Wyk ad II. Stacjonarne szeregi czasowe.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyk ad II. Stacjonarne szeregi czasowe."

Transkrypt

1 Wyk ad II. Stacjonarne szeregi czasowe. W wi ekszości przypadków poszukiwanie modelu, który dok adnie by opisywa zachowanie sk adnika losowego " t, polega na analizie pewnej klasy losowych ciagów czasowych klasy stacjonarnych szeregów czasowych. Bardzo specjalna klase procesów stochastycznych, nazywamy procesami stacjonarnymi. Opiera si e ona na za o zeniu, ze proces znajduje si e w szczególnym stanie równowagi statystycznej. Stacjonarność szeregu czasowego wymaga aby wartości średnie oraz odchylenia od wartości średnich by y sta e. De nicja. Szereg x t nazywamy ściśle stacjonarnym (stacjonarnym w we zszym sensie) je zeli aczny rozk ad prawdopodobieństwa zwiazany z m obserwacjami x t1 ; x t ; :::; x tm jest identyczny z m obserwacjami x t1 +; x t +; :::; x tm+ dla dowolnych m; t 1 ; t ; :::; t m ; Innymi s owy szereg x t nazywamy ściśle stacjonarnym je zeli jego w asności nie ulegaja zmianie przy zmianie poczatku skali czasowej. 1 W asności korelacyjne szeregu czasowego 1.1 Wartość średnia i wariancja szeregu stacjonarnego. W szczególności dla m = 1 z za o zenia stacjonarności szeregu czasowego wynika ze rozk ad zmiennej losowej x t nie zale zy od czasu t, zatem równie z od t nie zale z a jego podstawowe charakterystyki (wartość średnia i wariancja sa sta e). Szereg czasowy ma sta a wartość średnia oraz sta a wariancj e Ex t = (1) D x t = E (x t ) = () Jednocześnie wartość określa poziom dooko a którego oscyluje szereg czasowy x t, natomiast wielkość określa rozrzut szeregu czasowego dooko a poziomu. Poniewa z rozk ad zmiennych losowych x t jest jednakowy dla wszystkich t, zatem jego podstawowe charakterystyki moga być oszacowane (wyestymowane) na podstawie wielkości obserwacji x t1 ; x t ; :::; x t : wartość średnia ^ = 1 x t (3) wariancja ^ = 1 [x t ^] (4)

2 Stacjonarne szeregi czasowe. Wyk ad II. De nicja. Szereg x t dla którego Ex t < 1 dla 0 t nazywamy s abo stacjonarnym (stacjonarnym w szerszym sensie) je zeli Ex t = const cov (x t ; x t+ ) = cov (x 0 ; x ) 8; 0 1 Zatem oczywiste jest, ze proces ściśle stacjonarny o skończonym drugim momencie jest procesem s abo stacjonarnym. Stwierdzenie odwrotne nie jest na ogó prawdziwe. Wyjatek stanowi proces Gaussa, poniewa z jest on ca kowicie scharakteryzowany przez momenty pierwszego i drugiego rz edu. Dlatego proces Gaussa s abo stacjonarny jest zarazem stacionarny ściśle. 1. Funkcja autokowariancji () Z za o zenia stacjonarności szeregu czasowego x t dla m = wynika, ze aczny rozk ad dla dwóch dowolnych (x t ; x t+ ) zale zy tylko od wielkości przesuniecia w czasie i nie zale zy od momentu czasowego t. Tak a kowariancj e nazywamy autokowariancja, poniewa z określa kowariancje dla tego samego szeregu czasowego x t, oraz wyznaczamy jako () = cov (x t ; x t+ ) = E [x t ] [x t+ ] (5) Równie z z za o zenia stacjonarności szeregu czasowego dla funkcji () o wartościach rzeczywistych wynika () = ( ) Zatem w praktyce wystarcza zaznaczyć funkcj e () dla dodatnich argumentów. Wielkość funkcji autokowariancji () w zale zności od wielkości mo ze być oszacowana (wyestymowana) na podstawie wielkości obserwacji x t1 ; x t ; :::; x t : ^ () = 1 dla = 0; 1; :::; 1 Oczywiście dla = 0 mamy [x t ^] [x t+ ^] (6) (0) = = E [x t ] oraz estymator W asności funkcji () : ^ (0) = ^ = 1 [x t ^] 1. (0) = = const. () = ( ) (funkcja parzysta) [ () = ( ) w przypadku zespolonym] 3. j ()j (0)

3 E. Koz owski Funkcja autokorelacji r () Jedna z g ównych ró znic pomi edzy szeregiem czasowym a ciagiem próbek losowych polega na tym, ze elementy szeregu czasowego nie sa niezale zne. Wielkość tej zale zności jest mierzona za pomoca wspó czynników korelacji. Zatem stopień zale zności pomi edzy elementami szeregu czasowego odleg ymi o wielkość (dla elementów (x t ; x t+ )) określamy jako r () = E [x t ] [x t+ ] E [x t ] E [x t+ ] 1 = () (0) (7) poniewa z dla szeregów stacjonarnych spe nione jest E [x t ] = E [x t+ ] = (0) Wspó czynnik r () mierzy korelacj e pomi edzy elementami tego samego szeregu dlatego nazywamy go wspó czynnikiem autokorelacji. Wykres funkcji r () od nazywamy korelogramem oraz dla dowolnego mamy 1 r () 1. Dodatkowo z za o zenia stacjonarności szeregu czasowego dla funkcji r () o wartościach rzeczywistych wynika r () = r ( ) Równie z widzimy ze w praktyce wystarcza zaznaczyć funkcj e r () dla dodatnich argumentów. Jako estymator funkcji autokorelacji mo zemy przyjać ^r () = 1 P 1 [x t ^] [x t+ ^] = P [x t ^] ^ () ^ (0) (8) dla = 0; 1; :::; 1 gdzie wielkość ^ oznacza średnia szeregu czaowego. W asności funkcji r () : 1. r (0) = 1. r () = r ( ) (funkcja parzysta) [r () = r ( ) w przypadku zespolonym] 3. 1 r () 1 Uwaga. Jest rzecza oczywista, im bardziej sa oddalone elementy szeregu czasowego x t ; x t+ (im wi eksza jest wielkość przesuni ecia czasowego ) tym mniejsza powinna być wartość bezwzgl edna r () elementy bardziej oddalone sa mniej ze soba skorelowane (wyst epuje tendencja do zanikania korelacji wraz ze wzrostem odst epu czasu). W wiekszości przypadków istnieje (dobieramy) wielkość 0 powy zej której wszystkie wartości funkcji autokorelacyjnej przyjmujemy ze sa to zsamościowo równe zero (8 0 r () 0)

4 4 Stacjonarne szeregi czasowe. Wyk ad II. 1.4 B edy standardowe estymatorów autokorelacji Aby dobrać model dla szeregu czasowego musimy równie z oszacować b edy standordowe wspó czynników autokorelacji. W tym celu mo zemy skorzystać z wyra zenia na wariancj e estymowanego wspó czynnika autokorelacji stacjonarnego procesu normalnego, które zosta o podane przez Bartlett a. var [r ()] 1 1 i= +1 ^r (i) + ^r (i + ) ^r (i ) 4^r () ^r (i) ^r (i ) + ^r (i) ^r () Zatem b ad standardowy wspó czynnika autokowariancji wynosi (9) S [r ()] = p var [r ()] (10) 1.5 Macierze autokowariancji i autokorelacji Macierz autokowariancji dla stacjonernego szeregu czasowego fx t g 0t jest określona jako 3 (0) (1) () ::: ( 1) (1) (0) (1) ::: ( ) = 6 () (1) (0) ::: ( 3) 7 4 : : : : : 5 ( 1) ( ) ( 3) ::: (0) z w asności funkcji autokorelacji mamy 3 1 r (1) r () ::: r ( 1) r (1) 1 r (1) ::: r ( ) = (0) 6 r () r (1) 1 ::: r ( 3) 7 4 : : : : : 5 = P (11) r ( 1) r ( ) r ( 3) ::: 1 gdzie macierz P określa macierz autokorelacji. Twierdzenie1 Macierze autokorelacji P i autokowariancji Dowód. sa dodatnio określone. Poniewa z macierze autokorelacji P i autokowariancji sa symetryczne, zatem ka zd a macierz symetryczna np. P mo zemy przedstawić jako P = A T A wtedy dla dowolnego x R 1 mamy x T P x = x T A T Ax = (Ax) T Ax = kaxk > 0 identyczny wynik mamy i dla macierzy autokowariancji : Przyk ad 1. z

5 E. Koz owski 5 iech f" t g t0 jest ciagiem niezale znych zmiennych losowych o rozk adzie normalny (0; 1) : Znajdź funkcj e autokowariancji i autokorelacji dla szeregu a t = 3 + " t + " t 1 Udowadnij ze jest to szereg sciśle stacjonarny. Podaj macierz autokowariancji dla = 0; 1; ; 3 Rozwiazanie. natomiast Ea t = 3 Stad () = cov (a t ; a t+ ) = E (" t + " t 1 ) (" t+ + " t+ 1 ) = = E" t " t+ + E" t " t+ 1 + E" t 1 " t+ + E" t 1 " t+ 1 8 < () = 1 : 0 dla = 0 dla = 1 dla Zatem proces jest stacjonarny w szerszym sensie (s abo), a poniewa z fa t g t0 jest procesem Gaussa zatem jest równie z ściśle stacjonarny. Wspó czynniki autokorelacji 8 < 1 r () = 0:5 : 0 natomiast macierz autokowariancji wynosi P 4 = 6 4 dla = 0 dla = 1 dla 1 0: :5 1 0: :5 1 0: :

6 6 Stacjonarne szeregi czasowe. Wyk ad II. Przyk ad. iech szereg (t) = X (t) ; 0 t gdzie X zmienna losowa o rozk adzie normalnym (0; ), a (t)- dowolna funkcja nielosowa określona na T = f0; 1; :::; g o wartościach w zbiorze liczb zespolonych. Dla jakich funkcji (t) szereg f (t)g tt jest stacjonarny. Znaleźć funkcj e kowariancji i korelacji takiego szeregu. Rozwiazanie. oraz E (t) = (t) EX = 0 () = cov ( (t) ; (t + )) = (t) (t + ) Aby szereg Gaussowski by stacjonarny wystarczy aby funkcja kowariancji zale za a tylko od przesuni ecia czasowego a nie zale za a od chwili t. Zatem musi być spe nione 8t T (t) (t + ) = (0) () czyli dla np. = 1 Mamy (t + 1) (t) = (0) (1) = const (t) = (0) t w stacjonarnym szeregu czasowym wariancja jest sta a, zatem (0) = j (0)j jj t = const ) jj = 1 wtedy istnieje taka liczba [ stacjonarny je zeli jest postaci ; ) gdzie = e i. Stad wynika f (t)g tt jest Wtedy funkcja kowariancji jest postaci a funkcja korelacyjna (t) = X (0) e it e i = cos + i sin () = j (0)j e i(t+) e it = j (0)j e i r () = () (0) = ei Przyk ad 3. iech fx n g 1n oznacza ciag nieza e znych zmiennych losowych oraz EX n = 0; 1 n dla i = j cov (X i ; X j ) = 0 dla i 6= j iech 1 < < ::: < oraz i [ ; ). Szereg czasowy f n g nz nazywamy prawie okresowym i określonym jako n = X k e i kn

7 E. Koz owski 7 Udowodnij ze szereg jest stacjonarny oraz znajdź funkcj e kowariancji. Rozwiazanie. Wartość oczekiwana wynosi E n = e ikn EX k = 0 natomiast kowariancja () = cov n+ ; n = E 4 =! 3 X e ik(n+) X k e i kn X k 5 e ik(n+) e i ln E [X k X l ] = l=1 e ik = X e i k zale zy tylko od przesuniecia. Zatem szereg f n g nz jest stacjonarny. Wspó czynnik autokorelacji wynosi r () = () (0) = P e i k = 1 e i k

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości

1 Rozk ad normalny. Szczególnym przypadkiem jest standardowy rozk ad normalny N (0; 1), wartości Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki matematycznej Adam Kiersztyn 2 godziny lekcyjne 2011-10-23 8.20-9.50 1 Rozk ad normalny Jednym z najwa

Bardziej szczegółowo

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów

1 Praktyczne metody wyznaczania podstawowych miar bez zastosowania komputerów Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 8.03.014 - godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar

Bardziej szczegółowo

1 Regresja liniowa cz. I

1 Regresja liniowa cz. I Regresja liniowa cz. I. Model statystyczny Model statystyczny to zbiór za o zeń. Wprowadzamy model, który mo zliwie najlepiej opisuje ineresujacy ¾ nas fragment rzeczywistość. B ¾edy modelu wynikaja¾ z

Bardziej szczegółowo

1 Poj ¾ecie szeregu czasowego

1 Poj ¾ecie szeregu czasowego Studia podyplomowe w zakresie przetwarzania, zarz¾adzania i statystycznej analizy danych Analiza szeregów czasowych 24.11.2013-2 godziny konwersatorium autor: Adam Kiersztyn 1 Poj ¾ecie szeregu czasowego

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Je zeli ka zdemu punktowi P o wspó rzednych x; y) z pewnego obszaru D na p aszczyźnie R 2 przyporzadkujemy w sposób jednoznaczny liczb e rzeczywista z, to przyporzadkowanie to nazywamy

Bardziej szczegółowo

Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody".

Równania ró znicowe wg A. Ostoja - Ostaszewski Matematyka w ekonomii. Modele i metody. Równania ró znicowe wg A. Ostoja - Ostaszewski "Matematyka w ekonomii. Modele i metody". Przyk ad. Za ó zmy, ze w chwili t = 0 populacja liczy P 0 osób. Roczny wskaźnik urodzeń wynosi b = 00, a roczna

Bardziej szczegółowo

Ocena ryzyka kredytowego

Ocena ryzyka kredytowego Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr letni 2013/14) 1 Informacje wst epne Celem tego rozdzia u jest powtórzenie pewnych wiadomości

Bardziej szczegółowo

Stacjonarne szeregi czasowe

Stacjonarne szeregi czasowe e-mail:e.kozlovski@pollub.pl Spis tre±ci 1 Denicja 1 Szereg {x t } 1 t N nazywamy ±ci±le stacjonarnym (stacjonarnym w w»szym sensie), je»eli dla dowolnych m, t 1, t 2,..., t m, τ ª czny rozkªad prawdopodobie«stwa

Bardziej szczegółowo

Pochodne cz ¾astkowe i ich zastosowanie.

Pochodne cz ¾astkowe i ich zastosowanie. Pochodne cz ¾astkowe i ich zastosowanie. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Pochodne cz ¾astkowe i ich zastosowanie. maj 2013 1 / 18 Zanim przejdziemy do omawiania pochodnych funkcji wielu zmiennych

Bardziej szczegółowo

Ekstrema funkcji wielu zmiennych.

Ekstrema funkcji wielu zmiennych. Ekstrema funkcji wielu zmiennych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Ekstrema funkcji wielu zmiennych. kwiecień 2013 1 / 13 Niech dana b ¾edzie funkcja f (x, y) określona w pewnym otoczeniu punktu

Bardziej szczegółowo

1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL

1 Praktyczne metody wyznaczania podstawowych miar przy zastosowaniu programu EXCEL Kurs w zakresie zaawansowanych metod komputerowej analizy danych Podstawy statystycznej analizy danych 9.03.2014-3 godziny ćwiczeń autor: Adam Kiersztyn 1 Praktyczne metody wyznaczania podstawowych miar

Bardziej szczegółowo

1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4

1 Analiza wariancji H 1 : 1 6= 2 _ 1 6= 3 _ 1 6= 4 _ 2 6= 3 _ 2 6= 4 _ 3 6= 4 Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Analiza wariancji Na wst¾epie zapoznamy

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

1 Wieloczynnikowa analiza wariancji

1 Wieloczynnikowa analiza wariancji Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Statystyczna analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-02-04 13.00-17.00 1 Wieloczynnikowa analiza wariancji

Bardziej szczegółowo

Wprowadzenie do równań ró znicowych i ró zniczkowych.

Wprowadzenie do równań ró znicowych i ró zniczkowych. Wprowadzenie do równań ró znicowych i ró zniczkowych. Adam Kiersztyn Lublin 2013 Adam Kiersztyn () Wprowadzenie do równań ró znicowych i ró zniczkowych. maj 2013 1 / 11 Przyjmijmy nast ¾epuj ¾ace oznaczenia:

Bardziej szczegółowo

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y

Bardziej szczegółowo

Proste Procesy Stochastyczne i ich zastosowania.

Proste Procesy Stochastyczne i ich zastosowania. Proste Procesy Stochastyczne i ich zastosowania. Pawe J. Szab owski March 27 Pawe J. Szab owski () Wyk ad 1 March 27 1 / 17 Plan wyk adu: 1-3. Wst ¾ep i preliminaria- przyk ady szeregów czasowych.. Zagadnienie

Bardziej szczegółowo

1 Testy statystyczne. 2 Rodzaje testów

1 Testy statystyczne. 2 Rodzaje testów 1 Testy statystyczne Podczas sprawdzania hipotez statystycznych moga¾ wystapić ¾ dwa rodzaje b ¾edów. Prawdopodobieństwo b ¾edu polegajacego ¾ na odrzuceniu hipotezy zerowej (H 0 ), gdy jest ona prawdziwa,

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

WSTEP ¾ DO ANALIZY MATEMATYCZNEJ

WSTEP ¾ DO ANALIZY MATEMATYCZNEJ st ep do analizy matematycznej STEP DO ANALIZY MATEMATYCZNEJ Rachunek zdań, funkcja zdaniowa, kwanty katory Zad. Udowodnić nastepujace prawa rachunku zdań (tautologie): a) p _ (s q) b) p, s (s p) c) (

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 22 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 29 marca 2011 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Wyznaczniki, macierz odwrotna, równania macierzowe

Wyznaczniki, macierz odwrotna, równania macierzowe Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec

Bardziej szczegółowo

Konkurs Matematyczny, KUL, 30 marca 2012 r.

Konkurs Matematyczny, KUL, 30 marca 2012 r. Konkurs Matematyczny, KUL, 30 marca 01 r. W pustych kratkach obok liter A) B) C) D) nale zy wpisać s owo TAK lub NIE. Zadanie zostanie uznane za rozwiazane, jeśli wszystkie cztery odpowiedzi sa poprawne.

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym

O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym O zgodności procedur jednoczesnego testowania zastosowanych do problemu selekcji zmiennych w modelu liniowym Konrad Furmańczyk Katedra Zastosowań Matematyki SGGW Wis a 2010 Plan referatu 1. Modele liniowe

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014

Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci 56 Za³ó my, e twierdzenie jest prawdziwe dla macierzy dodatnio okreœlonej stopnia n 1. Macierz A dodatnio okreœlon¹ stopnia n mo na zapisaæ w postaci n 1 gdzie A n 1 oznacza macierz dodatnio okreœlon¹

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr zimowy 2010/11) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy

Bardziej szczegółowo

Wprowadzenie do szeregów czasowych i modelu ARIMA

Wprowadzenie do szeregów czasowych i modelu ARIMA Wprowadzenie do szeregów czasowych i modelu ARIMA 25.02.2011 Plan 1 Pojęcie szeregu czasowego 2 Stacjonarne szeregi czasowe 3 Model autoregresyjny - AR 4 Model średniej ruchomej - MA 5 Model ARMA 6 ARIMA

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr letni 2015/16) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1

E k o n o m e t r i a S t r o n a 1 E k o n o m e t r i a S t r o n a Liniowy model ekonometryczny Jednorównaniowy liniowy model ekonometryczny (model regresji wielorakiej) można zapisać w postaci: y = α + α x + α x +... + α x + ε, t =,,...,

Bardziej szczegółowo

Ocena ryzyka kredytowego

Ocena ryzyka kredytowego Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ocena ryzyka kredytowego (semestr zimowy 2017/18) Uwaga Niniejszy materia nie stanowi ca ości wyk adu i nie wystarcza do przygotowania

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2018/19. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2018/19 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka

Analiza współzależności zjawisk. dr Marta Kuc-Czarnecka Analiza współzależności zjawisk dr Marta Kuc-Czarnecka Wprowadzenie Prawidłowości statystyczne mają swoje przyczyny, w związku z tym dla poznania całokształtu badanego zjawiska potrzebna jest analiza z

Bardziej szczegółowo

Stacjonarność Integracja. Integracja. Integracja

Stacjonarność Integracja. Integracja. Integracja Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli: Biały szum AR(1) Słaba stacjonarność Szereg czasowy nazywamy słabo (wariancyjnie) stacjonarnym jeżeli:

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Opracowa : Zbigniew Skoczylas. Studenci wydzia ów W2, W4 oraz W7 opracowuja ¾ten materia samodzielnie. x 3 y 5 z 3 : 2x : (x 2 y 2 ) ; ; e) : 2+1

Opracowa : Zbigniew Skoczylas. Studenci wydzia ów W2, W4 oraz W7 opracowuja ¾ten materia samodzielnie. x 3 y 5 z 3 : 2x : (x 2 y 2 ) ; ; e) : 2+1 Algebra z geometri a analityczn a A - MAP 1140 Algebra z geometri a analityczn a B - MAP 1141 Lista zadań na rok akademicki 009/010 Opracowa Zbigniew Skoczylas Wyra zenia algebraiczne. Indukcja matematyczna

Bardziej szczegółowo

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I

w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I Prezentacja wspó nansowana przez Uni ¾e Europejsk ¾a w ramach Europejskiego Funduszu Spo ecznego Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I 1 Co to jest analiza portfelowa? Analiza portfelowa

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

1 Miary asymetrii i koncentracji

1 Miary asymetrii i koncentracji Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Podstawy statystyki opisowej Adam Kiersztyn 3 godziny lekcyjne 2011-10-22 10.10-12.30 1 Miary asymetrii i koncentracji

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i

MATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )

Bardziej szczegółowo

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13

Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13 Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo

1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja

Bardziej szczegółowo

Pytania i polecenia podstawowe

Pytania i polecenia podstawowe Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:

Bardziej szczegółowo

Ryzyko inwestycji nansowych

Ryzyko inwestycji nansowych Marcin Studniarski http://math.uni.lodz.pl/marstud/ marstud@math.uni.lodz.pl Ryzyko inwestycji nansowych (semestr zimowy 2012/13) 1 Koncepcje i rodzaje ryzyka 1.1 Dwie koncepcje ryzyka 1. Negatywna koncepcja

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Modele zapisane w przestrzeni stanów

Modele zapisane w przestrzeni stanów Modele zapisane w przestrzeni stanów Modele Przestrzeni Stanów (State Space Models) sa to modele, w których część parametrów jest nieobserwowalna i losowa. Zachowanie wielowymiarowej zmiennej y t zależy

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej Indeks odwzorowania zmiennej zespolonej wzgl edem krzywej zamkni etej 1. Liczby zespolone - konstrukcja Hamiltona 2. Homotopia odwzorowań na okr egu 3. Indeks odwzorowania ciag lego wzgledem krzywej zamknietej

Bardziej szczegółowo

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12.

Marcin Studniarski. Wyk ady z analizy portfelowej, cz ¾eść I. semestr letni 2011/12. Marcin Studniarski Wyk ady z analizy portfelowej, cz ¾eść I semestr letni 2011/12 http://math.uni.lodz.pl/~marstud/dydaktyka.htm 1 Co to jest analiza portfelowa? Analiza portfelowa zajmuje si ¾e optymalnym

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

g liczb rzeczywistych (a n ) spe lnia warunek

g liczb rzeczywistych (a n ) spe lnia warunek . Czy jest prawda, że a) R y R z R y + yz + = 0 ; b) R y R z R y + yz + 0 ; c) R y R z R y + yz + = 0 ; d) R y R z R y + yz + 0? 2. Czy jest prawdziwa nierówność a) ctg > ; b) tg < cos ; c) cos < sin ;

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 23 kwietnia 2014 Korelacja - wspó lczynnik korelacji 1 Gdy badamy różnego rodzaju rodzaju zjawiska (np. przyrodnicze) możemy stwierdzić, że na każde z nich ma wp lyw dzia lanie innych czynników; Korelacja

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania

Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania Chemia Budowlana - Wydział Chemiczny - 1 Aby przygotować się do kolokwiów oraz do egzaminów należy ponownie przeanalizować zadania rozwiązywane na wykładzie, rozwiązywane na ćwiczeniach, oraz samodzielnie

Bardziej szczegółowo

1 Wieloczynnikowa analiza wariancji ciag ¾ dalszy

1 Wieloczynnikowa analiza wariancji ciag ¾ dalszy Studia podyplomowe w zakresie technik internetowych i komputerowej analizy danych Wielowymiarowa analiza danych Adam Kiersztyn 5 godzin lekcyjnych 2012-03-18 08.20-12.30 1 Wieloczynnikowa analiza wariancji

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1

STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka 1 2 3 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów

Bardziej szczegółowo

Bardzo silnie z poj ¾eciem populacji statystycznej zwiazane ¾ jest poj ¾ecie próby statystycznej.

Bardzo silnie z poj ¾eciem populacji statystycznej zwiazane ¾ jest poj ¾ecie próby statystycznej. Próba a populacja Nasze rozwa zania zaczniemy od przedyskutowania podstawowych poj eć statystycznych, poszczególne de nicje zostana wzbogacone o obrazowe przyk ady. Jednym z najistotniejszych poj eć jest

Bardziej szczegółowo