Modele z czasem dyskretnym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modele z czasem dyskretnym"

Transkrypt

1 Rozdziaª 1 Modele z czasem dyskretnym 1.1. Wprowadzenie- rynki dyskretne Dynamika aktywu bazowego i warunki pozyskania pieni dza-opis probabilistyczny Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21. Zaªó»my,»e ceny akcji po trzech miesi cach T = 3/12 wyznacza zmienna losowa S T, która przyjmuje dwie warto±ci: S d = 18 i S u = 22. Zatem analitycy przewiduj,»e albo nast pi wzrost ceny o 5% (realny wzrost czyli S u e /12 > S 0 albo nastapi spadek(realny) ceny o 15% z pewnym prawdopodobie«stwem P (miara). Zatem nasze Ω jest zªo»one z dwóch scenariuszy Ω = {ω 1, ω 2 }. Zakªadamy,»e na ten okres roczna stopa procentowa (kredytu i depozytu) dla kapitalizacji ci gªej r = 12%. Instrumenty nansowe zob. Hull [1] Opcja call to instrument nansowy, który pozwala jego nabywcy kupi akcj za okre±lon cen np. K = 21, zwan cen wykonania. Zazwyczaj dochodzi do rozliczenia opcji. Wystawca opcji musi nabywcy opcji wypªaci kwot o prolu wypªaty dla opcji call równym (S T K) + = { ST K = = 1 o ile S u = 22 0 o ile S d = 18 (1.1) W ogólno±ci rozwa»a si wypªat losow f = { fu o ile S u f d o ile S d (1.2) Miara martyngaªowa i wycena opcji call Miara martyngaªowa Q, to miara równowa»na mierze P oraz E Q S T e rt = S 0. Wiadomo,»e cena europejskiej opcji call jest równa C = EQ [(S T K) + ] e rt. Dla losowego instrumentu f C(f) = EQ [f] e rt.

2 2 Miara Q jest miar martyngaªow jednoznacznie wyznaczon z równa«{ E Q [S T ] e rt = 22q 1 e 0,12 3/ q 2 e 0,12 3/12 = 21 = S 0, q 1 + q 2 = 1 (1.3) St d q 1 = 0, 9099 za± q 2 = 0, 0901 za± cena opcji call C = 0, zabezpieczenie (hedging) dla opcji binarnych Wystawca opcji call (czy ogólnie losowego instrumentu o prolu wypªaty f) dostaje zatem kwot C = 0, 883 (C(f)) + mar»a. Kwota C musi wystarczy do zabezpieczenia jego pozycji. Wystawca opcji MUSI kupi akcji = f u f d S u S d = 1 4. Potrzebuje zatem 21 = Poniewa» otrzymaª C = 0, 881 na rynku pieni»nym po»ycza , 881 = 4, 367. Jego portfel skªada si z: 1 short call, long akcji i po»yczki 4, 367. Zauwa»my,»e warto± portfela 1 short call, long akcji po trzech miesi cach jest staªa i równa kwocie nale»no±ci wymagalnej przez po»yczkodawc 4, 367 e 0,12 3/12 = 4, 5 gdy» f u + S u = f d + S d = 4, 5. Pieni dze te ±ci gamy z rynku akcji i oddajemy. Zrobili±my doskonaªe zabezpieczenie. Rynek z dynamik cen w dwóch etapach Rozwa»amy dynamik zmian ceny akcji w dwóch etapach. W pierwszym nast puje wzrost (realny) S u i spadek do S d w chwili T 1 = 3/12 z pewnym prawdopodobie«stwem P. Zmienna losow oznaczmy przez S 1 Nastepnie od ka»dej z tych mo»liwo±ci nastepuje taki sam scenariusz w chwili T 2 = 6/12, czyli np. od ceny S d obserwujemy wzrost do S dd i spadek do S du. Zmienna losow oznaczmy przez S 2. Roczna stopa procentowa dla kapitalizacji ci gªej wynosi r = 12% i jest staªa (równiez w przyszªo±ci). Nasze Ω jest zªo»one z czterech scenariuszy Ω = {ω 1, ω 2, ω 3, ω 4 }, Konkretnie niech scenariusz ω 1 to dynamika w czasie od S 0 do S dd, scenariusz ω 2 to dynamika od S 0 do S du itd. Aby modelowa zmiany informacji w czasie wprowadzamy ltracj czyli σ-ciaªa F 1 = σ{{ω 1, ω 2 }, {ω 3, ω 4 }} za± Wprowadzamy jeszcze σ ciaªo trywialne F 2 = σ{{ω 1 }, {ω 2 }, {ω 3 }, {ω 4 }} F 0 = {, Ω} + "zbiory miary zero" Wówczas S 1 jest F 1 mierzalne za± S 2 jest F 2 mierzalne co oznacza,»e mamy proces adaptowany do ltracji. Miara martyngaªowa i wycena isntrumentów nansowych Miara martyngaªowa Q, to miara równowa»na mierze P dla której dynamika zdyskontowanej ceny akcji jest Q-martyngaªem czyli [ ] E Q S2 e F rt2 1 = S 1 e rt1

3 3 oraz E Q [S 1 F 0 ] = E Q S 1 e rt1 e = S 0. rt1 Wiadomo,»e cena europejskiej opcji call jest równa Dla losowego instrumentu f = f(s 2 ) C = EQ [(S 2 K) + ] e rt2. C(f) = EQ [f] e rt2. Warunkowe warto±ci oczekiwane Przypomnienie przykªady. Zob. [3] Twierdzenie 1.1 Niech (Ω, F, P ) zupeªna, czyli F zawiera zbiory miary zero. Je±li U : L 2 (Ω) L 2 (Ω) jest rzutem ortogonalnym (M = U(L 2 (Ω)) jest domkni t podrzestrzeni L 2 (Ω)) oraz U(1) = 1 i je±li X 0 to U(X) 0, to istnieje pod-σ ciaªo B F takie,»e U(X) = E P [X B] oraz M = L 2 (Ω, B). Denicja 1.1 Niech X L 1 (Ω, F, P ) oraz B F pod-σ ciaªo. Wówczas istnieje zmienna losowa caªkowalna E[X B] taka,»e dla ka»dego B B E P [X B]dP = XdP. (1.4) B Warunek (1.4) mo»emy zapisa w sposób równowa»ny dla ka»dej ograniczonej zmiennej losowej Y B Y E P [X B]dP = Y XdP. (1.5) Ω Z równania (1.5) wynika,»e prawdziwe jest te» twierdzenie odwrotne Twierdzenie 1.2 Niech (Ω, F, P ) zupeªna. Je±li dane jest pod-σ ciaªo B F (zupeªne), to U(X) = E P [X B]. deniuje rzut ortogonalny U : L 2 (Ω, F) L 2 (Ω, B) L 2 (Ω, F). Wystarczy pokaza,»e U 2 = U U = U oraz dla dowolnych zmiennych losowych ograniczonych X, Y U(X)Y dp = U(X)U(Y )dp. Ω Ω B Ω

4 Podstawowe poj cia Denicja 1.2 Niech (Ω, F, P ) przestrze«probabilistyczna z ltracj (F n ) n T, gdzie F j jest σ ciaªem oraz F 0 F 1 F 2... F F 0 = {, Ω} + "zbiory miary zero". Inaczej mówi c miara P jest zupeªna. Przez rynek (B, S) rozumiemy wektor zªo»ony z d-procesów cen akcji adaptowanych do ltracji S = (S 1,..., S d ) S n = (S 1 n,..., S d n) tak,»e dla ka»dego i = 1,..., d oraz n T, S i n > 0 S i = (S i n F n ) n T. Przez T rozumiemy choryzont czasowy. Rozwa»amy dwa przypadki albo T = {0, 1,..., N} T = {0, 1,...}. Ponadto dany jest proces warto±ci pieni dza (B n ) n T. Zakªadamy,»e B 0 = 1 oraz proces jest prognozowalny czyli B n F n 1, n 1. Zauwa»my,»e proces (B n ) n T generuje proces prognozowalny stóp procentowych r n F n 1, n 1 stopy procentowe dla kapitalizacji ci gªej dla okresu czasu od chwili n 1 do chwili n B n+1 = B n e rn+1, n 0. Zwykle zakªadamy,»e proces warto±ci pieni dza ro±nie. Denicja 1.3 (Portfel inwestycyjny, Strategia (inwestycyjna)) Niech dany jest rynek (B, S). Przez strategi rozumiemy dwa procesy prognozowalne π = (β, γ), gdzie γ = (γ 1 n,..., γ d n) n 1. Oznaczaj one ilo± pieni dza w portfelu oraz ilo± akcji. Przyjmuj one dowolne warto±ci. Warto±ci ujemne oznaczaj pozycje krótkie, czyli dla β < 0 kredyt dla γ i n < 0 oznacza,»e w chwili n podj to decyzj o krótkiej sprzeda»y ilo±ci γ i n i-tek akcji. Denicja 1.4 (Warto± portfela) Niech dany jest rynek (B, S). Niech dany jest rynek. Dla strategii π warto± porfela w chwili n jest procesem oznaczonym przez X π n i równym dla n 1 X π n = β n B n + d γns i n i = β n B n + γ S n. i=1 W chwili n = 0 dysponujemy na pocz tek gotówk X π 0.

