ąwśerątyuiopåasdfghjklöäzxłcvbónm qweęrtyużiopåasdfghćjklöäzxcvśbnm qwńertyuiopåasdfgźhjklöäzxcvbnąwś erątyuiopåasdfghjklöäzxłcvbónmqwe

Wielkość: px
Rozpocząć pokaz od strony:

Download "ąwśerątyuiopåasdfghjklöäzxłcvbónm qweęrtyużiopåasdfghćjklöäzxcvśbnm qwńertyuiopåasdfgźhjklöäzxcvbnąwś erątyuiopåasdfghjklöäzxłcvbónmqwe"

Transkrypt

1 ąwśerątyuiopåasdfghjklöäzxłcvbónm qweęrtyużiopåasdfghćjklöäzxcvśbnm qwńertyuiopåasdfgźhjklöäzxcvbnąwś erątyuiopåasdfghjklöäzxłcvbónmqwe MATEMATIK BEGREPPSBOK SVENSKA POLSKA ęrtyużiopåasdfghćjklöäzxcvśbnmqwń ertyuiopåasdfgźhjklöäzxcvbnmqwert TEMA MODERSMÅL JĘZYK OJCZYSTY yuiopåasdfghjklöäzxcvbnmqwerąwśe Översättning / Tłumaczenie: Ewa Rybacka rątyuiopåasdfghjklöäzxłcvbónmqweę rtyużiopåasdfghćjklöäzxcvśbnmqwńe rtyuiopåasdfgźhjklöäzxcvbnmqwerty uiopåasdfghjklöäzxcvbnmqwerąwśer ątyuiopåasdfghjklöäzxłcvbónmqweęr tyużiopåasdfghćjklöäzxcvśbnmqwńer tyuiopåasdfgźhjklöäzxcvbnmqwertyu iopåasdfghjklöäzxcvbnmqwerąwśerą tyuiopåasdfghjklöäzxłcvbónmqweęrt yużiopåasdfghćjklöäzxcvśbnmqwńert yuiopåasdfgźhjklöäzxcvbnmqwertyui opåasdfghjklöäzxcvbnmqwerąwśerąt yuiopåasdfghjklöäzxłcvbónmqweęrty

2 SVENSKA POLSKI EXEMPEL DIAGRAM WYKRESY Cirkeldiagram wykres (diagram) w kształcie okręgu 4:e kvart 13% 1:a kvart 13% 2:a kvart 17% 3:e kvart 57% Linjediagram wykres liniowy Öst Väst Nord 0 1:a kvart 2:a kvart 3:e kvart 4:e kvart Mall Medeltal / Medelvärde / Genomsnitt Median Sannolikhet szablon, wzorzec średnia arytmetyczna mediana (wartość środkowa, drugi kwartyl) prawdopodobieństwo 20, 15, 10, = = , 3, 7, 4, 1, 5, , 4, 2, 5, 3, = 3,5 2 Stapeldiagram wykres (diagram) przedstawiony za pomocą kolumn :a kvart 2:a kvart 3:e kvart 4:e kvart Öst Väst Nord Stolpdiagram wykres (diagram) przedstawiony za pomocą słupków Tabell tabela 2

3 x-axel oś układu współrzędnych x (oś odciętych) y-axel y-axel Origo/nollpunkt oś układu współrzędnych y (oś rzędnych) środek (lub początek) układu współrzędnych, punkt zerowy Se ex ovan. Se ex ovan. x-axel 3

4 SVENSKA POLSKI EXEMPEL SKALA SKALA Avbilda odwzorować Rita av en bild Avstånd Bråkform odległość ułamek Decimalform ułamek dziesiętny 0, Föremål przedmiot Förminska pomniejszyć (np. w skali) 1 : 2 Förstora powiększyć (np. w skali) 2 : 1 Karta Längd Naturlig storlek mapa długość wymiar rzeczywisty Procentform liczba zapisana jako procent 60% Sträcka odcinek x A Verklighet w rzeczywistości På riktigt x B 4

5 SVENSKA POLSKI EXEMPEL EKVATION Równania area = A Formel wzór A= B *H 2 Högerled prawa strona równania 10 + Y = 22 Koordinatsystem układ współrzędnych Lösning / Rot pierwiastek równania 6x + 7 = 37 x = 5 ( x = 5 är en lösning el en rot till ekvationen ) Parentes nawiasy [(24 +3) * 12] Rot / Lösning Storhet Tid pierwiastek równania wielkość (którą moŝna zmierzyć lub obliczyć) czas Variabel zmienna x f % Tabellen visar att variabeln x kan anta värdena 0, 1, 2, 3, 4 och 5. Vänsterled lewa strona równania 10 + Y = 22 5

6 SVENSKA POLSKI EXEMPEL BRÅK Blandad form liczby mieszane UŁAMKI Bråk Bråk (äkt eller egentligt) Bråk (oäkt eller oegentligt) Tal i bråkform ułamek ułamek właściwy ułamek niewłaściwy liczba zapisana w formie ułamka Bråksträck kreska ułamkowa el Del Fjärdedel część jedna czwarta (część całości) 1 4 Förkorta Förlänga skrócić ułamek (podzielić licznik i mianownik przez tę samą liczbę) 3 6 / = 8/ 5 5 rozszerzyć ułamek (pomnoŝyć licznik i 4 4 * 4 * = = = 4 * mianownik przez tę samą liczbę) * Halv połowa 1 2 Hel Hundradel Kvart Liknämniga bråk Minsta gemensamma nämnare całość jedna setna (część całości) ćwiartka ułamki o takim samym mianowniku najmniejszy wspólny mianownik och 4 4 6

7 Nämnare mianownik 2 3 Tallinje oś liczbowa Täljare licznik 2 3 7

8 SVENSKA POLSKI EXEMPEL ADDITION DODAWANIE + + Addera / Plus wykonać dodawanie + Båda obydwa Lägga ihop dodać do siebie, złoŝyć razem + Lägga till dołoŝyć + Minnessiffra cyfra, którą przenosimy do kolumny o większej wartości ( cyfra w pamięci ) Naturliga tal liczby naturalne 1, 2, 14, 105 Plustecken znak dodawania + Positiva tal liczby dodatnie 0,5; Sammanlagt łącznie 3 3 ; 2 ; 3,9; Summa suma = 6 Term składnik = 7 Tillsammans Uppställning razem sposób zapisywania dodawania metodą pisemną Uppställning med minnessiffror sposób zapisywania dodawania metodą pisemną w przypadku, kiedy zachodzi potrzeba uŝycia cyfry w pamięci Utvecklad form zapis liczby jako sumy składników 273,5 = , Vanlig form Öka zwykła forma zapisu liczby wzrastać (np. wartość) 8

9 SVENSKA POLSKI EXEMPEL SUBTRAKTION ODEJMOWANIE Differens róŝnica 5 3 = 2 Fattas / Saknas brakuje (np. jakiejś liczby) 10 - = 8 Jämföra Längre / än porównać dłuŝsze niŝ Minus minus, odejmowanie 10 3 = 7 Minustecken znak odejmowania Minska / Dra ifrån Minska med Rest / Blir kvar Saknas / Fattas Skillnad zmniejszyć, odjąć, pomniejszyć o reszta (po wykonaniu np. dzielenia) brakuje (np. jakiejś liczby) róŝnica Subtrahera wykonać odejmowanie 5 3 = 2 Subtraktion odejmowanie 5 2 = 3 Ta bort / Dra ifrån Term Växla Ytterligare odjąć, zabrać od składnik (w tym przypadku odjemna i odjemnik) rozmienić dodatkowo = 19 9

10 SVENSKA POLSKI EXEMPEL MULTIPLIKATION MNOZENIE Faktorer czynniki 10 3 = 30 Gånger razy 3 12 Gångertecken znaki mnoŝenia *,, Hel tal liczby całkowite -1, -2, -3, 0, 1, 2, 3 Minnessiffra Multiplicera cyfra, którą zachowujemy w pamięci, jeśli wymaga ona przeniesienia do kolumny wyŝszych wartości pomnóŝ Multiplikation mnoŝenie 10 * 3 = 30 Multiplikationstabell tabliczka mnoŝenia Negativa tal liczby ujemne -1, -2, -3 Produkt iloczyn 10 * 3 = 30 Upprepad addition wielokrotne dodawanie tego samego składnika = 12 10

11 SVENSKA POLSKI EXEMPEL DIVISION DZIELENIE :,,, Bråkstreck kreska ułamkowa Dela i dzielić na 18 / 2 Dela lika podzielić po równo 20 / 2 = 10 Dividera wykonać dzielenie Dividera med podzielić przez 32 / 8 = 4 Hur många gånger går i Kort division ile razy mieści się... w... dzielenie skróconą metodą pisemną 18 / 3 = 6 ggr el 3 i 18 = 6 ggr 4 8 / = 4 2/ 1 Kvot iloraz 22 / 2 = 11 Liggande stolen sposób zapisu dzielenia metodą pisemną Nämnare mianownik Primtal liczby pierwsze 2, 3, 5, 7, 11, 13, 17, 19 Rest reszta (np. z dzielenia) Det som är kvar 3 5 Tal i bråkform Tal i decimalform Täljare liczba zapisana w formie ułamka liczba zapisana w formie ułamka dziesiętnego licznik ,

12 SVENSKA POLSKI EXEMPEL PROCENT PROCENT Bruttopris cena brutto Pris utan avdrag Bråkform liczba zapisana w postaci ułamka zwykłego 3 / 4 Decimalform ułamek dziesiętny 0,75 En fjärde del av det hela 1 jedna czwarta całości 100= 25 4 Hälften av det hela połowa 1 / 2 Nedsatt pris cena obniŝona Minskat / sänkt pris Nettopris cena netto Pris med avdrag ppm =Parts Per Million = Miljondel jedna milionowa część całości 0, Procent = hundradel procent = jedna setna część całości % Procentform liczba zapisana jako procent 1 / 2 = 50% 25 % Procentuell fördelning podział przedstawiony w procentach Promille = Tusendel promil = jedna tysięczna część całości %o Rabatt upust, rabat Sänkt pris Rea wyprzedaŝ po obniŝonych cenach Starkt minskat pris Ränta odsetki Procent på visst belopp Räntesats stopa procentowa t.ex. 25% på ett visst belopp Skatt podatek Avgift Tiondel jedna dziesiąta część całości 1 0,1 el 10 12

13 SVENSKA POLSKI EXEMPEL PRISER OCH PENGAR Avbetala Bankkort Bankomat Belopp Betala Betalkort CENY I PIENIADZE spłacać dług (moŝe być w ratach) karta bankowa bankomat kwota, suma pieniędzy płacić karta płatnicza Billig / Billigare / Billigast tanio, taniej, najtaniej Bonus Check Cirkapris Debitera Decimaler Dyr / Dyrare / Dyrast Enkrona Extrapris Faktura Femkrona Femtiokronorssedel Få tillbaka Förlora / Förlora på Förtjäna premia, dodatek, bonus czek cena przybliŝona obciąŝenie rachunku lub konta bankowego cyfry występujące po przecinku w ułamku dziesiętnym drogi, droŝszy, najdroŝszy moneta jednokoronowa cena okazyjna rachunek, faktura moneta pięciokoronowa banknot pięćdziesięciokoronowy otrzymać resztę po zapłaceniu zakupu stracić / stracić na zyskać 0,12 13

14 Förtjänst zysk Giro obrót rachunkami bankowymi Överföra pengar Ha kvar / Rest Handla Hundradel Hundrakronorssedel/ Hundralapp Hur mycket kostar Höja Kassa Kontant Kontokort Kostar Kredit Kreditkort Krona Kvitto Köpa Låna Mynt Nedsatt pris Nota Pengar Pris Rabatt Rabattkupong mieć do dyspozycji / reszta robić zakupy, zakupywać setna część banknot stukoronowy ile kosztuje podnieść (np. cenę) kasa gotówka karta płatnicza kosztuje kredyt karta kredytowa korona (nazwa pieniądza w Szwecji) paragon kupować poŝyczyć monety obniŝona cena rachunek (np. w restauracji) pieniądze cena rabat kupon rabatowy

15 Realisation ( rea) Räkning wyprzedaŝ po cenach obniŝonych rachunek (np. za pobraną energię elektryczną lub wykonaną usługę) Ränta odsetki Procent på visst belopp Sedel Sjunka Skuld Skyldig Spara Stegring Stiga Sälja Sänka Tia Tillbaka banknot obniŝać się, spadać (np. cena) dług zadłuŝony, jest winien oszczędzać podwyŝka, wzrost wzrastać (np. cena) sprzedawać obniŝyć, zredukować dziesiątka z powroten Tillgodo (mieć) na korzyść Ha 50 kr tillgodo Tjäna / Tjäna på zarobić, zyskać na czymś Valör nominał, wartość monety lub banknotu Värde Vara produkt, rzecz Produkt Vinna / Vinna på Växel Växla wygrać, wygrać w drobne pieniądze, reszta rozmieniać, zamieniać, wymieniać na 15

16 Återbäring Öka zwrot nadpłaty podatku, zwrot kosztów wzrastać (np. cena) Öre öre 1 korona = 100 öre Öresutjämning Överslagsräkning zaokrąglenie kwoty do najbliŝszej monety dokonywanie obliczeń z liczbami zaokrąglonymi do np. dziesiątek lub setek Kr : betala 29 Kr kr : betala 14, 50 kr Avrundning 16

17 SVENSKA POLSKI EXEMPEL GEOMETRI GEOMETRIA Lika stora vinklar om linjerna är parallella Alternatvinklar kąty naprzemianległe wewnętrzne Areaenhet jednostka pola powierzchni km 2 Bas podstawa (np. figury geometrycznej) Basyta powierzchnia podstawy bryły geometrycznej Bisektris dwusieczna kąta Bredd szerokość Cirkel okrąg Cirkelbåge wycinek koła Cylinder walec Decimaltal ułamek dziesiętny 1,75 17

18 Diagonal przekątna Diameter średnica Femhörning pięciokąt Figur figura Fotpunkt wierzchołek kąta Fyrhörning czworokąt Färgad Föremål zamalowany (pokolorowany) przedmiot figuren är färgad Grader stopnie (jako jednostki pomiaru) 60 o Gradskiva kątomierz Halv cirkel półokrąg Halvklot półkula 18

19 Hypotenusa przeciwprostokątna c = hypotenusa c a Höjd Hörn Inställning wysokość wierzchołek (np. w figurze geometrycznej) dostosowanie, przystosowanie De punkter där sidorna i en polygon möts för hörn Katet przyprostokątna a Klot kula Kon stoŝek Korda cięciwa AC = korda Kub sześcian foremny Kubikdecimeter Kurva decymetr sześcienny (jako jednostka objętości bryły) linia krzywa dm 3 19

20 Kvadrat kwadrat Kvadratrot symbol pierwiastka kwadratowego z liczby Kvartcirkel ćwiartka okręgu Likbent triangel trójkąt równoramienny Likbelägna vinklar kąty odpowiadające Likformig podobny (o figurach geometrycznych) Liksidig triangel trójkąt równoboczny Linje Längd prosta, linia, linia prosta długość Mantelyta pole powierzchni bocznej bryły Medelpunkt środek okręgu O är medelpunkt 20

21 Medelpunktsvinkel kąt środkowy Median Miniräknare środkowa boku (w trójkącie odcinek łączący środek boku z przeciwległym wierzchołkiem) kalkulator m = medelpunktsvinkel Mittpunktsnormal symetralna odcinka lika långa Motstående sida Mäta bok naprzeciwległy mierzyć Naturliga tal liczby naturalne 1, 2, 3, 4, 5 Negativa tal liczby ujemne -1, -2, -3, -4, -5 Normal prostopadła Oliksidig Omkrets figura geometryczna, w której boki mają róŝne długości obwód Område powierzchnia yta Parallella równoległe Parallellogram równoległobok 21

22 Parallelltransversal ramiona kąta przecięte jedną lub kilkoma prostymi równoległymi Passare cyrkiel Pi =π liczba Pi π = Plan / Yta płaszczyzna Polygon wielokąt Prisma graniastosłup prosty Punkt punkt Pyramid ostrosłup Pytagoras sats twierdzenie Pitagorasa a c a 2 + b 2 = c 2 b Radie promień 22

23 rektangel prostokąt Romb romb Rymd Rymdgeometri przestrzeń geometria przestrzenna Rätblock prostopadłościan Rät linje linia prosta Rät vinkel kąt prosty 90 o Rätvinklig triangel trójkąt prostokątny Rörlig punkt ruchomy punkt, poruszający się punkt Segment odcinek koła Sekant sieczna ABC är ett segment AB är en sekant B A 23

24 Sektor wycinek koła sexhörning sześciokąt (w tym przypadku foremny) Sidokant krawędź sidovinklar kąty przyległe V1 V2 är sidovinklar V3 och V4 är sidovinklar Sidoyta pole powierzchni bocznej Skuggad zacieniona, zamalowana figuren är skuggad Skär przecina Skärningspunkt punkt przecięcia Spets wierzchołek 24

25 Spetsig vinkel kąt ostry Streckad zakreskowane figuren är streckad Stråle półprosta Sträcka odcinek Tallinje oś liczbowa B Tangent styczna A Tangram tangram (chińska układanka z siedmiu części) Tangram är en kvadrat som delar i sju bitar i olika formen. Man kan lägga olika figurer med bitarna. Topp wierzchołek Topptriangel trójkąt powstały w wyniku przecięcia trójkąta prostą równoległą do podstawy tego trójkąta D A E B C 25

26 Topptriangelsats twierdzenie Talesa AD/AB = AE/AC = DE/BC Transversal dwie proste przecinające trzecią (piąty aksjomat Euklidesa) A B Trapets trapez Triangel trójkąt Trubbig vinkel kąt rozwarty Vertikalvinklar kąty wierzchołkowe V2 = 48 0 = vertikalvinklar Vinkel kąt Vinkelben ramiona kąta Vinkelspets wierzchołek kąta Vinkelsumman Volym suma kątów objętość Volymenhet jednostka objętości dm 3 26

27 Värde wartość Yta powierzchnia m 2, km 2 Yttervinkel kąt zewnętrzny Ändpunkt granice przedziału Översättning / tłumaczenie Ewa Rybacka

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY V I (5 godz. tygodn.) NA ROK SZKOLNY 2002/2003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW /99

ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY V I (5 godz. tygodn.) NA ROK SZKOLNY 2002/2003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW /99 ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY V I (5 godz. tygodn.) NA ROK SZKOLNY 00/00 WG PROGRAMU MATEMATYKA Z PLUSEM DKW-404-8/99 I PROCENTY 5 PODSTAWOWE ZAGADNIENIA Procent jako ułamek. - procent jako setna

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1.

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe Kolejność działań Sprytne rachunki. 1 1. TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 008 R.. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Kolejność działań. 4. Sprytne rachunki..

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ

PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ PRZEDMIOTOWY SYSTEM OCENIANIA W KLASIE IV MATEMATYKA Z KLASĄ Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej. 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 1) odczytuje i

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Z PLUSEM KLASA VI Na ocenę niedostateczną: nie spełnia kryteriów oceny dopuszczającej LICZBY NATURALNE I UŁAMKI: nazwy argumentów działań algorytmy czterech działań

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ ROZKŁAD MATERIAŁU DLA VI KLASY SZKOŁY PODSTAWOWEJ TEMAT 1. Rachunki pamięciowe na liczbach naturalnych i ułamkach dziesiętnych. LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI SZKOŁY PODSTAWOWEJ W ROKU SZKOLNYM 2014/2015 Wymagania konieczne (ocena dopuszczająca): nazwy działań (K) algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000,.. (K) kolejność wykonywania działań (K) pojęcie potęgi (K) algorytmy

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum

Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych

Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Szczegółowe kryteria oceniania wiedzy i umiejętności z przedmiotu matematyka Matematyka z kluczem dla klasy 4 Szkoły Podstawowej w Kończycach Małych Ocena dopuszczająca (wymagania konieczne) Ocena dostateczna

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA II POTĘGI zna pojęcie potęgi o wykładniku naturalnym rozumie pojęcie potęgi o wykładniku naturalnym umie zapisać potęgę w postaci iloczynu umie zapisać iloczyn jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY Potęgi i pierwiastki Uczeń: Zna i rozumie pojęcie potęgi o wykładniku naturalnym Umie

Bardziej szczegółowo

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi

MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. DZIAŁ Potęgi MATEMATYKA KLASA II GIMNAZJUM - wymagania edukacyjne. (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe.) DZIAŁ Potęgi DOPUSZCZAJĄCY

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE według Matematyki z plusem dla klasy I gimnazjum

WYMAGANIA PROGRAMOWE według Matematyki z plusem dla klasy I gimnazjum WYMAGANIA PROGRAMOWE według Matematyki z plusem dla klasy I gimnazjum Na ocenę dopuszczającą uczeń: definiuje liczbę naturalną, całkowitą, wymierną zaznacza liczbę wymierną na osi liczbowej zamienia ułamek

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR. I. Liczby naturalne i ułamki. Na ocenę dopuszczającą uczeń:

WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR. I. Liczby naturalne i ułamki. Na ocenę dopuszczającą uczeń: WYMAGANIA EDUKAcYJNE Z MATEMATYKI W KL. 6 I SEMESTR I. Liczby naturalne i ułamki - zna nazwy argumentów działań zna kolejność wykonywania działań zna algorytmy czterech działań pisemnych potrafi pamięciowo

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej

Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej Wymagania z matematyki na poszczególne oceny szkolne w klasie piątej Dział I Liczby naturalne Dostateczna Zna pojęcie dzielnika liczby naturalnej. Podaje dzielniki liczb naturalnych. Rozpoznaje liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI O C E N A W I A D O M O Ś C I I U M I E J Ę T N O Ś C I LICZBY NATURALNE I UŁAMKI nazwy działań algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,

Bardziej szczegółowo

Lista działów i tematów

Lista działów i tematów Lista działów i tematów Szkoła podstawowa. Klasa 4 Liczby i działania Rachunki pamięciowe dodawanie i odejmowanie O ile więcej, o ile mniej Rachunki pamięciowe mnożenie i dzielenie Ile razy więcej, ile

Bardziej szczegółowo

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23 TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,

Bardziej szczegółowo

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA IV. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA IV Podstawa programowa przedmiotu SZKOŁY BENEDYKTA Cele kształcenia wymagania ogólne I. Sprawność rachunkowa. Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć:

MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: MATEMATYKA KLASA VI Uczeń kończący klasę VI powinien umieć: dodawać, odejmować, mnożyć i dzielić liczby naturalne, ułamki zwykłe oraz ułamki dziesiętne, obliczać wartości wyrażeń arytmetycznych i algebraicznych

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej; - sposób zaokrąglania

Bardziej szczegółowo

Opracowała mgr Julita Bromberger WYMAGANIA - OCENIANIE KLASA VI

Opracowała mgr Julita Bromberger WYMAGANIA - OCENIANIE KLASA VI Opracowała mgr Julita Bromberger WYMAGANIA - OCENIANIE KLASA VI WIADOMOŚCI I UMIEJĘTNOŚCI NA POZIOMIE KONIECZNYM OCENA DOPUSZCZAJĄCY (2) klasa VI nazwy argumentów działań; algorytmy czterech działań pisemnych;

Bardziej szczegółowo

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia

Bardziej szczegółowo

Matematyka. - dodawanie, odejmowanie, mnożenie i dzielenie pamięciowe

Matematyka. - dodawanie, odejmowanie, mnożenie i dzielenie pamięciowe Matematyka KLASA IV 1. Liczby i działania - dodawanie, odejmowanie, mnożenie i dzielenie pamięciowe - szacowanie wyników działań - porównywanie różnicowe i ilorazowe - rozwiązywanie równań I stopnia z

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 2002/2003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW /99

ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 2002/2003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW /99 ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 00/003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW-404-38/99 I LICZBY NATURALNE- RACHUNEK PAMIĘCIOWY Dodawanie i odejmowanie liczb

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

Wymagania edukacyjne z matematyki KLASA VI

Wymagania edukacyjne z matematyki KLASA VI Wymagania edukacyjne z matematyki KLASA VI Ocena dopuszczająca Uczeń: zna nazwy argumentów działań, algorytmy czterech działań pisemnych, algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM. rok szkolny 2016/2017 WYMAGANIA EDUKACYJNE Z MAYKI W KLASIE DRUGIEJ GIMNAZJUM rok szkolny 2016/2017 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2) P podstawowy - ocena dostateczna (3) R rozszerzający -

Bardziej szczegółowo

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA

WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R. TEMAT 1.LICZBY I DZIAŁANIA TEMAT.LICZBY I DZIAŁANIA LICZBA GODZIN LEKCYJNYCH. Zapisywanie i porównywanie liczb.. Rachunki pamięciowe. 3. Sprytne rachunki. 4. Szacowanie wyników działań. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH

TEMAT 1. LICZBY I DZIAŁANIA Rachunki pamięciowe, dodawanie i odejmowanie. 2. O ile więcej, o ile mniej 2 LICZBA GODZIN LEKCYJNYCH TEMAT 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie LICZBA GODZIN LEKCYJNYCH. O ile więcej, o ile mniej WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. Liczby naturalne w dziesiątkowym

Bardziej szczegółowo

dodaje liczby bez przekraczania progu dziesiątkowego, zapisuje słownie godziny przedstawione na zegarze,

dodaje liczby bez przekraczania progu dziesiątkowego, zapisuje słownie godziny przedstawione na zegarze, MATEMATYKA KLASA 4 Wymagania na poszczególne oceny Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4 SP

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY 4 SP I. Liczby naturalne część 1 konieczne i umiejętności dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie 100 bez przekraczania progu dziesiątkowego, mnoży liczby jednocyfrowe,

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI PLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI DZIAŁ PROGRAM OWY JEDNOST KA LEKCYJN A JEDNOSTKA TEMATYCZNA PODSTAWOWE WYMAGANIA PROGRAMOWE PONADPODSTAWOWE 1 O czym będziemy się uczyli na lekcjach matematyki w

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych:

Bardziej szczegółowo

Wymagania programowe matematyka kl. VI. Okres I. Na dopuszczający: Uczeń zna:

Wymagania programowe matematyka kl. VI. Okres I. Na dopuszczający: Uczeń zna: Wymagania programowe matematyka kl. VI Okres I Na dopuszczający: nazwy działań; algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100, 1000, ; kolejność wykonywania działań; algorytmy czterech

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO

Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO Wymagania edukacyjne z matematyki w klasie II gimnazjum w roku szkolnym 2016/2017 opracowane na podstawie programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum

Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum Minimalne wymagania edukacyjne na poszczególne oceny z matematyki w klasie drugiej Matematyka z plusem dla gimnazjum W POTĘGI zna i rozumie pojęcie potęgi o wykładniku naturalnym umie obliczyć potęgę o

Bardziej szczegółowo

SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI SZKOŁA PODSTAWOWA WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa VI Liczby naturalne i ułamki 1.Ocenę dopuszczającą otrzymuje uczeń, który: zna nazwy argumentów działań zna algorytmy czterech działań

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie 6 Matematyka z plusem DKOW /08

Kryteria ocen z matematyki w klasie 6 Matematyka z plusem DKOW /08 Matematyka z plusem DKOW-5002-37/08 DZIAŁ LICZBY NATURALNE I UŁAMKI KONIECZNE ocena dopuszczająca zna algorytm mnożenia i dzielenia ułamków przez 10, 100, 1000... zaznacza liczby naturalne oraz proste

Bardziej szczegółowo

Załącznik 3 Szczegółowe wymagania edukacyjne kl. VI DZIAŁ PROGRAMOWY

Załącznik 3 Szczegółowe wymagania edukacyjne kl. VI DZIAŁ PROGRAMOWY Załącznik 3 Szczegółowe wymagania edukacyjne kl. VI DZIAŁ PROGRAMOWY JEDNOSTKA TEMATYCZNA KATEGORIA A UCZEŃ ZNA: CELE KSZTAŁCENIA W UJĘCIU OPERACYJNYM WRAZ Z OKREŚLENIEM WYMAGAŃ KATEGORIA B KATEGORIA C

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA

MATEMATYKA KLASA VI. Podstawa programowa przedmiotu SZKOŁY BENEDYKTA 2016-09-01 MATEMATYKA KLASA VI Podstawa programowa przedmiotu SZKOŁY BENEDYKTA I. Sprawność rachunkowa. Cele kształcenia wymagania ogólne Uczeń wykonuje proste działania pamięciowe na liczbach naturalnych,

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Ocenę dopuszczającą otrzymuje uczeń, który umie: 1.zapisywać potęgi w postaci iloczynów 2. zapisywać iloczyny jednakowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA DRUGA GIMNAZJUM I. POTĘGI. 1. Zna i rozumie pojęcie potęgi o wykładniku naturalnym. 2. Umie zapisać potęgę w postaci iloczynu. 3. Umie zapisać iloczyn jednakowych

Bardziej szczegółowo

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA

1. Zapisywanie i porównywanie liczb. 2. Rachunki pamięciowe. 3. Kolejność działań. 1.LICZBY I DZIAŁANIA Wymagania edukacyjne niezbędne do otrzymania przez ucznia klasy 5 poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych w roku szkolnym2016/2017. TEMAT 1.LICZBY I DZIAŁANIA 1. Zapisywanie i porównywanie

Bardziej szczegółowo

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner

Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Końcoworoczne kryteria oceniania dla klasy II z matematyki Rok szkolny 2015/2016 przygotowała mgr inż. Iwona Śliczner Ocenę dopuszczającą otrzymuje uczeń, który: definiuje pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki klasa 6

Szczegółowe wymagania edukacyjne z matematyki klasa 6 Szczegółowe wymagania edukacyjne z matematyki klasa 6 Poziomy wymagań edukacyjnych: K konieczny ocena dopuszczająca (2) P podstawowy ocena dostateczna (3) R rozszerzający ocena dobra (4) D dopełniający

Bardziej szczegółowo

Szczegółowe kryteria wymagań z matematyki klasa VI SP

Szczegółowe kryteria wymagań z matematyki klasa VI SP Szczegółowe kryteria wymagań z matematyki klasa VI SP Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości

Bardziej szczegółowo

Matematyka z kluczem. Wymagania edukacyjne Klasa 4

Matematyka z kluczem. Wymagania edukacyjne Klasa 4 Matematyka z kluczem Wymagania edukacyjne Klasa 4 LICZBY NATURALNE CZĘŚĆ I I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)

Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Semestr Pierwszy Potęgi

Semestr Pierwszy Potęgi MATEMATYKA KL. II 1 Semestr Pierwszy Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników w postaci potęgi, umie

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych D stosowanie wiadomości w sytuacjach problemowych Poziomy wymagań edukacyjnych:

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI PLAN WYNIKOWY Z MATEMATYKI DLA KLASY VI Program nauczania: Matematyka z plusem Kategorie celów nauczania: A zapamiętanie wiadomości B rozumienie wiadomości C stosowanie wiadomości w sytuacjach typowych

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA

SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA SZCZEGÓŁOWY OPIS OSIĄGNIĘĆ NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA DRUGA DZIAŁ I: POTĘGI I PIERWIASTKI zna i rozumie pojęcie potęgi o wykładniku naturalnym (2) umie zapisać potęgę w postaci iloczynu (2)

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki - Klasa VI. (na podstawie planu wynikowego do programu Matematyka z plusem GWO)

Wymagania edukacyjne na poszczególne oceny z matematyki - Klasa VI. (na podstawie planu wynikowego do programu Matematyka z plusem GWO) Wymagania edukacyjne na poszczególne oceny z matematyki - Klasa VI (na podstawie planu wynikowego do programu Matematyka z plusem GWO) Dział programowy Liczby naturalne i ułamki Ocena dopuszczająca Zna

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 6 Szkoły Podstawowej str. 1 Liczby naturalne

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6

Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6 Katalog wymagań programowych na poszczególne stopnie Szkolne - klasa 6 Opis osiągnięć Liczby naturalne Wykonuje proste obliczenia czasowe. Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

Treści nauczania. Klasa 5

Treści nauczania. Klasa 5 . Klasa 5 1. Liczby naturalne w dziesiątkowym układzie pozycyjnym 2. Działania na liczbach naturalnych Systemy liczenia Obliczenia pamięciowe na liczbach naturalnych Prędkość droga czas Działania pisemne

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy IV

Wymagania edukacyjne z matematyki dla klasy IV WŁASNOŚCI LICZB NATURALNYCH DZIAŁANIA PISEMNE SYSTEM ZAPISYWANIA LICZB LICZBY I DZIAŁANIA Wymagania edukacyjne z matematyki dla klasy IV DZIAŁ WYMAGANIA KONIECZNE (OCENA DOPUSZCZAJĄCA) - pamięciowo dodaje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje ułamki dziesiętne zna kolejność

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA II 2016/2017 Ocenę dopuszczającą otrzymuje uczeń, który: (Symetrie) zna pojęcie punktów symetrycznych względem prostej, umie rozpoznawać figury

Bardziej szczegółowo

Rozkład materiału/ Matematyka/ klasy 4-6 Agnieszka Wojtas Kornelówka 2009/2010

Rozkład materiału/ Matematyka/ klasy 4-6 Agnieszka Wojtas Kornelówka 2009/2010 Rozkład materiału/ Matematyka/ klasy 4-6 Agnieszka Wojtas Kornelówka 2009/2010 KLASA KLASA KLASA lp. Temat zajęć Forma pracy IV V VI Liczby naturalne 1. Algorytm pisemnego dodawania liczb naturalnych.

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo

KLASA IV ARYTMETYKA 1. Liczby naturalne

KLASA IV ARYTMETYKA 1. Liczby naturalne W materiale nauczania, podkreśleniem wyróżniono hasła realizowane w klasie niższej. Tematy te należy powtórzyć i utrwalić, a dopiero potem wprowadzać nowe wiadomości. W nawiasy kwadratowe [ ] ujęto treści

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo