FILOGENETYKA. Bioinformatyka,, wykład 7 (29.XI.2007)

Wielkość: px
Rozpocząć pokaz od strony:

Download "FILOGENETYKA. Bioinformatyka,, wykład 7 (29.XI.2007)"

Transkrypt

1 FILOGENETYKA Bioinformatyka,, wykład 7 (29.XI.2007) krzysztof_pawlowski@sggw.pl

2 Filogenetyka Cel rekonstrukcja historii ewolucji wszystkich organizmów. Klasyczne podejście: historia ewolucji jest odtwarzana na podstawie porównań cech morfologicznych i fizjologicznych badanych organizmów.

3 zadaniem filogenetyki molekularnej jest zrekonstruowanie związków filogenetycznych między badanymi sekwencjami podstawowe założenia w filogenetyce molekularnej: sekwencje przodka mutują w sekwencje potomków podobne gatunki sąs genetycznie blisko spokrewnione wyrazem analiz filogenetycznych są drzewa filogenetyczne

4

5 Węzeł - reprezentuje jednostkę taksonomiczną (populację, organizm, gen). Może przedstawiać współcześnie istniejący takson, jak i jego przodka. Gałąź - obrazuje związki ewolucyjne między porównywanymi jednostkami taksonomicznymi. Liść - reprezentuje aktualnie analizowaną jednostkę taksonomiczną. Długość gałę łęzi - zazwyczaj reprezentuje liczbę zmian, które się zdarzyły w danej linii ewolucyjnej. Korzeń - wspólny przodek dla wszystkich taksonów. liść gatunek A gałąź gatunek C węzeł liść gatunek A korzeń gatunek B gatunek B węzeł gatunek E dług. gałę łęzi gatunek D długość gałę łęzi gatunek C gałąź

6 liść liść gatunek A gałąź gatunek C węzeł gatunek A gatunek B korzeń gatunek B węzeł długość gałę łęzi gatunek D gałąź długość gałę łęzi gatunek E gatunek C przykładowe nieukorzenione drzewo filogenetyczne przykładowe ukorzenione drzewo filogenetyczne

7 Mechanizmy ewolucji - Mutacje w genach. Mutacje są rozprzestrzeniane w populacji poprzez dryf genetyczne lub/i naturalna selekcję - Duplikacja i rekombinacja genów.

8 MUTACJE PUNKTOWE NIEZMUTOWANE DNA G A T C A C C T G T A C C A C T A G T G G A C A T G G T G A T T C A C C T G T A C C A C T A A G T G G A C A T G G T DELECJA G A T G T C A C C T G T A C C A C T A C A G T G G A C A T G G T G A T T C A C C T G T A C C A C T A G G T G G A C A T G G T INSERCJA SUBSTYTUCJA (podstawienie)

9 Duplikacja i rekombinacja genów Nowe geny/białka powstają także poprzez duplikacje i rekombinacje już istniejących genów. Globina u przodka duplikacja Gen 1 + Gen 2 globina globina hemoglobina mioglobina Nowy gen Duplikacja Recombinacja cja

10 Etapy analizy filogenetycznej Dobór i dopasowane sekwencji Wybór modelu substytucji Wybór metody oceny odległości ewolucyjnej Konstrukcja drzewka Ocena i analiza skonstruowanego drzewka

11 Wielokrotne e dopasowanie Multiple sequence alignment (MSA) Alignment 16S rrna Thermus ruber UCCGAUGC-UAAAGA-CCGAAG=CUCAA=CUUCGG=GGGU=GCGUUGGA Th. thermophilus UCCCAUGU-GAAAGA-CCACGG=CUCAA=CCGUGG=GGGA=GCGUGGGA E.coli UCAGAUGU-GAAAUC-CCCGGG=CUCAA=CCUGGG=AACU=GCAUCUGA Ancyst.nidulans UCUGUUGU-CAAAGC-GUGGGG=CUCAA=CCUCAU=ACAG=GCAAUGGA B.subtilis UCUGAUGU-GAAAGC-CCCCGG=CUCAA=CCGGGG=AGGG=UCAUUGGA Chl.aurantiacus UCGGCGCU-GAAAGC-GCCCCG=CUUAA=CGGGGC=GAGG=CGCGCCGA match ** *** * ** ** * **

12 Metody tworzenia drzewek filogenetycznych Grupa sekwencji homologicznych Multiple sequence alignments (MSA) wielokrotny aligment Silne podobieństwo sekwencji? tak Metoda maksymalnej parsymoni - MP nie Rozpoznawalne podobieństwo sekwencji? nie Metoda maksymalnej wiarygodności -ML tak Metody oparte na odległościach (dystansowe) Sprawdzanie poprawności rekonstrukcji

13 Metoda maksymalnej parsymonii - MP Drzewko filogenetyczne skonstruowane metodą MP to takie, które wymaga najmniejszej liczby zmian aby wyjaśnić obserwowane różnice w analizowanych sekwencjach

14 Metoda MP Seq1 Seq2 Seq3 Seq4 A A G A G T G C A A G C C G T G C G A G A T A T C C A A G A G A T C C G Miejsce informatywne dla sekwencji nukloetydowych to takie, w którym obserwuje się przynajmniej dwa różne nukleotydy i są one prezentowane przynajmnie w dwóch sekwencjach

15 Position of sequences on the tree Position 2 Seq1 Seq2 Seq3 Seq4 A A G A G T G C A A G C C G T G C G A G A T A T C C A A G A G A T C C G Position 3 mutacja Position 4 Position 5 Position 7 Position 8 Sum

16 Metoda maksymalnej wiarygodności Maksimum likelihood (ML) Drzewko filogenetyczne skonstruowane metodą ML to takie, które z największym prawdopodobieńswtem odtwarza obserwowane dane

17 Maximum likelihood method (ML) 1. Wyliczana jest wiarygodność (prawdopodobieństwo - L) dla każdego informatywnego miejsca 2. Następnie sumowane są wszystkie wartości L dla każdego możliwego drzewa 3. Porównywane są ze sobą wartości L dla każdego możliwego drzewa i wybierane jest to, które ma najwyższą wartość L - całościowe czyli Wybierane jest to drzewo, które przy danym modelu najbardziej pasuje do analizowanych danych

18 Rekonstrukcja drzewa metodą ML Sekwencja 1: ACGCGTTGGG Sekwencja 2: ACGCGTTGGG Sekwencja 3: ACGCAATGAA Sekwencja 4: AGACAGGGAA Analizujemy kolumnę Proponujemy układ drzewa Proponujemy układ nukleotydów Prawd = P(T) * P(T G) * P(G A) = 0.25*10-6 *10-6? ATGC Przydzielenie nukleotydów T? ATGC? ATGC T G T T A G T T A G Likelihood konkretnej pozycji jest sumą prawdopodobieństw wszystkich możliwych rekonstrukcji przodków dla wybranego modelu.

19 p dystans Taxa a: AgggCTggTTCGgAGTCgTTAAg-ggAT--AAA Taxa b: AAgg-TggCTCTgAATTgTTCgg-gCTT-CgAA Taxa b: AAggCTgACTTTgAATTgTTCAgCgCTTACgAg Taxa b: AAgg-TTgCTCTgAACTgTTCggCgCTTACgAA * * * * * * ** ** ** Taxa i: AGGGCTGGTTCGGAGTCGTTAAG-GGAT--AAA Taxa j: AAGG-TGGCTCTGAATTGTTCGG-GCTT-CGAA Długość aligmentu : n = 33 Całkowita liczba różnic: nd = 12 zaobserwowane n d 12 Dij = = = n 33

20 sek.1 A G D A E R G K K L F E S R A A Q C S A sek.2 A G D A E R G K K L F E S S A A R C S C sek.3 A G D A N R G K I I M E S R A N R C S C sek.4 A G N A N R G K I L M E S R S N R C S C /20 = 0,15 7/20 = 0,35 8/20 = 0,4 6/20 = 0,3 7/20 = 0,35 3/20 = 0, a = 0,1 0,1 b = 0,05 0,05 e = 0,2 c = 0,05 0,05 d = 0,1 0,1 3 4

21 Hipoteza zegara molekularnego (MC) Zaproponowana przez Zuckerkandla i Paulinga w roku Opiera się na założeniu, że tempo ewolucji (akumulacja mutacji) sekwencji nukleotydowej czy aminokwasowej jest w przybliżeniu stałe. Czyli różnice między sekwencjami dwóch gatunków są proporcjonalne do czasu jaki upłynął od momentu gdy oba gatunki miały wspólnego przodka.

22 tempo mutacji zależy y od regionu w genomie, genie, rodzaju genu, częś ęściej obserwuje się podstawienia w III pozycjach kodonów częś ęściej obserwuje się podstawienia typu tranzycji niż transwersji częś ęściej obserwuje się podstawienia między aminokwasami a podobnymi do siebie, ze względu na swoje właściwow ciwości biochemiczne, biofizyczne np.: rzadko obserwuje się podstawienia między aminokwasami a pełni niącymi ważne role w białkach, jak: cysteina (C) czy tryptofan (W) rewersja izoleucyna (I) leucyna (L), valina (V) izoleucyna (I), kwas asparaginowy (D) kwas glutaminowy (E), rzadko obserwuje się podstawienia między aminokwasami bardzo różniącymi się swoimi własnow asnościami tryptofan (W) izoleucyna (I) niektóre aminokwasy, takie jak: asparagina (N),, kwas asparaginowy (D), seryna (S) mutują częś ęściej niż inne możliwo liwość wystąpienia wielokrotnych podstawień

23 Protein Rate (mean replacements per site per 10 9 years) Fibrinopeptides 8.3 Insulin C 2.4 Ribonuclease Haemoglobins Cytochrome C 0.3 Histone H4 0.01

24 przodek 2 zmiany w stosunku do przodka 5 zmian w stosunku do przodka 6 zmian w stosunku do przodka 4 zmian w stosunku do przodka 5 zmian w stosunku do przodka potomek MELSKLTGDPAREKELKMLMELSKLTGDPAPFVYRVLKRL MELSKTTGDPARRKELKMLMELSKLTGDPAPFVYRVLKRL MELSKTTGDPARRKELSMLMKLSKLTGDPAPFVYRVGKRL MELSKTTGDPARQKELSMLMKLSKLTGDPAPFYYRVGKRL MELSKLTGDPARQKELSMLMKLSKLTGDPAPFVYRVGKRL MELSKLTGDPARQKELSMLWKLSKLTGDRAPFVYRVLKRL rzeczywista liczba podstawień 2 zmiany 3 zmiany 2 zmiany 2 zmiana 3 zmiany = 12 zmian różnice między sekwencjami niedoszacowanie zaobserwowana liczba różnic nic czas ewolucji

25 Macierze substutucji nukleotydów Juckes-Cantor K80 2 parametrowy model Kimury TN93 (Tamura-Nei, 93) TN93 rozróżnia tranzycje i transwersje, oraz typ tranzycji czy zaszła ona między purynami czy pirymidynami

26 Percent Accepted Mutation PAM1 - M. Dayhoff 1978r. Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val A R N D C Q E G H I L K M F P S T W Y V Ala A Arg R Asn N Asp D Cys C Gln Q Glu E Gly G His H Ile I Leu L Lys K Met M Phe F Pro P Ser S Thr T Trp W Tyr T Val V Elementy pomnożone zostały przez

27 Percent Accepted Mutation PAM1 - M. Dayhoff 1978r. Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val A R N D C Q E G H I L K M F P S T W Y V Ala A Arg R Asn N element 4 6 6M IJ tej macierzy reprezentuje Asp D Cys C prawdopodobieństwo z jakim 0 1 aminokwas Gln Q w 9876 kolumnie j zostanie podstawiony przez Glu E Gly G aminokwas z wiersza i1w 1czasie His H ewolucyjnym PAM Ile I Leu L Lys K Met M Phe F Pro P element diagonalny M Ser S ii Thr T 22 2prawdopodobieństwo, że określa 2 dany Trp W 0 2aminokwas nie 0 ulegnie Tyr T 1 0substytucji w 1tym 0 czasie Val V Elementy pomnożone zostały przez

28 M. Dayhoff i współpracownicy pracownicy 1978r. JEDNOSTKA PAM (Percent Percent Accepted Mutation) miara odległości ewolucyjnej między sekwencjami. 1 PAM odpowiada takiemu czasowi ewolucyjnemu, podczas którego, w porównywanych sekwencjach, zmianie ulegnie 1 aminokwas na 100 (ok. 1 mln lat) 1000 aminokwasów MELSKLTGDPAPFVYRVLKR... SKLTGDPAP... KVVFRISESPMIFKAYPLDI... MELSKLTGDPA... REKELKMLMELSKLTGDPAPFVYRVLKRL... LDIVLSSLIHEREKELKML MELSKLTDDPAPFVYRYLKR... SKLTQDPAP... KVVFRISRSPWIFKAVPLDI... MELSKTTGDPA... REKELDMLMELSKLTGDPAPFVYRVFKRL... LDIVLSSLIHERRKELKML Zmianie uległo 10/1000 = 1/100 aminokwasów, czyli 1% 10 zmienionych aminokwasów

29 Ewolucyjna macierz PAM Macierz PAM - Percent Accepted Mutations (Dayhoff i współpr pr ) Utworzona przez porównanie blisko spokrewnionych sekwencji białek (ponad 85% identyczności) ci) o znanych powiązaniach filogenetycznych; naliczenie 1572 zmian zaakceptowanych (przez selekcję) ) w 71 grupach białek. Uwzględnia mutabilności poszczególnych aminokwasów MWTVSALVGQ MWTVSALVGQ MWTASALVGQ MWTVSALVLQ MWTASALVGQ MWTVSALVLQ V -> > A G -> > L

30 Macierz PAM log odds Wyliczenie wartości log odds: log odds = log (Po/ o/pe) Po prawdopodobieństwo znalezienia par danych aminokwasów w w analizowanym zbiorze przy założeniu, że e sekwencje mają wspólnego przodka Pe - prawdopodobieństwo znalezienia par danych aminokwasów w przez przypadek (losowo) jeżeli eli log odds < 0: dana substytucja zachodzi rzadziej niż należało o się spodziewać jeżeli eli log odds > 0: dana substytucja zachodzi częś ęściej niż należało o się spodziewać (np. +1 oznacza, że e dana substytucja jest obserwowana 10 razy częś ęściej niż należało o się spodziewać) jeżeli eli log odds = 0: dana substytucja zachodzi z taką samą często stością jak w sekwencji losowej

31 A R N D C Q E G H I L K M F P S T W Y V A 2 R N D C Q E G H I L K M F Rzadkie aminokwasy mają duże e wagi P S T Pospolite aminokwasy mają małe e wagi W Y V

32 A R N D C Q E G H I L K M F P S T W Y V A 2 R N D C Q E G H I L K M F P S T Ujemne wartości dla rzadkich substytucji W Y V

33 A R N D C Q E G H I L K M F P S T W Y V A 2 R N D C Q E G H I L K M F P S T Dodatnie wartości dla częstszych substytucji W Y V

34 Ewolucyjna macierz PAM Ekstrapolowanie często stości substytucji zaobserwowanych na krótkich dystansach na dłuższe d dystansy ewolucyjne mnożenie macierzy przez siebie uzyskanie serii tablic PAM: PAM1 -> > PAM60, PAM80, PAM120, PAM250 Podobieństwo: 99% 60% 50% 40% 20% Liczba podstawień na miejsce:

35 Macierz PAM wady z powodu założeń: Substytucje aminokwasów w zachodzą niezależnie od siebie. W rzeczywistości ci zmiany w różnych r regionach sekwencji są ze sobą skorelowane. Te same tempo substytucji w różnych r regionach sekwencji. W rzeczywistości ci różne r regiony wykazują różny stopień konserwatywności i ewoluują z różnąr prędko dkością.. W różnych regionach różne r substytucje zdarzają się z różnąr często stością. Często stość poszczególnych substytucji nie zmieniają się w czasie. W rzeczywistości ci często stości substytucji mogą się zmieniać w czasie.

36 Macierz BLOSUM Macierz BLOSUM BLOcks Substitution Matrix (Henikoff i Henikoff 1992) Utworzona przez porównanie około o 2000 konserwowanych bloków w (regionów sekwencji) w ponad 500 rodzinach białek o różnej r odległości ewolucyjnej. Bloki sąs regionami sekwencji odpowiedzialnymi za podobną funkcję biochemiczną lub strukturę. Macierze dla różnych r odległości ewolucyjnych zostały y wyliczone z porównania sekwencji odpowiednio odległych: BLOSUM30 bloki sekwencji o co najmniej 30% identyczności ci reszt aminokwasowych BLOSUM62 bloki sekwencji o co najmniej 62% identyczności ci reszt aminokwasowych BLOSUM80 bloki sekwencji o co najmniej 80% identyczności ci reszt aminokwasowych

37 Macierz BLOSUM BLOcks Substitution Matrix bloki

38 A 4 A R N D C Q E G H I L K M F P S T W Y V R N D C Q E G H Macierz BLOSUM62 I L K M F P S

39 PAM Vs. BLOSUM PAM100 =~ BLOSUM90 PAM120 =~ BLOSUM80 PAM160 =~ BLOSUM60 Bardziej odległe sekwencje PAM200 =~ BLOSUM52 PAM250 =~ BLOSUM45

40 Inne macierze substutucji aminokwasowów Oparte na kodzie genetycznym - związane zane z kodowaniem aminokwasów w przez kodony (Fitch( 1966; Benner i współpr pr ) Uwzględniaj dniające właściwow ciwości fizyko-chemiczne aminokwasów w (Vogt( i współpr pr ) i podobieństwo strukturalne łańcuchów w bocznych (Feng( i współpr pr ) Uwzględniaj dniające strukturę trzeciorzędow dową (Risler i współpr pr ; Johnson i Overington 1993; Henikoff i Henikoff 1993; Sander i Schneider 1991) Macierz dwupeptydów (Gonnet i współpr pr ) x 400, uwzględnia wpływ przyległych ych aminokwasów w na często stość substytucji Macierz PAM z uwzględnieniem białek transmembranowych (Jones i współpr pr. 1994)

41 Etapy analizy filogenetycznej Dobór i dopasowane sekwencji Wybór modelu substytucji Wybór metody oceny odległości ewolucyjnej Konstrukcja drzewka Ocena i analiza skonstruowanego drzewka

42 UPMGA Unweighted Pair Group Method with Arithmetic Mean Human Chimpanzee Gorilla Orangutan Gibbon FM Fitch - Margoliash

43 NJ - Neighbour joining A E D A A E B C B B D C

44 Ocena poprawności rekonstrukcji filogenetycznej metoda Bootstrap Site OTU A A C C Site OTU T C A G A T C T A G T T A G A A C T A G T T C G A T C G A G T T C T A A G G A C C T T T T A T A A A A A G G G C C C C G A A A A T A T A T T T T A A A A oryginalny alignment re-alignment Powtarzamy i tworzymy drzewko konsensusowe

45 Wartości bootstrap: > 95% topologia drzewka bardzo prawdopodobna < 75% nie ma wystarczająco silnych dowodów potwierdzających taką topologię drzewka co wcale nie oznacza, że nie jest ona prawidłowa!!!

FILOGENETYKA. Bioinformatyka, wykład. 8 c.d. 0)

FILOGENETYKA. Bioinformatyka, wykład. 8 c.d. 0) FILOGENETYKA Bioinformatyka, wykład 8 c.d. (7.XII.2010) 0) krzysztof_pawlowski@sggw.pl Filogenetyka Cel rekonstrukcja historii ewolucji wszystkich organizmów. Klasyczne podejście: historia ewolucji jest

Bardziej szczegółowo

FILOGENETYKA. Bioinformatyka, wykład 7 (24.XI.200..XI.2008)

FILOGENETYKA. Bioinformatyka, wykład 7 (24.XI.200..XI.2008) FILOGENETYKA Bioinformatyka, wykład 7 (24.XI.200.XI.2008) krzysztof_pawlowski@sggw.pl Filogenetyka Cel rekonstrukcja historii ewolucji wszystkich organizmów. Klasyczne podejście: historia ewolucji jest

Bardziej szczegółowo

MACIERZE MUTACYJNE W ANALIZIE GENOMÓW czy możliwa jest rekonstrukcja filogenetyczna? Aleksandra Nowicka

MACIERZE MUTACYJNE W ANALIZIE GENOMÓW czy możliwa jest rekonstrukcja filogenetyczna? Aleksandra Nowicka MAIERZE MUTAYJNE W ANALIZIE GENOMÓW czy możliwa jest rekonstrukcja filogenetyczna? Aleksandra Nowicka Zadaniem FILOGENETYKI jest : zrekonstruowanie ewolucyjnej historii wszystkich organizmów odkrycie przodka

Bardziej szczegółowo

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI WYKŁAD 5 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa 4. Etapy konstrukcji drzewa filogenetycznego

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA

PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA PODSTAWY BIOINFORMATYKI 6 ANALIZA FILOGENETYCZNA ANALIZA FILOGENETYCZNA 1. Wstęp - filogenetyka 2. Struktura drzewa filogenetycznego 3. Metody konstrukcji drzewa - przykłady 4. Etapy konstrukcji drzewa

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Filogenetyka molekularna wykorzystuje informację zawartą w sekwencjach aminokwasów lub nukleotydów do kontrukcji drzew

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW DOPASOWYWANIE SEKWENCJI 1. Miary podobieństwa sekwencji aminokwasów 2. Zastosowanie programów: CLUSTAL OMEGA BLAST Copyright 2013, Joanna Szyda

Bardziej szczegółowo

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI DOPASOWANIE SEKWENCJI 1. Dopasowanie sekwencji - definicja 2. Wizualizacja dopasowania sekwencji 3. Miary podobieństwa sekwencji 4. Przykłady programów

Bardziej szczegółowo

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Konstruowanie drzew filogenetycznych. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Konstruowanie drzew filogenetycznych Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Drzewa filogenetyczne ukorzenione i nieukorzenione binarność konstrukcji topologia (sposób rozgałęziana

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek pojawiła się nowa możliwość śledzenia ewolucji na poziomie molekularnym Ewolucja

Bardziej szczegółowo

Filogenetyka molekularna. Dr Anna Karnkowska Zakład Filogenetyki Molekularnej i Ewolucji

Filogenetyka molekularna. Dr Anna Karnkowska Zakład Filogenetyki Molekularnej i Ewolucji Filogenetyka molekularna Dr Anna Karnkowska Zakład Filogenetyki Molekularnej i Ewolucji Co to jest filogeneza? Filogeneza=drzewo filogenetyczne=drzewo rodowe=drzewo to rozgałęziający się diagram, który

Bardziej szczegółowo

Analizy filogenetyczne

Analizy filogenetyczne BIOINFORMATYKA edycja 2016 / 2017 wykład 6 Analizy filogenetyczne dr Jacek Śmietański jacek.smietanski@ii.uj.edu.pl http://jaceksmietanski.net Plan wykładu 1. Cele i zastosowania 2. Podstawy ewolucyjne

Bardziej szczegółowo

Filogenetyka. Dr inż. Magdalena Święcicka, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW

Filogenetyka. Dr inż. Magdalena Święcicka, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW Filogenetyka Dr inż. Magdalena Święcicka, dr hab. Marcin Filipecki Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW Filogenetyka Cel rekonstrukcja historii ewolucji wszystkich organizmów Klasyczne

Bardziej szczegółowo

Porównywanie i dopasowywanie sekwencji

Porównywanie i dopasowywanie sekwencji Porównywanie i dopasowywanie sekwencji Związek bioinformatyki z ewolucją Wraz ze wzrostem dostępności sekwencji DNA i białek narodziła się nowa dyscyplina nauki ewolucja molekularna Ewolucja molekularna

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Często dopasować chcemy nie dwie sekwencje ale kilkanaście lub więcej 2 Istnieją dokładne algorytmy, lecz są one niewydajne

Bardziej szczegółowo

Dopasowanie sekwencji (sequence alignment)

Dopasowanie sekwencji (sequence alignment) Co to jest alignment? Dopasowanie sekwencji (sequence alignment) Alignment jest sposobem dopasowania struktur pierwszorzędowych DNA, RNA lub białek do zidentyfikowanych regionów w celu określenia podobieństwa;

Bardziej szczegółowo

Dopasowywanie sekwencji (ang. sequence alignment) Metody dopasowywania sekwencji. Homologia a podobieństwo sekwencji. Rodzaje dopasowania

Dopasowywanie sekwencji (ang. sequence alignment) Metody dopasowywania sekwencji. Homologia a podobieństwo sekwencji. Rodzaje dopasowania Wprowadzenie do Informatyki Biomedycznej Wykład 2: Metody dopasowywania sekwencji Wydział Informatyki PB Dopasowywanie sekwencji (ang. sequence alignment) Dopasowywanie (przyrównywanie) sekwencji polega

Bardziej szczegółowo

PRZYRÓWNANIE SEKWENCJI

PRZYRÓWNANIE SEKWENCJI http://theta.edu.pl/ Podstawy Bioinformatyki III PRZYRÓWNANIE SEKWENCJI 1 Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych), które posiadają

Bardziej szczegółowo

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Przyrównanie sekwencji Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu Sequence alignment - przyrównanie sekwencji Poszukiwanie ciągów znaków (zasad nukleotydowych lub reszt aminokwasowych),

Bardziej szczegółowo

Przegląd budowy i funkcji białek

Przegląd budowy i funkcji białek Przegląd budowy i funkcji białek Co piszą o białkach? Wyraz wprowadzony przez Jönsa J. Berzeliusa w 1883 r. w celu podkreślenia znaczenia tej grupy związków. Termin pochodzi od greckiego słowa proteios,

Bardziej szczegółowo

Nuttall przeprowadził testy precypitacyjne białek surowicy, aby wykazać związek filogenetyczny między różnymi grupami zwierząt.

Nuttall przeprowadził testy precypitacyjne białek surowicy, aby wykazać związek filogenetyczny między różnymi grupami zwierząt. 1904 Nuttall przeprowadził testy precypitacyjne białek surowicy, aby wykazać związek filogenetyczny między różnymi grupami zwierząt. M. Prakash 2007.Encyclopaedia of Gene Evolution Vol. 2, Molecular Genetics,

Bardziej szczegółowo

Wykład Bioinformatyka 2012-09-24. Bioinformatyka. Wykład 7. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM. Ewolucyjne podstawy Bioinformatyki

Wykład Bioinformatyka 2012-09-24. Bioinformatyka. Wykład 7. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM. Ewolucyjne podstawy Bioinformatyki Bioinformatyka Wykład 7 E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas 1 Plan Bioinformatyka Ewolucyjne podstawy Bioinformatyki Filogenetyka Bioinformatyczne narzędzia

Bardziej szczegółowo

Badanie doboru naturalnego na poziomie molekularnym

Badanie doboru naturalnego na poziomie molekularnym Badanie doboru naturalnego na poziomie molekularnym Podstawy ewolucji molekulanej Jak ewoluują sekwencje Zmiany genetyczne w ewolucji Mutacje tworzą nowe allele genów Inwersje zmieniają układ genów na

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Zmiany genetyczne w ewolucji Mutacje tworzą nowe allele genów Inwersje zmieniają układ genów na chromosomach mogą uniemożliwić rekombinację

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Zmiany genetyczne w ewolucji } Mutacje } tworzą nowe allele genów } Inwersje } zmieniają układ genów na chromosomach } mogą uniemożliwić rekombinację

Bardziej szczegółowo

Filogenetyka molekularna I. Krzysztof Spalik

Filogenetyka molekularna I. Krzysztof Spalik Filogenetyka molekularna I Krzysztof Spalik Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych, Kosmos 58(3-4): 485-498

Bardziej szczegółowo

Acknowledgement. Drzewa filogenetyczne

Acknowledgement. Drzewa filogenetyczne Wykład 8 Drzewa Filogenetyczne Lokalizacja genów Some figures from: Acknowledgement M. Zvelebil, J.O. Baum, Introduction to Bioinformatics, Garland Science 2008 Tradycyjne drzewa pokrewieństwa Drzewa oparte

Bardziej szczegółowo

Filogenetyka molekularna I

Filogenetyka molekularna I 2 Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w badaniach ewolucyjnych, Kosmos 58(3-4): 485-498 Filogenetyka molekularna I John C. Avise

Bardziej szczegółowo

Filogenetyka. Dr Marek D. Koter, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW

Filogenetyka. Dr Marek D. Koter, dr hab. Marcin Filipecki. Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW Filogenetyka Dr Marek D. Koter, dr hab. Marcin Filipecki Katedra Genetyki, Hodowli i Biotechnologii Roślin, SGGW 1 Twórcy teorii ewolucji Charles Darwin Jean Baptiste de Lamarck Podróż HMS Beagle 2 i zbrodniczy

Bardziej szczegółowo

21. Wstęp do chemii a-aminokwasów

21. Wstęp do chemii a-aminokwasów 21. Wstęp do chemii a-aminokwasów Chemia rganiczna, dr hab. inż. Mariola Koszytkowska-Stawińska, WChem PW; 2016/2017 1 21.1. Budowa ogólna a-aminokwasów i klasyfikacja peptydów H 2 N H kwas 2-aminooctowy

Bardziej szczegółowo

Informacje. W sprawach organizacyjnych Slajdy z wykładów

Informacje. W sprawach organizacyjnych Slajdy z wykładów Biochemia Informacje W sprawach organizacyjnych malgorzata.dutkiewicz@wum.edu.pl Slajdy z wykładów www.takao.pl W sprawach merytorycznych Takao Ishikawa (takao@biol.uw.edu.pl) Kiedy? Co? Kto? 24 lutego

Bardziej szczegółowo

Generator testów Bioinformatyka wer / 0 Strona: 1

Generator testów Bioinformatyka wer / 0 Strona: 1 Przedmiot: Nazwa przedmiotu Nazwa testu: Bioinformatyka wer. 1.0.6 Nr testu 0 Klasa: V zaoczne WNB UZ Odpowiedzi zaznaczamy TYLKO w tabeli! 1. Analiza porównawcza białek zwykle zaczyna się na badaniach

Bardziej szczegółowo

46 i 47. Wstęp do chemii -aminokwasów

46 i 47. Wstęp do chemii -aminokwasów 46 i 47. Wstęp do chemii -aminokwasów Chemia rganiczna, dr hab. inż. Mariola Koszytkowska-Stawińska, WChem PW; 2017/2018 1 21.1. Budowa ogólna -aminokwasów i klasyfikacja peptydów H 2 H H 2 R H R R 1 H

Bardziej szczegółowo

Filogenetyka molekularna I. Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji

Filogenetyka molekularna I. Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji Filogenetyka molekularna I Krzysztof Spalik Zakład Filogenetyki Molekularnej i Ewolucji 3 Literatura Krzysztof Spalik, Marcin Piwczyński (2009), Rekonstrukcja filogenezy i wnioskowanie filogenetyczne w

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Wykład 4 Jak działają geny?

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Egzamin: 29.01.2018 16:00, sala 9B Pierwsza synteza Ewolucja jako zmiany częstości alleli w populacji Mutacje jako źródło nowych alleli Dobór

Bardziej szczegółowo

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010)

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010) Dopasowanie sekwencji Sequence alignment Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010) krzysztof_pawlowski@sggw.pl terminologia alignment 33000 dopasowanie sekwencji 119 uliniowienie sekwencji 82 uliniowianie

Bardziej szczegółowo

Bioinformatyka. (wykład monograficzny) wykład 5. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM

Bioinformatyka. (wykład monograficzny) wykład 5. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM Bioinformatyka (wykład monograficzny) wykład 5. E. Banachowicz Zakład Biofizyki Molekularnej IF UM http://www.amu.edu.pl/~ewas lgorytmy macierze punktowe (DotPlot) programowanie dynamiczne metody heurystyczne

Bardziej szczegółowo

klasyfikacja fenetyczna (numeryczna)

klasyfikacja fenetyczna (numeryczna) Teorie klasyfikacji klasyfikacja fenetyczna (numeryczna) systematyka powinna być wolna od wszelkiej teorii (a zwłaszcza od teorii ewolucji) filogeneza jako ciąg zdarzeń jest niepoznawalna opiera się na

Bardziej szczegółowo

MSA i analizy filogenetyczne

MSA i analizy filogenetyczne Instytut Informatyki i Matematyki Komputerowej UJ, opracowanie: mgr Ewa Matczyńska, dr Jacek Śmietański MSA i analizy filogenetyczne 1. Dopasowania wielosekwencyjne - wprowadzenie Dopasowanie wielosekwencyjne

Bardziej szczegółowo

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012)

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012) Dopasowanie sekwencji Sequence alignment Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012) krzysztof_pawlowski@sggw.pl terminologia alignment 33000 dopasowanie sekwencji 119 uliniowienie sekwencji 82 uliniowianie

Bardziej szczegółowo

Urszula Poziomek, doradca metodyczny w zakresie biologii Materiał dydaktyczny przygotowany na konferencję z cyklu Na miarę Nobla, 14 stycznia 2010 r.

Urszula Poziomek, doradca metodyczny w zakresie biologii Materiał dydaktyczny przygotowany na konferencję z cyklu Na miarę Nobla, 14 stycznia 2010 r. Ćwiczenie 1 1 Wstęp Rozważając możliwe powiązania filogenetyczne gatunków, systematyka porównuje dane molekularne. Najskuteczniejszym sposobem badania i weryfikacji różnych hipotez filogenetycznych jest

Bardziej szczegółowo

Generator testów 1.3.1 Bioinformatyka_zdalne wer. 1.0.13 / 0 Strona: 1

Generator testów 1.3.1 Bioinformatyka_zdalne wer. 1.0.13 / 0 Strona: 1 Przedmiot: Bioinformatyka Nazwa testu: Bioinformatyka_zdalne wer. 1.0.13 Nr testu 0 Klasa: WNB UZ Odpowiedzi zaznaczamy TYLKO w tabeli! 1. Model Markowa substytucji aminokwasów w mutagenezie białek zakłada...

Bardziej szczegółowo

Teoria ewolucji. Losy gatunków: specjacja i wymieranie. Podstawy ewolucji molekularnej

Teoria ewolucji. Losy gatunków: specjacja i wymieranie. Podstawy ewolucji molekularnej Teoria ewolucji. Losy gatunków: specjacja i wymieranie. Podstawy ewolucji molekularnej Specjacja } Pojawienie się bariery reprodukcyjnej między populacjami dające początek gatunkom } Specjacja allopatryczna

Bardziej szczegółowo

Wstęp do Biologii Obliczeniowej

Wstęp do Biologii Obliczeniowej Wstęp do Biologii Obliczeniowej Zagadnienia na kolokwium Bartek Wilczyński 5. czerwca 2018 Sekwencje DNA i grafy Sekwencje w biologii, DNA, RNA, białka, alfabety, transkrypcja DNA RNA, translacja RNA białko,

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Filogenetyka molekularna wykorzystuje informację zawartą w sekwencjach aminokwasów lub nukleotydów do kontrukcji drzew

Bardziej szczegółowo

plezjomorfie: podobieństwa dziedziczone po dalszych przodkach (c. atawistyczna)

plezjomorfie: podobieństwa dziedziczone po dalszych przodkach (c. atawistyczna) Podobieństwa pomiędzy organizmami - cechy homologiczne: podobieństwa wynikające z dziedziczenia - apomorfie: podobieństwa dziedziczone po najbliższym przodku lub pojawiająca się de novo (c. ewolucyjnie

Bardziej szczegółowo

dopasowanie sekwencji Porównywanie sekwencji Etapy dopasowywania sekwencji Homologia, podobieństwo i analogia

dopasowanie sekwencji Porównywanie sekwencji Etapy dopasowywania sekwencji Homologia, podobieństwo i analogia Porównywanie sekwencji Homologia, podobieństwo i analogia dopasowanie sekwencji Dopasowanie/porównywanie Uliniowienie Alignment W bioinformatyce, dopasowanie sekwencji jest sposobem dopasowania struktur

Bardziej szczegółowo

Chemiczne składniki komórek

Chemiczne składniki komórek Chemiczne składniki komórek Pierwiastki chemiczne w komórkach: - makroelementy (pierwiastki biogenne) H, O, C, N, S, P Ca, Mg, K, Na, Cl >1% suchej masy - mikroelementy Fe, Cu, Mn, Mo, B, Zn, Co, J, F

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Zasady zaliczenia przedmiotu Kolokwia (3 4 ) Ocena aktywności i przygotowania Obecność Literatura, materiały Bioinformatyka i ewolucja

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Ewolucja Znaczenie ogólne: zmiany zachodzące stopniowo w czasie W biologii ewolucja biologiczna W astronomii i kosmologii ewolucja gwiazd i wszechświata

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Bioinformatyka Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl 1 Metoda NJ (przyłączania sąsiadów) umożliwia tworzenie drzewa addytywnego: odległości ewolucyjne między sekwencjami

Bardziej szczegółowo

Mechanizmy zmienności ewolucyjnej. Podstawy ewolucji molekularnej.

Mechanizmy zmienności ewolucyjnej. Podstawy ewolucji molekularnej. Mechanizmy zmienności ewolucyjnej Podstawy ewolucji molekularnej. Mechanizmy ewolucji } Generujące zmienność } mutacje } rearanżacje genomu } horyzontalny transfer genów } Działające na warianty wytworzone

Bardziej szczegółowo

Generator testów bioinformatyka wer / Strona: 1

Generator testów bioinformatyka wer / Strona: 1 Przedmiot: wyklad monograficzny Nazwa testu: bioinformatyka wer. 1.0.6 Nr testu 10469906 Klasa: 5 IBOS Odpowiedzi zaznaczamy TYLKO w tabeli! 1. Aminokwas jest to związek organiczny zawierający A) grupę

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta

Bioinformatyka Laboratorium, 30h. Michał Bereta Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Zasady zaliczenia przedmiotu Kolokwia (3 4 ) Ocena aktywności i przygotowania Obecnośd Literatura, materiały i ewolucja molekularna

Bardziej szczegółowo

Zmienność ewolucyjna. Ewolucja molekularna

Zmienność ewolucyjna. Ewolucja molekularna Zmienność ewolucyjna Ewolucja molekularna Mechanizmy ewolucji Generujące zmienność mutacje rearanżacje genomu horyzontalny transfer genów! Działające na warianty wytworzone przez zmienność dobór naturalny

Bardziej szczegółowo

Teoria ewolucji. Podstawy wspólne pochodzenie.

Teoria ewolucji. Podstawy wspólne pochodzenie. Teoria ewolucji. Podstawy wspólne pochodzenie. Ewolucja biologiczna } Znaczenie ogólne: } proces zmian informacji genetycznej (częstości i rodzaju alleli), } które to zmiany są przekazywane z pokolenia

Bardziej szczegółowo

Drzewa filogenetyczne jako matematyczny model relacji pokrewieństwa. dr inż. Damian Bogdanowicz

Drzewa filogenetyczne jako matematyczny model relacji pokrewieństwa. dr inż. Damian Bogdanowicz Drzewa filogenetyczne jako matematyczny model relacji pokrewieństwa dr inż. Damian Bogdanowicz Sprawa R. Schmidt a z Lafayette Podczas rutynowych badań u pielęgniarki Janet Allen stwierdzono obecność wirusa

Bardziej szczegółowo

Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi.

Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi. Ryciny 193 Rycina 1. Zasięg i zagęszczenie łosi (liczba osobników/1000 ha) w Polsce w roku 2010 oraz rozmieszczenie 29 analizowanych populacji łosi. Na fioletowo zaznaczone zostały populacje (nr 1 14)

Bardziej szczegółowo

3 Przeszukiwanie baz danych

3 Przeszukiwanie baz danych Spis treści 3 Przeszukiwanie baz danych 1 3.1 Heurystyczne algorytmy...................... 1 3.1.1 FASTA........................... 1 3.1.2 BLAST........................... 3 3.2 Macierze substytucyjne.......................

Bardziej szczegółowo

Ewolucja molekularna człowieka okiem bioinformatyka. Justyna Wojtczak Jarosław Jeleniewicz

Ewolucja molekularna człowieka okiem bioinformatyka. Justyna Wojtczak Jarosław Jeleniewicz Ewolucja molekularna człowieka okiem bioinformatyka Justyna Wojtczak Jarosław Jeleniewicz Informatyka w biologii - bioinformatyka Jest to szeroka dziedzina zajmująca się tworzeniem zaawansowanych baz danych,

Bardziej szczegółowo

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja.

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja. Podstawy biologii Informacja genetyczna. Co to jest ewolucja. Materiał genetyczny Materiałem genetycznym są kwasy nukleinowe Materiałem genetycznym organizmów komórkowych jest kwas deoksyrybonukleinowy

Bardziej szczegółowo

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek

Podstawy ewolucji molekularnej. Ewolucja sekwencji DNA i białek Podstawy ewolucji molekularnej Ewolucja sekwencji DNA i białek Podręczniki Populacja Grupa krzyżujących się ze sobą osobników oraz ich potomstwo Zbiór wszystkich alleli populacji pula genowa Najprostszy

Bardziej szczegółowo

Dopasowania par sekwencji DNA

Dopasowania par sekwencji DNA Dopasowania par sekwencji DNA Tworzenie uliniowień (dopasowań, tzw. alignmentów ) par sekwencji PSA Pairwise Sequence Alignment Dopasowania globalne i lokalne ACTACTAGATTACTTACGGATCAGGTACTTTAGAGGCTTGCAACCA

Bardziej szczegółowo

spektroskopia elektronowa (UV-vis)

spektroskopia elektronowa (UV-vis) spektroskopia elektronowa (UV-vis) rodzaje przejść elektronowych Energia σ* π* 3 n 3 π σ σ σ* daleki nadfiolet (λ max < 200 nm) π π* bliski nadfiolet jednostki energii atomowa jednostka energii = energia

Bardziej szczegółowo

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują

Bardziej szczegółowo

D: Dopasowanie sekwencji. Programowanie dynamiczne

D: Dopasowanie sekwencji. Programowanie dynamiczne D: Dopasowanie sekwencji. Programowanie dynamiczne Problem: jak porównywać sekwencje DNA? Czy te sekwencje są podobne? Jeśli są podobne, to jak mierzyć to podobieństwo? Odpowiedzi są kluczowe dla konstrukcji

Bardziej szczegółowo

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU KSZTAŁT BIAŁEK.

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU KSZTAŁT BIAŁEK. SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU KSZTAŁT BIAŁEK. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca. III. Karty pracy. 1. Karta

Bardziej szczegółowo

Motywy i podobieństwo

Motywy i podobieństwo Motywy i podobieństwo Całość funkcja Modularna budowa białek Elementy składowe czyli miejsca wiązania, domeny 1 Motywy Motyw jest opisem określonej części trójwymiarowej struktury zawierającym charakterystyczny

Bardziej szczegółowo

Przyrównywanie sekwencji

Przyrównywanie sekwencji Instytut Informatyki i Matematyki Komputerowej UJ, opracowanie: mgr Ewa Matczyńska, dr Jacek Śmietański Przyrównywanie sekwencji 1. Porównywanie sekwencji wprowadzenie Sekwencje porównujemy po to, aby

Bardziej szczegółowo

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji

prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Dopasowanie sekwencji Bioinformatyka wykład 5: dopasowanie sekwencji prof. dr hab. inż. Marta Kasprzak Instytut Informatyk Politechnika Poznańska Dopasowanie sekwencji Badanie podobieństwa sekwencji stanowi podstawę wielu gałęzi

Bardziej szczegółowo

Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami.

Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 181 Filogeneza: problem konstrukcji grafu (drzewa) zależności pomiędzy gatunkami. 3. D T(D) poprzez algorytm łączenia sąsiadów 182 D D* : macierz łącząca sąsiadów n Niech TotDist i = k=1 D i,k Definiujemy

Bardziej szczegółowo

Politechnika Wrocławska. Dopasowywanie sekwencji Sequence alignment

Politechnika Wrocławska. Dopasowywanie sekwencji Sequence alignment Dopasowywanie sekwencji Sequence alignment Drzewo filogenetyczne Kserokopiarka zadanie: skopiować 300 stron. Co może pójść źle? 2x ta sama strona Opuszczona strona Nadmiarowa pusta strona Strona do góry

Bardziej szczegółowo

Zmienność organizmów żywych

Zmienność organizmów żywych Zmienność organizmów żywych Organizm (roślina, zwierzę) Zmienność dziedziczna (genetyczna) Zmienność niedziedziczna Rekombinacja Mutacje Segregacja chromosomów Genowe Crossing-over Chromosomowe Losowe

Bardziej szczegółowo

Homologia, podobieństwo i analogia

Homologia, podobieństwo i analogia Porównywanie sekwencji Homologia, podobieństwo i analogia Homologi Ortologi homologiczne geny, których rozdzielenie nastąpiło na skutek specjacji, czyli rozdzielenia gatunków, lub rzadziej horyzontalnego

Bardziej szczegółowo

EWOLUCJA GENOMÓW. Bioinformatyka, wykład 6 (22.XI.2010) krzysztof_pawlowski@sggw.pl

EWOLUCJA GENOMÓW. Bioinformatyka, wykład 6 (22.XI.2010) krzysztof_pawlowski@sggw.pl EWOLUCJA GENOMÓW Bioinformatyka, wykład 6 (22.XI.2010) krzysztof_pawlowski@sggw.pl Wykład 6 spis treści genomika mapowanie genomów początki ewolucji świat RNA świat wirusów (?) ewolucja genomów GENOMIKA

Bardziej szczegółowo

IZOMERIA Izomery - związki o takim samym składzie lecz różniące się budową

IZOMERIA Izomery - związki o takim samym składzie lecz różniące się budową IZMERIA Izomery - związki o takim samym składzie lecz różniące się budową TAK zy atomy są tak samo połączone? NIE izomery konstytucyjne stereoizomery zy odbicie lustrzane daje się nałożyć na cząsteczkę?

Bardziej szczegółowo

Wykład 10 2008-04-30. Bioinformatyka. Wykład 9. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM

Wykład 10 2008-04-30. Bioinformatyka. Wykład 9. E. Banachowicz. Zakład Biofizyki Molekularnej IF UAM Bioinformatyka Wykład 9 E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas 1 Konsekwencje zestawieo wielu sekwencji - rodziny białkowe, domeny, motywy i wzorce 2 Bioinformatyka,

Bardziej szczegółowo

Ewolucja informacji genetycznej

Ewolucja informacji genetycznej 1 Ewolucja informacji genetycznej Czym jest życie? metabolizm + informacja (replikacja) Cząsteczki organiczne mog y powstać w atmosferze pierwotnej Ziemi Oparin, Haldane Miller, 1953 Co by o najpierw?

Bardziej szczegółowo

Bioinformatyka 2 (BT172) Progresywne metody wyznaczania MSA: T-coffee

Bioinformatyka 2 (BT172) Progresywne metody wyznaczania MSA: T-coffee Bioinformatyka 2 (BT172) Wykład 5 Progresywne metody wyznaczania MSA: T-coffee Krzysztof Murzyn 14.XI.2005 PLAN WYKŁADU Ostatnio : definicje, zastosowania MSA, złożoność obliczeniowa algorytmu wyznaczania

Bardziej szczegółowo

Budowa aminokwasów i białek

Budowa aminokwasów i białek Biofizyka Ćwiczenia 1. E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas Budowa aminokwasów i białek E.Banachowicz 1 Ogólna budowa aminokwasów α w neutralnym p α N 2 COO N

Bardziej szczegółowo

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl

Bioinformatyka Laboratorium, 30h. Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Laboratorium, 30h Michał Bereta mbereta@pk.edu.pl www.michalbereta.pl Zasady zaliczenia przedmiotu Kolokwia (3 4 ) Ocena aktywności i przygotowania Obecnośd Literatura, materiały Bioinformatyka i ewolucja

Bardziej szczegółowo

Bioinformatyka. z sylabusu... (wykład monograficzny) wykład 1. E. Banachowicz. Wykład monograficzny Bioinformatyka.

Bioinformatyka. z sylabusu... (wykład monograficzny) wykład 1. E. Banachowicz. Wykład monograficzny Bioinformatyka. Bioinformatyka (wykład monograficzny) wykład 1. E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas z sylabusu... Wykład 1, 2006 1 Co to jest Bioinformatyka? Zastosowanie technologii

Bardziej szczegółowo

Nowa metoda obliczeniowa porównywania sekwencji białek

Nowa metoda obliczeniowa porównywania sekwencji białek Gdański Uniwersytet Medyczny Agata Czerniecka Nowa metoda obliczeniowa porównywania sekwencji białek Rozprawa doktorska Promotor: dr hab. Dorota Bielińska-Wąż Zakład Informatyki Radiologicznej i Statystyki

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Ekspresja genów jest regulowana

Bardziej szczegółowo

Algorytmika dla bioinformatyki

Algorytmika dla bioinformatyki Algorytmika dla bioinformatyki kurs 2018/2019 Prof. Danuta Makowiec Instytut Fizyki Teoretycznej i Astrofizyki pok. 353, danuta.makowiec@gmail.com Cele kursu 2 Treści wykładu będą skoncentrowane wokół

Bardziej szczegółowo

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja.

Podstawy biologii. Informacja genetyczna. Co to jest ewolucja. Podstawy biologii Informacja genetyczna. Co to jest ewolucja. Zarys biologii molekularnej genu Podstawowe procesy genetyczne Replikacja powielanie informacji Ekspresja wyrażanie (realizowanie funkcji)

Bardziej szczegółowo

Bioinformatyka. z sylabusu...

Bioinformatyka. z sylabusu... Bioinformatyka Wykład 1. E. Banachowicz Zakład Biofizyki Molekularnej IF UAM http://www.amu.edu.pl/~ewas z sylabusu... Wykład 1, 2008 1 Co to jest Bioinformatyka? Zastosowanie technologii informacji do

Bardziej szczegółowo

Struktura biomakromolekuł chemia biologiczna III rok

Struktura biomakromolekuł chemia biologiczna III rok truktura biomakromolekuł chemia biologiczna III rok jak są zbudowane białka? dlaczego białka są tak zbudowane? co z tego wynika? 508 13 604 liczba struktur dostępnych w Protein Data Bank wynosi aktualnie

Bardziej szczegółowo

Ograniczenia środowiskowe nie budzą wielu kontrowersji, co nie znaczy że rozumiemy do końca proces powstawania adaptacji fizjologicznych.

Ograniczenia środowiskowe nie budzą wielu kontrowersji, co nie znaczy że rozumiemy do końca proces powstawania adaptacji fizjologicznych. 1 Ograniczenia środowiskowe nie budzą wielu kontrowersji, co nie znaczy że rozumiemy do końca proces powstawania adaptacji fizjologicznych. Wiadomo, że ściśle powiązane z zagadnieniem interakcji kompetencje

Bardziej szczegółowo

Porównywanie sekwencji białkowych

Porównywanie sekwencji białkowych Bioinformatyka -9 Bioinformatyka Wykład 4. E. Banachowicz Zakład Biofizyki Molekularnej http://www.amu.edu.pl/~ewas Porównywanie sekwencji białkowych Wykład 4, Bioinformatyka -9 Porównywanie sekwencji

Bardziej szczegółowo

Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych???

Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych??? Analizy DNA in silico - czyli czego można szukać i co można znaleźć w sekwencjach nukleotydowych??? Alfabet kwasów nukleinowych jest stosunkowo ubogi!!! Dla sekwencji DNA (RNA) stosuje się zasadniczo*

Bardziej szczegółowo

Mapowanie genów cz owieka. podstawy

Mapowanie genów cz owieka. podstawy Mapowanie genów czowieka podstawy Sprzężenie Geny leżące na różnych chromosomach spełniają II prawo Mendla Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R Cummings Concepts of Genetics 8 th edition,

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych...

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie... 3. 2 Wprowadzenie do biologicznych baz danych... Przedmowa... XI Część pierwsza Wprowadzenie i biologiczne bazy danych 1 Wprowadzenie... 3 Czym jest bioinformatyka?... 5 Cele... 5 Zakres zainteresowań... 6 Zastosowania... 7 Ograniczenia... 8 Przyszłe

Bardziej szczegółowo

Podstawy teorii ewolucji. Informacja i ewolucja

Podstawy teorii ewolucji. Informacja i ewolucja Podstawy teorii ewolucji Informacja i ewolucja Podręczniki 2 Dla zainteresowanych http://wps.prenhall.com/esm_freeman_evol_4/ 3 Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego

Bardziej szczegółowo

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Genetyka ogólna wykład dla studentów II roku biotechnologii Andrzej Wierzbicki Uniwersytet Warszawski Wydział Biologii andw@ibb.waw.pl http://arete.ibb.waw.pl/private/genetyka/ Choroby genetyczne o złożonym

Bardziej szczegółowo