5 5 Denicja 1.5 (Strategia samonansuj ca ) Niech dany jest rynek (B, S). Strateigia π jest samonansuj ca je±li n Xn π = X0 π + (β k B k + γ k S k ), k=1 gdzie B k = B k B k 1 oraz S k = ( S 1 k,..., Sd k ), Si k = Si k Si k 1. Twierdzenie 1.3 Niech dany jest rynek (B, S). Strategia π jest samonansuj ca wtedy i tylko wtedy gdy dla ka»dego n 2 B n 1 β n + S n 1 γ n = 0. Uzasadnienie: Skorzysta z formuªy dla ci gów Wówczas (a n b n ) = a n b n + b n 1 a n. X π n = (β n B n ) + (γ n S n ). Domykamy horyzont czasowy.niech T = T {+ }. Denicja 1.6 (Czas zatrzymania, czas Markowa, Shiryaev ) Niech (Ω, F, P ) przestrze«probabilistyczna z ltracj (F n ) n T. Uogólniona zmienna losowa jest czasem stopu je±li dla ka»dego n T Czas stopu jest sko«czony je±li τ : Ω T {τ = n} F n. P ({τ = + }) = 0. Zadanie: Poni»sze obiekty przeanalizowa na rynku akcji cen w N- etapach zob. Rozdziaª Je±li τ i s s czasami stopu, to τ + s, min{τ, s} = τ s oarz max{τ, s} = τ s s czasami stopu. zauwa»my,»e ró»nica czasów stopu zwykle wymaga informacji o przyszªo±ci. 2. τ jest czasem stopu wtedy i tylko wtedy gdy dla ka»dego n T 3. Niech {τ n} F n. F τ = {A F : n T A {τ n} F n }. Wówcas F τ jest pod σ ciaªem F. 4. Niech (X n, F n ) n T b dzie procesem adaptowalnym i τ sko«czonym czasem zatrzymania. Wówczas zmienna losowa X τ : Ω R jest F τ mierzalna. warto±ci X τ obliczamy wg. wzoru dla ω takich,»e τ(ω) = n mamy X τ (ω) = X n (ω). 5. F τ = σ{x τ : (X n, F n ) n T dowolny adaptowany proces}.

6 6 Denicja 1.7 (Martyngaª ) Niech (X n, F n ) n T b dzie procesem adaptowalnym. Wówczas (X n, F n ) n T jest martyngaªem je±li 1. dla ka»dego n T X n L 1 (P ) czyli E X n < 2. E[X n F n 1 ] = X n 1, n 1, n T. Denicja 1.8 (Ró»nica martyngaªowa ) Niech (X n, F n ) n T b dzie procesem adaptowalnym. Wówczas (X n, F n ) n T jest ró»nic martyngaªow je±li 1. dla ka»dego n T X n L 1 (P ) czyli E X n < 2. E[X n F n 1 ] = 0, n 1, n T. Lemat 1.4 Niech (X n, F n ) n T b dzie martyngaªem. Wowczas proces dla n 1 Y n = X n X n 1, jest ró»nica martyngaªow. Lemat 1.5 Je±li Y n n 1 jest ró»nic martyngaªow i X o F 0 to proces jest martyngaªem. X n = X 0 + Y Y n Denicja 1.9 (Lokalny martyngaª ) Niech (X n, F n ) n T b dzie procesem adaptowalnym. Proces (X n, F n ) n T jest lokalnym martyngaªem je±li istnieje rosn cy ci g czasów stopu (τ k ) k T, czyli τ k τ k+1 oraz τ k + p.prawie wsz dzie taki,»e dla ka»dego k proces zatrzymany jest martyngaªem. X τ k = (X τk n, F n ) Zauwa»my,»e zgodnie z zadaniem 1-5 zmienne losowe (X τk n s adaptowane do ltracji F n zatem denicja jest poprawna. Niech X zmienna losowa. Mo»na j rozªo»y jednoznacznie (czyli z dokªadno±ci do zbioru miary zero (p. prawie wsz dzie)) na dwie zmienne losowe nieujemne X +, X, X = X + X. Denicja 1.10 (Uogólniona warto± oczekiwana ) 1. Niech X zmienna losowa nieujemna. To z twierdzenia Radona Nikodyma istnieje taka funkcja E[X B] B,»e dla dowolnejgo zbioru B B XdP = E[X B]. B Mo»emy rownowa»nie zdeniowa E[X B] korzystaj c z wersji twierdzenie Lebesgue'a o zbie»no±ci monotonicznej dla warunkowych warto±ci oczekiwanych, np. E[X B] := lim E[X k B]. k B

7 7 Zbie»no± jest p.prwie wsz dzie. Z twierdzenia Lebesgue'a o zbie»no±ci monotonicznej wynika,»e defnicja nie zale»y od ci gu funkcji zbie»nych do X. 2. Niech X zmienna losowa i niech X = X + X.. Niech B pod σ ciaªo F. Zakªadaj c,»e E[X + B] i E[X B] nie s jednocze±nie równe niesko«czono± E[X B] = E[X + B] E[X B]. Przykªad istnienia uogólnionej warto±ci oczekiwanej. Niech Ω = R z miar gausowska unormowan. Niech X(x) = e x2. Ta funkcja nie jest caªowalna. Niemniej istnieje warunkowa warto± oczekiwana ( i jest ona sko«czona) dla pod σ ciaªa generowanego przez zbiory [k, k + 1], k Z. Wªasno±ci uogónionej warto±ci oczekowanej s podobne do warto±ci oczekowanej niemniej potrzeba pewnej ostro»no±ci. np. Lemat 1.6 Niech X 0 i 0 f c zmienne losowe oraz f B Wówczas ale tylko na zbiorze {f > 0}. E[fX B] = fe[x B] Problem polega na tym,»e na zbiorze {f = 0} mo»e by symbol nieokre±lony po prawej stronie równania. Denicja 1.11 (Uogólniony martyngaª ) Niech (X n, F n ) n T b dzie procesem adaptowalnym. Proces (X n, F n ) n T jest uogólnionym martyngaªem je±li E[ X n F n 1 ] = E[X + n F n 1 ] + E[X n F n 1 ] < p. prawie wsz dzie oraz E[X n F n 1 ] = X n 1, n 1. Denicja 1.12 (Transformata martyngaªowa ) Niech (X n, F n ) n T b dzie procesem adaptowalnym. Proces (X n, F n ) n T jest transformat martyngaªow je±li stni procesy prognozowalny (Y n, F n ) n T oraz martyngaª (M n, F n ) n T tak,»e n X n = M 0 + Y j M j. j=1 Lemat 1.7 Je±li proces (X n, F n ) n T jest transformat martyngaªow tak,»e procesy Y j s ograniczone, to X n jest martyngaªem. Twierdzenie 1.8 Niech (Ω, F, P ) przestrze«probabilistyczna z ltracj (F n ) n 1. Niech (X n ) n T proces adaptowany. Wówczas nast puj ce warunki s równowa»ne 1.(X n ) n T jest lokalnym martyngaªem 2.(X n ) n T jest uogólnionym martyngaªem 3. (X n ) n T jest transformat martyngaªow

8 8 Dowód. (iii) (i). Niech (X n ) n T b dzie transformat martyngaªow, czyli istniej procesy prognozowalny (Y n, F n ) n 1 oraz martyngaª (M n, F n ) n T tak,»e n X n = M 0 + Y j M j. j=1 Defninjujemy zmienn losow zatrzymuj c proces (Y n, F n ) n T τ j = inf{n 1 : Y n > j}. na poziomie j, czyli Wówczas τ j jest czasem stopu. Ponadto τ j τ j+1 oraz τ dla j. W przypadku sko«czonej perspektywy czasowej τ j = dla j j(ω). Deniujemy nowy proces zatrzymany τ j n Xn τj = X n τj = X 0 + Y k M k == X 0 + k=1 n Y k χ {k τj} M k, gdzie χ A jest funkcj charakterystyczn zbioru A. Zauwaz»my,»e proces {Y k χ {k τj}} jest procesem prognozowalnym i ograniczonym. Z lematu 1.7 proces {Xn τj } jest martyngaªem. Denicja 1.13 (Arbitra») Niech T = {0, 1,..., N}. Mówimy,»e rynek (B, S) dopuszcza arbitra» je±li istnieje strategia samonansuj ca π taka,»e oraz X π 0 = 0, n T X π n 0 P ({X π N > 0}) > 0. Uwaga. Inwestycja π dla której zachodzi nazywa si dopuszczalna. n T X π n 0 k=1 Denicja 1.14 (Rynek zdyskontowany) Rynek ( B, S), gdzie nazywamy rynkiem zdyskontowanym. B := 1, S := S B Wszytkie podstawowe poj cia maj swoje analogiczne rozwini cia na rynku zdyskontowanym. Dlatego b dziemy posªugowa si rynkiem zdyskontowanym czyli takim dla którego r n = 1. Twierdzenie 1.9 (Podstawowe twierdzenie wyceny) Lemat 1.10 (Transformata Eshera) Denicja 1.15 (Cena kupuj cego i sprzedaj cego) Lemat 1.11 (Opcjonalny rozkªad nadmartyngaªu) Twierdzenie 1.12 (Reprezentacja ceny kupuj cego i sprzedaj cego)

9 Rozdziaª 2 Modele z czasem ci gªym Proces Wienera Zbie»no±c spaceru losowego na procesu Wienera Konstrukcja procesu Wienera za pomoca bazy Haara Wektor gausowski i konstrukcja wielowymiarowego procesu gausowskiego o staªej korelacji Ilustracja twierdzenia o iterowanym logarytmie dla proecsu Wienera Funkcjonaª max dla trajektorii procesu Wienera i jego rozkªad. Zasada odbicia Czasy stopu i ich wªasno±ci. Opcje europejskie, ameryka«skie, barierowe, opcje lookback

10 Literatura [1] John C. Hull, Options, Futures, and Other Derivatives Pearson Prentice Hall 7th edition [2] J. Jakubowski, A. Palczewski, M. Rutkowski, Š. Stettner Matematyka nansowa WNT [3] Jacques Neveu, Discrete-parameter martingales. North-Holland, Amsterdam; American Elsevier, New York, 1975

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Wst p do matematyki nansów i ubezpiecze«

Wst p do matematyki nansów i ubezpiecze« Jarosªaw Mederski i Sªawomir Plaskacz Wst p do matematyki nansów i ubezpiecze«materiaªy dydaktyczne dla studentów II-go roku matematyki specjalno± : matematyka w ekonomii i nansach. Wydziaª Matematyki

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Podstawy statystycznego modelowania danych Analiza prze»ycia

Podstawy statystycznego modelowania danych Analiza prze»ycia Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

Tomograa komputerowa

Tomograa komputerowa Tomograa komputerowa Wykªad inauguracyjny r.a. 2010/2011 Andriy Panasyuk Katedra Algebry i Geometrii, WMiI Dramat matematyka, Akt I Dramat matematyka, Akt II Dramat matematyka, Akt III Dramat matematyka,

Bardziej szczegółowo

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty, VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 143 Dyskonto-przypomnienie Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v.

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz

Bardziej szczegółowo

O pewnej regule alokacji jako sposobie inwestowania na gieªdzie papierów warto±ciowych

O pewnej regule alokacji jako sposobie inwestowania na gieªdzie papierów warto±ciowych O pewnej regule alokacji jako sposobie inwestowania na gieªdzie papierów warto±ciowych Paweª Gªadki 1 Podstawowe poj cia teorii gier dwuosobowych Strategia gracza to reguªa okre±laj ca wybór przez gracza

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do:

Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: Jesteś tu: Bossa.pl Opcje na WIG20 - wprowadzenie Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: żądania w ustalonym terminie dostawy instrumentu bazowego po określonej cenie wykonania

Bardziej szczegółowo

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011 Podstawy Ekonomii Matematycznej Aktualizacja: 9 czerwca 2011 Spis tre±ci I Elementy matematyki nansowej. 5 1 Procent, stopa procentowa, kapitalizacja. 6 2 Procent prosty. 8 2.1 Zasada oprocentowania prostego,

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Rachunek caªkowy funkcji wielu zmiennych

Rachunek caªkowy funkcji wielu zmiennych Rachunek caªkowy funkcji wielu zmiennych I. Malinowska, Z. Šagodowski Politechnika Lubelska 8 czerwca 2015 Caªka iterowana podwójna Denicja Je»eli funkcja f jest ci gªa na prostok cie P = {(x, y) : a x

Bardziej szczegółowo

10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" t "1%/4( " +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82

10. / 42! 1 A$!! )$$$% 0  + 42 + 1 +! ! 1! !1!!!!42 %  t 1%/4(  +. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 Matematyka finansowa 09.12.2000 r. 10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" * t "1%/4( " + i 10%. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 10 Matematyka finansowa 24.03.2001

Bardziej szczegółowo

Ekonometria Bayesowska

Ekonometria Bayesowska Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych

Bardziej szczegółowo

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«.

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Alicja Czy» WFTiMS April 14, 2010 Spis tre±ci 1 Wprowadzenie Denicja prawdopodobie«stwa warunkowego Twierdzenie Bayesa Niezale»no±

Bardziej szczegółowo

Współczynniki Greckie

Współczynniki Greckie Wojciech Antniak 05.0.008r. Wstęp Współczynniki greckie określają ryzyko opcji europejskiej na zmiany rynku. ażdy z nich określa w jaki sposób wpłynie zmiana jakiegoś czynnika na cenę akcji. W dalszej

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Rozdziaª 2. Proste przykªady opcji egzotycznych

Rozdziaª 2. Proste przykªady opcji egzotycznych Rozdziaª 2 Proste przykªady opcji egzotycznych Cztery podstawowe typy opcji: europejskie/ameryka«skie opcje call/put to tzw. opcje waniliowe (vanilla options); b d je równie» okre±laª jako opcje zwykªe.

Bardziej szczegółowo

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Krzysztof Kapulkin IX Warsztaty Logiczne 5 12 lipca 2008 1 Wst p W referacie tym przedstawiamy wyniki uzyskane przez Andrzeja Ehrenfeuchta i Andrzeja

Bardziej szczegółowo

Elementarna statystyka Test Istotno±ci (Tests of Signicance)

Elementarna statystyka Test Istotno±ci (Tests of Signicance) Elementarna statystyka Test Istotno±ci (Tests of Signicance) Alexander Bendikov Uniwersytet Wrocªawski 16 kwietnia 2016 Elementarna statystyka Test Istotno±ci (Tests of Signicance) 16 kwietnia 2016 1 /

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Lekcja 9 Liczby losowe, zmienne, staªe

Lekcja 9 Liczby losowe, zmienne, staªe Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe

Bardziej szczegółowo

Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD. 15 czerwca 2010

Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD. 15 czerwca 2010 Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD Anna Barczy«ska Maciej Bieli«ski 15 czerwca 2010 1 Spis tre±ci 1 Forex 3 1.1 EUR/USD............................. 4 2 Waluty 5 2.1 Siªa

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Projekt dyplomowy in»ynierski

Projekt dyplomowy in»ynierski Katedra/Zakªad: Analizy Matematycznej i Numerycznej Kierunek studiów: Matematyka Specjalno± : Matematyka nansowa Rodzaj studiów: stacjonarne Imi i nazwisko: Alicja Czerwi«ska Numer albumu: 120132 Projekt

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4

Zadanie 1. Zadanie 2. Zadanie 3. Zadanie 4 Zadanie ODP = exp(, 4 )E W () = exp(, )E l (;+ ) (S()) ODP = exp(, )P (S() > ), gdzie oznacza miar martyngaªow. Przy MBS proces cen akcji ma posta S(t) = S() exp[t(µ, 5σ ) + σw t ], gdzie {W t, t } jest

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Martyngały a rynki finansowe

Martyngały a rynki finansowe Jest to zapis odczytu wygłoszonego na XXXIII Szkole Matematyki Poglądowej Metody klasyczne i współczesne, sierpień 2004. Martyngały a rynki finansowe Jacek JAKUBOWSKI, Warszawa 1. Okazuje się, że teoria

Bardziej szczegółowo

Matematyka finansowa 2.06.2001 r.

Matematyka finansowa 2.06.2001 r. Matematyka finansowa 2.06.2001 r. 3. Inwe 2!%3'(!!%3 $'!%4&!! &,'! * "! &,-' ryzyko inwestycji odchyleniem standardowym stopy zwrotu ze swojego portfela. Jak *!&! $!%3$! %4 A.,. B. spadnie o 5% C. spadnie

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przedmowa 11 1. Wprowadzenie 15 1.1. Początki rynków finansowych 15 1.2. Konferencja w Bretton Woods 17 1.3. Początki matematyki finansowej 19 1.4. Inżynieria finansowa 23 1.5. Nobel'97 z ekonomii 26 1.6.

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

Zabawa z grak z programem Scilab. Jacek Tabor

Zabawa z grak z programem Scilab. Jacek Tabor Zabawa z grak z programem Scilab Jacek Tabor Rozdziaª 1 Zmiana skali Na dobry pocz tek: http://wwwtheinvisiblegorillacom/gorilla_experimenthtml 11 CIE 1931 Color Matching Functions Sposób w jaki widzimy

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Wprowadzenie do rynku opcji. Marek Suchowolec

Wprowadzenie do rynku opcji. Marek Suchowolec Wprowadzenie do rynku opcji Marek Suchowolec Plan Bibliografia Historia opcji Definicja opcji Porównanie opcji do polisy ubezpieczeniowej Rodzaje opcji Animatorzy opcji Depozyty zabezpieczające Warranty

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi.

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Krzysztof Makarski 22 Krzywe kosztów Wst p Celem jest wyprowadzenie funkcji poda»y i jej wªasno±ci. Funkcj poda»y wyprowadzamy z decyzji maksymalizuj

Bardziej szczegółowo

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

Rynek, opcje i równania SDE

Rynek, opcje i równania SDE Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej

Ekonometria. wiczenia 13 Metoda ±cie»ki krytycznej. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej wiczenia 13 Metoda ±cie»ki krytycznej Instytut Ekonometrii Zakªad Ekonometrii Stosowanej Plan wicze«1 Przykªad: ubieranie choinki 2 3 Programowanie liniowe w analizie czasowej i czasowo-kosztowej projektu

Bardziej szczegółowo

Strategie Ubezpieczenia Portfela

Strategie Ubezpieczenia Portfela Strategie Ubezpieczenia Portfela Marcin Krzywda Zakªad Matematyki Finansowej Instytut Matematyki UJ 10. Maja 2012 Marcin Krzywda (UJ) Strategie Ubezpieczenia Portfela 10. Maja 2012 1 / 44 Produkty strukturyzowane

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE Listopad 2014 r. Warszawa, Szkoła Główna Handlowa Opcje - typy Opcja jest asymetrycznym instrumentem. Opcja (standardowa, prosta,

Bardziej szczegółowo

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:

Bardziej szczegółowo

COLT - Obliczeniowa teoria uczenia si

COLT - Obliczeniowa teoria uczenia si Hung Son Nguyen (UW) COLT - Obliczeniowa teoria uczenia si 2007 1 / 32 COLT - Obliczeniowa teoria uczenia si Hung Son Nguyen Institute of Mathematics, Warsaw University son@mimuw.edu.pl 2007 Hung Son Nguyen

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

2 Model neo-keynsistowski (ze sztywnymi cenami).

2 Model neo-keynsistowski (ze sztywnymi cenami). 1 Dane empiryczne wiczenia 5 i 6 Krzysztof Makarski Szoki popytowe i poda»owe jako ¹ródªa uktuacji. Wspóªczynnik korelacji Odchylenie standardowe (w stosunku do PKB) Cykliczno± Konsumpcja 0,76 75,6% procykliczna

Bardziej szczegółowo

Wzory matematyka finansowa

Wzory matematyka finansowa Wzory matematyka finansowa MaciejRomaniuk 29 września 29 K(t) funkcjaopisującaakumulacjęwchwiliczasut,k() kapitał,i stopazyskuwchwilit: i= K(t) K() (1) K() K kapitał,i stałastopaprocentowadlaustalonegookresuczasut,

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Czwartek 13.00-15.00, p. 205C wioletta.nowak@uwr.edu.pl http://prawo.uni.wroc.pl/user/12141/students-resources Sylabus Zasady i metody wyceny kontraktów

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

Rynkowa wycena egzotycznych instrumentów pochodnych kursów walutowych { opcje barierowe

Rynkowa wycena egzotycznych instrumentów pochodnych kursów walutowych { opcje barierowe Rynkowa wycena egzotycznych instrumentów pochodnych kursów walutowych { opcje barierowe Ewa Kijewska BRE Bank 16 maja 2008 Ewa Kijewska (BRE Bank) Rynkowa wycena egzotycznych instrumentów pochodnych kursów

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Wykorzystanie opcji w zarządzaniu ryzykiem finansowym

Wykorzystanie opcji w zarządzaniu ryzykiem finansowym Prof. UJ dr hab. Andrzej Szopa Instytut Spraw Publicznych Uniwersytet Jagielloński Wykorzystanie opcji w zarządzaniu ryzykiem finansowym Ryzyko finansowe rozumiane jest na ogół jako zjawisko rozmijania

Bardziej szczegółowo

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )

x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) *** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR WŁASNOŚCI OPCJI CAPPED.

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR WŁASNOŚCI OPCJI CAPPED. ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 213 EWA DZIAWGO Uniwersytet Mikołaja Kopernika w Toruniu WŁASNOŚCI OPCJI CAPPED Streszczenie W artykule

Bardziej szczegółowo

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego

Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego Opcje giełdowe i zabezpieczenie inwestycji Filip Duszczyk Dział Rynku Terminowego Agenda: Analiza Portfela współczynnik Beta (β) Opcje giełdowe wprowadzenie Podstawowe strategie opcyjne Strategia Protective

Bardziej szczegółowo

Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej. A. Bobrowski

Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej. A. Bobrowski Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej A. Bobrowski Spis tre±ci Teoria zbie»no±ci ci gów liczbowych strona 6. Gªówne zagadnienia 6.2 Granice sko«czone i niesko«czone

Bardziej szczegółowo

Informatyka. z przedmiotu RACHUNEK PRAWDOPODOBIE STWA

Informatyka. z przedmiotu RACHUNEK PRAWDOPODOBIE STWA Informatyka Zbiór przykªadowych prac kontrolnych oraz przykªadowych zada«egzaminacyjnych z przedmiotu RACHUNEK PRAWDOPODOBIE STWA Sprawdzian 1, M09-02 Zadanie 1 (1p) W rzucie dwiema kostkami obliczy prawdopodobie«stwo

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options).

Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options). Opcje na GPW (I) Opcje (ang. options) to podobnie jak kontrakty terminowe bardzo popularny instrument notowany na rynkach giełdowych. Ich konstrukcja jest nieco bardziej złożona od kontraktów. Opcje można

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

R NKI K I F I F N N NSOW OPCJE

R NKI K I F I F N N NSOW OPCJE RYNKI FINANSOWE OPCJE Wymagania dotyczące opcji Standard opcji Interpretacja nazw Sposoby ustalania ostatecznej ceny rozliczeniowej dla opcji na GPW OPCJE - definicja Kontrakt finansowy, w którym kupujący

Bardziej szczegółowo

Eugeniusz Gostomski. Ryzyko stopy procentowej

Eugeniusz Gostomski. Ryzyko stopy procentowej Eugeniusz Gostomski Ryzyko stopy procentowej 1 Stopa procentowa Stopa procentowa jest ceną pieniądza i wyznacznikiem wartości pieniądza w czasie. Wpływa ona z jednej strony na koszt pozyskiwania przez

Bardziej szczegółowo

Warszawska Giełda Towarowa S.A.

Warszawska Giełda Towarowa S.A. KONTRAKT FUTURES Poprzez kontrakt futures rozumiemy umowę zawartą pomiędzy dwoma stronami transakcji. Jedna z nich zobowiązuje się do kupna, a przeciwna do sprzedaży, w ściśle określonym terminie w przyszłości

Bardziej szczegółowo

Warszawska Giełda Towarowa S.A.

Warszawska Giełda Towarowa S.A. OPCJE Opcja jest prawem do kupna lub sprzedaży określonego towaru po określonej cenie oraz w z góry określonym terminie. Stanowią formę zabezpieczenia ekonomicznego dotyczącego ryzyka niekorzystnej zmiany

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo