jego przedłużenie przechodzi przez ognisko F. Punkt jego przecięcia z poprzednim promieniem czyli B, wystarczy już do wykreślenia obrazu A B. Rys.a Kliknij aby uruchomić animację!

32 Równanie soczewki 29 Równanie soczewki jest identyczne z równaniem zwierciadła: x + y f Analogiczny jak w przypadku zwierciadeł jest wzór na powiększenie obrazu przedmiotu: h p H y x Wzór do wyznaczania ogniskowej soczewki:, B y B h H A F A x f F GOO f n n 2 r + r 2 Rys.b Kliknij aby uruchomić animację!

33 Zdolność skupiająca soczewki 30 Przed przejściem do przykładów zdefiniuję jeszcze wielkość zwaną zdolnością skupiającej soczewki oznaczana literą D. Zdolność skupiająca soczewki jest odwrotnością ogniskowej: D f dioptria i może przyjmować wartości ujemne (dla soczewek rozpraszających). Jej wymiarem jest dioptria ([D] D). Zdolność skupiająca soczewki wynosi D, jeśli jej ogniskowa wynosi metr D. m Jeśli ustawimy kolejno kilka soczewek, to zdolność skupiająca takiego układu będzie równa sumie zdolności skupiających poszczególnych soczewek (Rys.2). f f + f 2 + f f n GOO Rys.2 Kliknij aby uruchomić animację!

34 Zadania problemowe 3 Przykład 7. Szklana soczewka płasko-wypukła ma promień krzywizny 20 cm. Daje ona obraz rzeczywisty o wysokości 40 cm w odległości m od soczewki.jakiej wysokości jest przedmiot i gdzie się on znajduje? Współczynnik załamania wynosi n,5. Dane: Szukane: r 20 cm 0,2 m. h? h 40 cm 0,4 m. x? y m. n,5 Najpierw skorzystamy z wzoru na ogniskową soczewki: f ( n ) + r r2 U nas r r, a wyrażenie r 2 zeruje się. Mamy więc: n f r

35 Przykład 7 c.d. 32 Teraz korzystamy ze wzoru soczewkowego. Współrzędną obrazu podstawiamy jako dodatnią, gdyż jest to obraz rzeczywisty. n + r f x y, stąd: n r y x ( ) n y r r y x

36 Przykład 7 c.d. 33 x ( n ) r y y r, m m m m x m m m [ ] ( ) m x 0,2 0,2 0,2 0,3 (,5 ) 0,2 0,5 0,2 3 2

37 Przykład 7 c.d. 34 Aby wyznaczyć wysokość przedmiotu h, skorzystamy ze wzoru: h p h, gdzie p jest powiększeniem zdefiniowanym jako U nas x > 0 oraz y > 0, więc moduły możemy opuścić i podstawić wzór na x otrzymany w pierwszej części: h' ( n ) y r y y r h, jednostki zgadzają się. Korzystamy z obliczeń, które już przeprowadziliśmy w punkcie pierwszym: p [( n ) y r ] ( n ) y y r h' h h r y r h h ( n ) 0,2 0,4 0,3 r h' y. r 0,08 0,3 y x 0,267m.

38 Przykład 7 c.d Wiemy już, że przedmiot znajduje się 3 m od soczewki i ma wysokość około 0,267 m. Spróbujmy na koniec naszkicować opisaną sytuację. Jak widać dostaliśmy dodatkową informację, że obraz powstający w soczewce jest odwrócony. B 0,267 m A A 2/3 m m 0,40 m B

39 Zadania problemowe - krótkowidz 36 Przykład 8. Krótkowidz widzi dobrze z odległości d 6 cm. Jakie okulary powinien nosić, aby dobrze widzieć z odległości d 2 24cm ( oko zdrowe)? Dane; Szukane: d 6 cm 0,6 m, D? d 2 24 cm 0,24 m. B A P P- prawidłowo widzi d d 2 Rys.3 B P Rys.4

40 Korekcja wady wzroku krótkowidza 37 Rysunek 3 przedstawia schematycznie oko krótkowidza. Na rysunku tym widać (bez okularów), że przedmiot A, oglądany z odległości d, jest widziany dobrze, gdyż promienie skupiają się w plamce ocznej przedstawionej jako punkt P. Promienie wychodzące z punktu B, w odległości d 2 od oka, skupiają się zbyt blisko. W celu uzyskania dobrego widzenia należy patrzeć przez soczewki rozpraszające, aby niejako osłabić zdolność skupiającą oka. Przedstawia to rysunek 4. Oznaczmy odległość soczewki oka od plamki ocznej jako y oraz zdolność skupiającą oka jako Wtedy dla widzenia bez okularów mamy wzór: A w okularach: d 2 + y d f y f f 0 ( f - ogniskowa okularów) f 0 Odejmujemy teraz od drugiego równania pierwsze i otrzymujemy: D f d 2 d d d d d 2 2

41 Krótkowidz c.d. 38 m m m m m m m m [ D ] D (dioptria) 0,6 0,24 0,08 { D} 2,08 2 0,6 0,24 0,0384 Niewątpliwie takiemu krótkowidzowi lekarz przepisze okulary o zdolności skupiającej minus dwóch dioptrii. Na koniec części poświęconej optyce geometrycznej przedstawię kilka ciekawostek z tej dziedziny - w celu przypomnienia sobie interesujących zjawisk i utrwaleniu kilku ważnych praw.

42 Ciekawostki 39 Bardzo istotny jest fakt, że oko zawsze widzi proste promienie światła. Prawo to było znane już bardzo dawno temu. Wykorzystywano je m.in. przy ukrywaniu skarbów w lochach zamków. Konstruowano układ luster. Obserwator, patrzący w głąb korytarza był przekonany, że widzi korytarz pusty, ze światełkiem na jego końcu, podczas gdy w rzeczywistości miał przed sobą ukrytą komnatę. Skarbiec

43 Ciekawostki 40 Podobne zjawisko zachodzi, gdy patrzymy przez peryskop. Wydaje nam się wtedy, że obserwowane, przedmioty widzimy w punkcie B, a nie A. A B

44 Optyka falowa 4 Okazuje się, że nie wszystkie zjawiska, którym ulega światło, dadzą się wyjaśnić poprzez rysowanie promieni i rozpatrywanie ich zachowania. Niektóre można wyjaśnić, gdy potraktujemy światło jako rozchodzącą się falę elektromagnetyczną, której źródłem mogą być dowolne zmiany natężenia pola elektrycznego i pola magnetycznego. Światło stanowi bardzo wąski fragment widma promieniowania elektromagnetycznego, do którego należą promienie Roentgena, fale radiowe i telewizyjne. Kompletne widmo promieniowania przedstawiono na rysunku 6. W tym rozdziale omówię te zjawiska, które potwierdzają falową naturę światła, a więc: - dyfrakcję, - interferencję, -polaryzację. Rysunek przedstawia prosty przykład fali elektromagnetycznej, jako drgań wzajemnie prostopadłych wektorów pola elektrycznego (E) i magnetycznego (B). E B - wektor natężenia elektrycznego - wektor indukcji magnetycznej

45 Optyka falowa c.d. 42 relacja: λ Fala ta rozchodzi się w próżni z prędkością v c λ v Optyka falowa.ponadto zachodzi gdzie jest długością fali a częstotliwością. Rozchodząca się fala niesie ze sobą energię, którą możemy obliczyć ze wzoru: c m s E hv h 6, J s Stała Plancka Jak już zaznaczyłem, światło widzialne, o którym przede wszystkim będziemy mówić, stanowi bardzo niewielki fragment widma elektromagnetycznego. Najdłuższe jest światło czerwone - długość jego fal zaczyna się od 770 nm, następnie jest barwa pomarańczowa, żółta, zielona, niebieska oraz fioletowa do około 360 nm. Im mniejsza jest długość fali, tym większa jest jej częstotliwość, a tym samym energia.

46 Dyfrakcja - ugięcie światła 43 Optyka falowa Aby lepiej zrozumieć zjawisko dyfrakcji, omówię je najpierw na przykładzie fal głosowych, a następnie przejdę do dyfrakcji światła. Wyobraźmy sobie, że po dwóch stronach muru stoją dwie osoby i jedna mówi do drugiej.mimo, że słuchacz jest zasłonięty przez mur, to słyszy on słowa swego rozmówcy właśnie dzięki zjawisku dyfrakcji. Bieg fal głosowych przedstawiony został na rysunku. Widzimy,że są one uginane na murze - nie biegną prostoliniowo. Zjawisko to zachodzi, gdy przeszkoda, którą napotykają fale jest wielkości porównywalnej z długością fali. Okazuje się, że fale głosowe mają odpowiednią długość w stosunku do grubości muru. Dyfrakcja światła polega na tym, że gdy światło przepuścimy przez wąską szczelinę i naprzeciwko ustawimy ekran, to okaże się, że otrzymany tym szerszy obraz szczeliny, im bardziej będziemy ją zwężać.ponadto krawędzie obrazu będą rozmyte.

47 Dyfrakcja - ugięcie światła 44 Optyka falowa Kliknij aby uruchomić animację!

48 Interferencja - nakładanie się fal 45 Optyka falowa Również tutaj posłużymy się przykładem fal na wodzie. Możemy zauważyć, że fale biegnące naprzeciw siebie, spotykają się, dodają się. Widzimy to jako wzmocnienia lub wygaszenia fal. Można się spodziewać, że w przypadku światła również będziemy obserwować jego wzmocnienie lub wygaszenie. W tym celu przeprowadźmy myślowo doświadczenie z rysunku 5. P A Z 0 α α S A 2 B E nλ Rys.5

49 Interferencja - nakładanie się fal c.d. 46 Optyka falowa Światło ze źródła Z przepuszczamy przez dwie wąskie szczeliny położone w niewielkiej odległości d od siebie. Światło pada prostopadle na przeszkodę, ulega ugięciu na szczelinach, a następnie fale biegnące z jednej i drugiej szczeliny interferują ze sobą, tworząc na ekranie E tak zwany obraz interferencyjny, czyli na przemian jasne i ciemne prążki. Spróbujmy przyjrzeć się temu zjawisku bliżej. Widzimy dwie fale ugięte, wychodzące ze szczelin A i A 2. Fala wychodząca ze szczeliny A 2, biegnąca do punktu P ma do przebycia dłuższą drogę niż fala ze szczeliny A. Różnica dróg jest zaznaczona na rysunku - A 2 B. Gdy ten odcinek będzie całkowitą wielokrotnością długości fali (λ,2λ,3λ...), to fale biegnąc dalej wspólnie, będą zgodne w fazie ( patrz rysunek). Nastąpi więc wzmocnienie i punkt P zostanie oświetlony. Wprowadzimy warunek wzmocnienia: A2 B nλ. ( n,2,3...) Zwróćmy uwagę, że odległość między szczelinami jest bardzo mała w porównaniu z odległością od ekranu ( zwykle są to setne milimetra). W związku z tym nie popełnimy dużego błędu, jeśli przyjmiemy, że promienie A P i A 2 P są równoległe, a trójkąt A A 2 B jest prostokątny. Z tymi założeniami: A 2 A B α, ponieważ: A2 P A B oraz OS A A2.Z trójkąta kąta A A 2 B mamy więc: A2 B A2 B sin α A A 2 Podsumowując naszą wcześniej wyprowadzoną zależność otrzymujemy wzór: nλ sin α (n d d,2,...)

50 Interferencja - nakładanie się fal c.d. 47 Optyka falowa Widać, że jeśli znamy długość fali światła oraz odległość między szczelinami, to możemy wyznaczyć kąty, dla których nastąpi wzmocnienie światła, podstawiając za n kolejne liczby naturalne. Wyznaczą nam one poszczególne prążki powstające symetrycznie po obu stronach prostej OS. Dla n prążki pierwszego rzędu, dla n 2 drugiego itd. Jeśli interesowałoby nas, dla jakich kątów następuje wygaszenie światła, to musimy sformułować warunek wygaszenia podobny do omawianego w poprzednim slajdzie. Łatwo się domyślić, że taki przypadek zajdzie wtedy, gdy droga A2B będzie stanowić długości fali (wtedy fale będą biegły razem w przeciwnych fazach). Możemy to zapisać jako: lub wzorem: A 3 5 λ, λ, B λ A2 B nλ λ. (n 2 wtedy można otrzymać następujący warunek wygaszenia:,...,2,3,...) n λ 2 sin α. (n d,2,...) 3 5,, 2 2 2,...

51 Interferencja - nakładanie się fal c.d. 48 Optyka falowa W praktyce takie doświadczenia, jak opisane w poprzednich slajdach, przeprowadza się z bardzo dużą liczbą szczelin. Taka przegroda ze szczelinami nazywa się siatką dyfrakcyjną..liczba szczelin, a raczej rys naniesionych na specjalną powierzchnię, w takich siatkach, przypadających na jeden milimetr może przekraczać 000. Wtedy w podobnym doświadczeniu otrzymany obraz jest wyraźniejszy a odległość między prążkami są większe, co pozwala na przeprowadzenie dokładniejszych obliczeń. Odległość między szczelinami d nazywa się stałą siatki.

52 Polaryzacja światła 49 Optyka falowa I tym razem, w celu lepszego zrozumienia omawianego zjawiska, posłużymy się najpierw jego modelem mechanicznym. Jak powiedzieliśmy we wstępie, światło jest falą elektromagnetyczną.jej drgania są zwykle bardzo chaotyczne i zmieniają się często w różnych płaszczyznach - nie tylko w dwóch, jak w naszym modelu.

53 Polaryzacja światła c.d. 50 Optyka falowa Drgania wektora natężenia pola elektrycznego fali, która biegnie w naszym kierunku przedstawia następujący rysunek: E Gdy światło ulegnie polaryzacji, to podobnie jak w naszym modelu, drgania wektora natężenia pola elektrycznego przebiegają w jednej płaszczyźnie. Takie światło nazywamy liniowo spolaryzowanym. Fale tą przedstawia następujący rysunek: Polaryzator Analizator Całkowite wygaszenie fali Fala niespolaryzowana Fala spolaryzowana Warto zwrócić uwagę, że zjawisko polaryzacji ulegają tylko fale poprzeczne. Polaryzacja światła jest doświadczalnym dowodem, iż jest ono właśnie taką falą. Istnieje kilka sposobów na spolaryzowanie wiązki światła. Jednym z nich jest przeprowadzenie jej przez polaroidy - są to płytki wykonane z kryształów o polaryzujących właściwościach. Gdy weźmiemy dwie takie płytki i odpowiednio je ustawimy, to staną się one ciemne, nieprzepuszczalne dla światła.jest to oczywiście wtedy, gdy ich płaszczyzny polaryzacji są prostopadłe.

54 Polaryzacja światła c.d. 5 Optyka falowa Innym sposobem otrzymania światła spolaryzowanego jest skierowanie go na powierzchnię przezroczystego ośrodka (II) pod takim kątem, aby promień odbity i załamany były prostopadłe (zakładamy, że ośrodek I jest próżnią) (Rys.6). Wtedy następuje całkowita polaryzacja światła. Kierunek drgań wektora E w świetle spolaryzowanym są zaznaczone na rysunku. Promień załamany jest spolaryzowany w płaszczyźnie rysunku, a odbity - w płaszczyźnie do niej prostopadłej. α α 90 0 β Rys.6

55 Polaryzacja światła c.d. 52 Optyka falowa Zjawisko to zostało odkryte przez fizyka Davida Brewestera i od jego nazwiska pochodzi nazwą kąta padania, dla którego zachodzi całkowita polaryzacja (α - kąt Brewestera) Zgodnie z tym, co wiemy na temat załamania światła, możemy zapisać: sin α sin β n ale w naszym przypadku kąty α i β są powiązane zależnością: α + 90 o + β 80 0, czyli: β 90 0 α Mamy więc: sin α sin ( 0 90 α ) tgα sin α cosα n tgα n,

56 Dwoista natura światła 53 Optyka falowa Na koniec zastanowimy się, czym jest światło. Ciekawa jest historia wyobrażeń i sądów ludzi na ten temat natury światła. Przed XIX wiekiem uważano, że światło rozchodzi się w postaci malutkich lekkich cząsteczek - korpuskuł, które poruszają się po liniach prostych. Rzeczywiście, za teorią korpuskularną mogły przemawiać takie zjawiska, jak odbicie od zwierciadeł, rzucanie cienia czy też widzenie (cząsteczki wpadają do naszych oczu, co odbieramy jako światło). Jednakże na początku wieku XIX zostały odkryte zjawiska, które były sprzeczne z dotychczasową teorią (m.in. dyfrakcja). Dało się je wyjaśnić przyjmując, że światło jest falą. Teoria ta tłumaczyła oczywiście także wcześniejsze zjawiska. Przeświadczenie, iż światło jest falą było powszechne, aż do końca wieku XIX, kiedy to odkryto zjawisko fotoelektryczne zaprzeczające zarówno teorii korpuskularnej, jak i falowej. Efekt fotoelektryczny polega na wybijaniu z metalu elektronów pod wpływem światła. Owo wybijanie może świadczyć o korpuskularnej naturze światła, lecz nie do wytłumaczenia na gruncie ówczesnych teorii było to, że efekt nie zależał od natężenia promieniowania. Dopiero Einstein rozwiązał tę zagadkę, przyjmując, że światło rozchodzi się w postaci paczek energii zwanych kwantami. Za swoje odkrycie otrzymał nagrodę Nobla. Dlatego dziś mówimy, że światło ma dwoistą, falowo-korpuskularną naturę. Czasami należy traktować je jako rozchodzenie się pewnych cząstek a czasem jako falę. Widzimy, że światło jest zjawiskiem dość dziwnym a zarazem ciekawym. Mam nadzieję, że ta prezentacja przybliżyła Wam nieco prawa rządzące zjawiskami, które dotyczą wszechotaczającego nas światła.

57 Jacek Kratkowski

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

ŚWIATŁO I JEGO ROLA W PRZYRODZIE

ŚWIATŁO I JEGO ROLA W PRZYRODZIE ŚWIATŁO I JEGO ROLA W PRZYRODZIE I. Optyka geotermalna W tym rozdziale poznasz właściwości światła widzialnego, prawa rządzące jego rozchodzeniem się w przestrzeni oraz sposoby wykorzystania tych praw

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2

35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 Włodzimierz Wolczyński Załamanie światła 35 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2 ZAŁAMANIE ŚWIATŁA. SOCZEWKI sin sin Gdy v 1 > v 2, więc gdy n 2 >n 1, czyli gdy światło wchodzi do ośrodka gęstszego optycznie,

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

OPTYKA W INSTRUMENTACH GEODEZYJNYCH

OPTYKA W INSTRUMENTACH GEODEZYJNYCH OPTYKA W INSTRUMENTACH GEODEZYJNYCH Prawa Euklidesa: 1. Promień padający i odbity znajdują się w jednej płaszczyźnie przechodzącej przez prostopadłą wystawioną do powierzchni zwierciadła w punkcie odbicia.

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Problemy optyki geometrycznej. Zadania problemowe z optyki

Problemy optyki geometrycznej. Zadania problemowe z optyki . Zadania problemowe z optyki I LO im. Stefana Żeromskiego w Lęborku 3 lutego 2012 Zasada Fermata Sens fizyczny zasady Zasada, sformułowana przez Pierre a Fermata w 1650 roku dotyczy czasu przejścia światła

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie

Bardziej szczegółowo

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo

TEST nr 1 z działu: Optyka

TEST nr 1 z działu: Optyka Grupa A Testy sprawdzające TEST nr 1 z działu: Optyka imię i nazwisko W zadaniach 1. 17. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. klasa data 1 Gdy światło rozchodzi się w próżni, jego prędkć

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III

WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III WYMAGANIA NA POSZCZEGÓLNE STOPNIE SZKOLNE Z FIZYKI W KLASIE III Dział XI. DRGANIA I FALE (9 godzin lekcyjnych) Ocenę dopuszczającą otrzymuje uczeń, który: wskaże w otaczającej rzeczywistości przykłady

Bardziej szczegółowo

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak

Publiczne Gimnazjum im. Jana Deszcza w Miechowicach Wielkich. Opracowanie: mgr Michał Wolak 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i

Bardziej szczegółowo

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach Scenariusz lekcji : Soczewki i obrazy otrzymywane w soczewkach Autorski konspekt lekcyjny Słowa kluczowe: soczewki, obrazy Joachim Hurek, Publiczne Liceum Ogólnokształcące z Oddziałami Dwujęzycznymi w

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki w klasie 3

Przedmiotowy system oceniania z fizyki w klasie 3 Przedmiotowy system oceniania z fizyki w klasie 3 Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień dobry

Bardziej szczegółowo

Ćwiczenie 53. Soczewki

Ćwiczenie 53. Soczewki Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Optyka geometryczna z elementami optyki falowej. Marian Talar

Optyka geometryczna z elementami optyki falowej. Marian Talar Optyka geometryczna z elementami optyki falowej Marian Talar 21 lipca 2006 1 Informacje ogólne To, że światło jest falą elektromagnetyczną wiadomo było już od czasu gdy J. C. Maxwell (1831-1879) sformułował

Bardziej szczegółowo

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej

Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Wyznaczanie ogniskowej soczewki za pomocą ławy optycznej Wstęp Jednym z najprostszych urządzeń optycznych

Bardziej szczegółowo

f = -50 cm ma zdolność skupiającą

f = -50 cm ma zdolność skupiającą 19. KIAKOPIA 1. Wstęp W oku miarowym wymiary struktur oka, ich wzajemne odległości, promienie krzywizn powierzchni załamujących światło oraz wartości współczynników załamania ośrodków, przez które światło

Bardziej szczegółowo

Optyka nauka o świetle. promień świetlny

Optyka nauka o świetle. promień świetlny Optyka nauka o świetle Nikogo nie trzeba przekonywać, jak ważne dla naszego życia jest światło. Jest zarówno źródłem energii jak i środkiem, który niesie nam informację o otoczeniu. Dział fizyki zajmujący

Bardziej szczegółowo

WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające

WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające WYMAGANIA ZGODNIE Z PROGRAMEM NAUCZANIA G-11/09/10 Osiągnięcia konieczne Osiągnięcia podstawowe Osiągnięcia rozszerzone Osiągnięcia dopełniające zna pojęcia położenia równowagi, wychylenia, amplitudy;

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności:

Uwzględniając związek między okresem fali i jej częstotliwością T = prędkość fali można obliczyć z zależności: 1. Fale elektromagnetyczne. Światło. Fala elektromagnetyczna to zaburzenie pola elektromagnetycznego rozprzestrzeniające się w przestrzeni ze skończoną prędkością i unoszące energię. Fale elektromagnetyczne

Bardziej szczegółowo

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl

ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl 1 ZAJĘCIA WYRÓWNAWCZE, CZĘSTOCHOWA, 2010/2011 Ewa Mandowska, Instytut Fizyki AJD, Częstochowa e.mandowska@ajd.czest.pl DZIAŁ 3 Optyka geometryczna i elementy optyki falowej. Budowa materii. 3.1. Optyka

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Ć W I C Z E N I E N R O-3

Ć W I C Z E N I E N R O-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-3 WYZNACZANIE OGNISKOWYCH SOCZEWEK ZA POMOCĄ METODY BESSELA I.

Bardziej szczegółowo

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B.

Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka materialnego A. B. Imię i nazwisko Pytanie 1/ Zaznacz właściwą odpowiedź: Fale elektromagnetyczne są falami poprzecznymi podłużnymi Pytanie 2/ Zaznacz prawdziwą odpowiedź: Fale elektromagnetyczne do rozchodzenia się... ośrodka

Bardziej szczegółowo

Rozdział 9. Optyka geometryczna

Rozdział 9. Optyka geometryczna Rozdział 9. Optyka geometryczna 206 Spis treści Optyka geometryczna i falowa - wstęp Widzenie barwne Odbicie i załamanie Prawo odbicia i załamania Zasada Fermata Optyka geometryczna dla soczewek Warunki

Bardziej szczegółowo

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I

Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Przedmiotowy system oceniania do części 2 podręcznika Klasy 3 w roku szkolnym 2013-2014 sem I Tabela wymagań programowych i kategorii celów poznawczych Temat lekcji w podręczniku 22. Ruch drgający podać

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoj Politechniki Częstochowskiej współinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Nmer Projekt: POKL.04.0.0-00-59/08 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

WYMAGANIA Z FIZYKI. Klasa III DRGANIA I FALE

WYMAGANIA Z FIZYKI. Klasa III DRGANIA I FALE WYMAGANIA Z FIZYKI Klasa III DRGANIA I FALE dopuszczający dostateczny dobry bardzo dobry wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i wynik przeprowadzonego, wyjaśnia

Bardziej szczegółowo

Wykłady z Fizyki. Optyka

Wykłady z Fizyki. Optyka Wykłady z Fizyki 09 Optyka Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Fizyka program nauczania gimnazjum klasa III 2014/2015

Fizyka program nauczania gimnazjum klasa III 2014/2015 Fizyka program nauczania gimnazjum klasa III 2014/2015 Roman Grzybowski wydawnictwo OPERON Program nauczania do nowej podstawy programowej Treści nauczania i osiągnięcia szczegółowe ucznia Fale mechaniczne

Bardziej szczegółowo

Soczewki. Ćwiczenie 53. Cel ćwiczenia

Soczewki. Ćwiczenie 53. Cel ćwiczenia Ćwiczenie 53 Soczewki Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej. Obserwacja i pomiar wad odwzorowań

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą.

Wymagania programowe na poszczególne oceny. Maria Majewska. Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Wymagania programowe na poszczególne oceny klasa III Maria Majewska Ocena niedostateczna: uczeń nie opanował wymagań na ocenę dopuszczającą. Ocena dopuszczająca [1] - zna pojęcia: położenie równowagi,

Bardziej szczegółowo

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM

KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM KRYTERIA OCENIANIA Z FIZYKI DLA KLASY III GIMNAZJUM DRGANIA I FALE MECHANICZNE - Uczeń nie opanował wiedzy i umiejętności niezbędnych w dalszej nauce. -Wie, że fale sprężyste nie mogą rozchodzić się w

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność.

Soczewki konstrukcja obrazu. Krótkowzroczność i dalekowzroczność. Soczewki konstrukcja obrazu Krótkowzroczność i dalekowzroczność. SOCZEWKA jest to przezroczyste ciało ograniczone powierzchniami kulistymi Soczewki mogą być Wypukłe Wklęsłe i są najczęściej skupiające

Bardziej szczegółowo

Ć W I C Z E N I E N R O-6

Ć W I C Z E N I E N R O-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO

Bardziej szczegółowo

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej.

Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. STOLIK OPTYCZNY V 7-19 Przyrząd słuŝy do wykonywania zasadniczych ćwiczeń uczniowskich z optyki geometrycznej. Na drewnianej podstawie (1) jest umieszczona mała Ŝaróweczka (2) 3,5 V, 0,2 A, którą moŝna

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA

WOJSKOWA AKADEMIA TECHNICZNA 1 WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ NOWYCH TECHNOLOGII I CHEMII FIZYKA Ćwiczenie laboratoryjne nr 43 WYZNACZANIE ABERRACJI SFERYCZNEJ SOCZEWEK I ICH UKŁADÓW Autorzy: doc. dr inż. Wiesław Borys dr inż.

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

Człowiek najlepsza inwestycja FENIKS

Człowiek najlepsza inwestycja FENIKS FENIKS - długoalowy program odbudowy, popularyzacji i wsagania izyki w szkołach w celu rozwijania podstawowych kompetencji naukowo-technicznych, matematycznych i inormatycznych uczniów Pracownia Fizyczna

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

Interferencja i dyfrakcja

Interferencja i dyfrakcja Podręcznik zeszyt ćwiczeń dla uczniów Interferencja i dyfrakcja Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III GIMNAZJUM

WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III GIMNAZJUM WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III GIMNAZJUM DZIAŁ I. PRĄD ELEKTRYCZNY - co to jest prąd elektryczny - jakie są jednostki napięcia elektrycznego - jaki jest umowny kierunek płynącego prądu - co to

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014

PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014 PLAN WYNIKOWY Z FIZYKI KLASA III GIMNAZJUM ROK SZKOLNY 2013/2014 Liczba godzin do realizacji: 34 Realizujący: Anna Wojtak XI. ELEKTROMAGNETYZM 1. Temat lekcji: Magnesy i ich oddziaływanie. Bieguny magnesów

Bardziej szczegółowo

Ć W I C Z E N I E N R O-7

Ć W I C Z E N I E N R O-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-7 POMIAR PROMIENI KRZYWIZNY SOCZEWKI PŁASKO-WYPUKŁEJ METODĄ PIERŚCIENI

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

I. TEST SPRAWDZAJĄCY WIELOSTOPNIOWY : BODŹCE I ICH ODBIERANIE

I. TEST SPRAWDZAJĄCY WIELOSTOPNIOWY : BODŹCE I ICH ODBIERANIE I. TEST SPRAWDZAJĄCY WIELOSTOPNIOWY : BODŹCE I ICH ODBIERANIE INSTRUKCJA Test składa się z 28 pytań. Pytania są o zróżnicowanym stopniu trudności, ale ułożone w takiej kolejności aby ułatwić Ci pracę.

Bardziej szczegółowo

Ocena. Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry

Ocena. Stopień dopuszczający Stopień dostateczny Stopień dobry Stopień bardzo dobry Drgania i fale wskazuje w otaczającej rzeczywistości przykłady ruchu drgającego opisuje przebieg i wynik przeprowadzonego doświadczenia, wyjaśnia rolę użytych przyrządów i wykonuje schematyczny rysunek

Bardziej szczegółowo

Ć W I C Z E N I E N R O-4

Ć W I C Z E N I E N R O-4 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-4 BADANIE WAD SOCZEWEK I Zagadnienia do opracowania Równanie soewki,

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer:

C29. Na rysunku zaznaczono cztery łódki. Jeśli któraś z nich znajduje się pod mostem, to jest to łódka numer: Przyjazne testy Fizyka dla gimnazjum Wojciech Dindorf, Elżbieta Krawczyk Informacje, dźwięki, światło, oko, ucho C27. Fale poprzeczne tym się różnią od fal podłużnych, że: (A) rozchodzą się w poprzek zamiast

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI DLA KLASY III Gimnazjum. Temat dopuszczający dostateczny dobry bardzo dobry

WYMAGANIA EDUKACYJNE Z FIZYKI DLA KLASY III Gimnazjum. Temat dopuszczający dostateczny dobry bardzo dobry Lekcja organizacyjna. Zapoznanie z systemem oceniania i wymaganiami edukacyjnymi z oraz warunkami i trybem otrzymywania oceny wyższej niż przewidywana. Pole elektryczne wie, co to jest pole elektryczne

Bardziej szczegółowo

Optyka i kwanty promieniowania

Optyka i kwanty promieniowania WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka informatyka Optyka i kwanty promieniowania Grzegorz

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA Własności układu soczewek

OPTYKA GEOMETRYCZNA Własności układu soczewek OPTYKA GEOMETRYCZNA Własności układu soczewek opracował: Dariusz Wardecki Wstęp Soczewką optyczną nazywamy bryłę z przezroczystego materiału, ograniczoną (przynajmniej z jednej strony) zakrzywioną powierzchnią

Bardziej szczegółowo

Spis treści. Od Autorów... 7

Spis treści. Od Autorów... 7 Spis treści Od Autorów... 7 Drgania i fale Ruch zmienny... 10 Drgania... 17 Fale mechaniczne... 25 Dźwięk... 34 Przegląd fal elektromagnetycznych... 41 Podsumowanie... 49 Optyka Odbicie światła... 54 Zwierciadła

Bardziej szczegółowo

Fizyka. Klasa 3. Semestr 1. Dział : Optyka. Wymagania na ocenę dopuszczającą. Uczeń:

Fizyka. Klasa 3. Semestr 1. Dział : Optyka. Wymagania na ocenę dopuszczającą. Uczeń: Fizyka. Klasa 3. Semestr 1. Dział : Optyka Wymagania na ocenę dopuszczającą. Uczeń: 1. wymienia źródła światła 2. wyjaśnia, co to jest promień światła 3. wymienia rodzaje wiązek światła 4. wyjaśnia, dlaczego

Bardziej szczegółowo

ZBIÓR ZADAŃ STRUKTURALNYCH

ZBIÓR ZADAŃ STRUKTURALNYCH ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Katedra Fizyki i Biofizyki UWM, Instrukcje do ćwiczeń laboratoryjnych z biofizyki. Maciej Pyrka wrzesień 2013

Katedra Fizyki i Biofizyki UWM, Instrukcje do ćwiczeń laboratoryjnych z biofizyki. Maciej Pyrka wrzesień 2013 M Wyznaczanie zdolności skupiającej soczewek za pomocą ławy optycznej. Model oka. Zagadnienia. Podstawy optyki geometrycznej: Falowa teoria światła. Zjawisko załamania i odbicia światła. Prawa rządzące

Bardziej szczegółowo

Spis treêci. IV. Drgania i fale mechaniczne. V. Optyka

Spis treêci. IV. Drgania i fale mechaniczne. V. Optyka 2 2 Spis treêci IV. Drgania i fale mechaniczne 22. Ruch drgajàcy............................................ 6 23. Drgania swobodne........................................ 10 24. Przemiany energii podczas

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła

Test sprawdzający wiedzę z fizyki z zakresu gimnazjum autor: Dorota Jeziorek-Knioła Spotkania z fizyką, część 4 Test 1 1. (1 p.) Na lekcji fizyki uczniowie demonstrowali zjawisko załamania światła na granicy wody i powietrza, po czym sporządzili rysunek przedstawiający bieg promienia

Bardziej szczegółowo

Dział: 7. Światło i jego rola w przyrodzie.

Dział: 7. Światło i jego rola w przyrodzie. Dział: 7. Światło i jego rola w przyrodzie. TEMATY I ZAKRES TREŚCI NAUCZANIA Fizyka klasa 3 LO Nr programu: DKOS-4015-89/02 Moduł Dział - Temat L. Zjawisko odbicia i załamania światła 1 Prawo odbicia i

Bardziej szczegółowo

Falowa natura promieniowania elektromagnetycznego.

Falowa natura promieniowania elektromagnetycznego. Zadanie 1. Falowa natura promieniowania elektromagnetycznego. W telefonii komórkowej poziom bezpieczeństwa (w odniesieniu do szkodliwości oddziaływania promieniowania na materię żywą) określany jest za

Bardziej szczegółowo

Korekcja wad wzroku. zmiana położenia ogniska. Aleksandra Pomagier Zespół Szkół nr1 im KEN w Szczecinku, klasa 1BLO

Korekcja wad wzroku. zmiana położenia ogniska. Aleksandra Pomagier Zespół Szkół nr1 im KEN w Szczecinku, klasa 1BLO Korekcja wad wzroku zmiana położenia ogniska Aleksandra Pomagier Zespół Szkół nr im KEN w Szczecinku, klasa BLO OKULISTYKA Dział medycyny zajmujący się budową oka, rozpoznawaniem i leczeniem schorzeń oczu.

Bardziej szczegółowo

Optyka w fotografii Ciemnia optyczna camera obscura wykorzystuje zjawisko prostoliniowego rozchodzenia się światła skrzynka (pudełko) z małym okrągłym otworkiem na jednej ściance i przeciwległą ścianką

Bardziej szczegółowo

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon

wskazuje w otoczeniu zjawiska elektryzowania przez tarcie formułuje wnioski z doświadczenia sposobu elektryzowania ciał objaśnia pojęcie jon Klasa III Elektryzowanie przez tarcie. Ładunek elementarny i jego wielokrotności opisuje budowę atomu i jego składniki elektryzuje ciało przez potarcie wskazuje w otoczeniu zjawiska elektryzowania przez

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Zakres wymagań ma charakter kaskadowy to znaczy że uczeń chcąc uzyskać ocenę wyższą musi spełnić wymagania na oceny niższe.

Zakres wymagań ma charakter kaskadowy to znaczy że uczeń chcąc uzyskać ocenę wyższą musi spełnić wymagania na oceny niższe. Rozkład materiału nauczania z fizyki do klasy III gimnazjum na rok szkolny 2014/2015 opracowany w oparciu o program nauczania fizyki w gimnazjum Spotkania z fizyką, autorstwa Grażyny Francuz-Ornat, Teresy

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory www.pdffactory.pl/ Agata Miłaszewska 3gB

PDF stworzony przez wersję demonstracyjną pdffactory www.pdffactory.pl/ Agata Miłaszewska 3gB Agata Miłaszewska 3gB rogówka- w części centralnej ma grubość około 0,5 mm, na obwodzie do 1 mm, zbudowana jest z pięciu warstw, brak naczyń krwionośnych i limfatycznych, obfite unerwienie, bezwzględny

Bardziej szczegółowo

O P T Y K A. Niektóre powody dla których warto zainteresować się tym działem:

O P T Y K A. Niektóre powody dla których warto zainteresować się tym działem: O P T Y K A Niektóre powody dla których warto zainteresować się tym działem: ze światłem mamy do czynienia na codzień, dzięki światłu utrzymujemy ponad 80% informacji o otaczającym nas świecie; warto więc

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej)

36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII. POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Włodzimierz Wolczyński 36P POWTÓRKA FIKCYJNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII POZIOM PODSTAWOWY (od początku do optyki geometrycznej) Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo