Wycena europejskiej opcji kupna model ciągły

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wycena europejskiej opcji kupna model ciągły"

Transkrypt

1 Henyk Kogie Uniesytet ceciński Wycena euopejskiej opcji kupna model ciągły tescenie elem tego atykułu jest ukaanie paktycnego ykoystania metody matyngałoej dla pocesó ciągłych do yceny euopejskiej opcji kupna ystaionej na akcję be pa do dyidendy. łoa klucoe: miaa matyngałoa, model ciągły, ycena euopejskiej opcji kupna. Wiadomości stępne Zanim pejdiemy fomaie do pykładu dotycącego yceny opcji metodą matyngałoą casem ciągłym, definiujemy pojęcie matyngału, podane ostanie tiedenie o epeentacji matyngałoej dla modeli ciągłych oa ypoadony ó Blacka-cholesa na cenę euopejskiej opcji kupna i spedaży. Poces Z t nayamy matyngałem ględem miay i filtacji, jeżeli achodą aunki: Podobnie jak pypadku dysketnym należy ustalić stategię eplikującą, umożliiającą ycenę danego instumentu X dooej chili t <, gdie temin ygaśnięcia. W tym celu dodatkoo pyjęto, że poces ceny akcji ma mienność tategia samofinansująca pypadku ciągłym potfela jest stategią eplikującą odtaającą atość ypłaty instumentu X, jeżeli spełnione są aunki : 3 H. Kogie, O ykoystaniu do yceny opcji tiedenia o epeentacji matyngałoej, Fima i Rynek /7, cecin 7. A. Weon, R. Weon, Inżynieia finansoa 998. Zesyty Naukoe Fima i Rynek 3/45 7

2 gdie η t licba akcji, λ t licba obligacji. Potfel samofinansujący ma tę łasność, że miany jego atości każdej chili t ależą jedynie od mian aloó najdujących się potfelu i nie ymaga dodatkoego finansoania. Aby ycenić instument pochodny X, należy okeślić ynek pocesem ceny instumentu podstaoego, a następnie ykoystując paa analiy stochastycnej naleźć samofinansującą i eplikującą stategię dla instumentu pochodnego X. iedenie o epeentacji matyngałoej dla pocesó ciągłych. Niech będie uchem Bona ględem miay Q, a niech będie Q matyngałem o takiej łasności, że. Jeżeli jest Q-matyngałem, to istnieje pognooay poces : oa 4 5 Wykoystanie poyżsego tiedenia umożliia poónanie dóch matyngałó i naleienie t. stategii abepiecającej. tosoanie stategii abepiecającej pooduje to, że eplikujemy atość ypłaty instumentu finansoego chili jego ealiacji i poadi to do yceny instumentu finansoego. Wó Blacka-cholesa na euopejską opcję kupna lub spedaży można otymać na kilka sposobó. Należy do niej na pykład metoda stochastycnych ónań óżnickoych cąstkoych 3 lub metoda matyngałoa. Wykoystując metodę matyngałoą cenę Blacka- -cholesa euopejskiej opcji kupna yaża ó 4 : gdie. 6 stopa pocentoa oa od yyka, cas ykonania opcji, cena ykonania opcji, miaa matyngałoa. 3 D.. himko, Finance in ontinuous ime. A pime, Univesity of outhen alifonia, Kolb Publishing ompany A. Weon, R. Weon, Inżynieia finansoa, WN, Wasaa Zesyty Naukoe Fima i Rynek 3/45

3 Poces ceny można yaić stosując do tego celu uch Bona ględem penej miay matyngałoej, następująco 5 : lub ónoażnie: 7 8 Ze ou 7 otymano: ięc 9 Z łasności uchu Bona 6 okład miennej można pedstaić jako okład innej miennej gdie mienna N ma okład taki sam, jak okład nomay, py cym achodi: ponieaż gdy, to py. Po podstaieniu otymuje się: oa Ponadto jeżeli to achodi:, 5 Ibidem. 6 Ibidem.. Zesyty Naukoe Fima i Rynek 3/45 9

4 Zesyty Naukoe Fima i Rynek 3/45 gdy to Uględniając ostatnie ależności, otymano:. Zatem Ponieaż padie są óności = oa = = ięc można apisać: = B k d e e d e π π Wobec tego, że = e F π,

5 jest dystybuantą standayoanego okładu nomaego otymuje się: k B = F e F Zależność 3 jest oem Blacka-cholesa na cenę euopejskiej opcji kupna odpoiadającej chili t =. Wó ten można oseyć na dooą chilę t. Jeżeli to można napisać: 3 Ponadto 4 5 tosując ó 5 py =, cenę instumentu pochodnego, tym pypadku euopejskiej opcji kupna, dooej chili t można yaić oem 7 : Postępując dla dooego t tak jak dla t =, ó Blacka cholesa ma postać podobną do ależności 3:. 6 lub kócej gdie: 7,, 7 Ibidem. Zesyty Naukoe Fima i Rynek 3/45

6 py cym tym pypadku można pyjąć, że cena kupna Blacka-cholesa jest funkcją tech miennych: oa. tategię abepiecającą tym pypadku można otymać na pykład a pomocą potfela gdie:, ponieaż achodi: 8 9 oa atość potfela dana jest ależnością: Podobnie, ykoystując ó opisujący t. paytet kupna-spedaży dla opcji euopejskich, można naleźć cenę Blacka-cholesa dla euopejskiej opcji spedaży: Zesyty Naukoe Fima i Rynek 3/45

7 cyli gdie: Do ypoadenia ónania ykoystano też następujące fakty:, gdyż oa jako całka Laplace'a 8. Ponadto, ponieaż ykes funkcji gęstości okładu standayoanego jest tym pypadku symetycnie omiescony ględem ędnej popoadonej punktu =, ięc achodi:. Zesyty Naukoe Fima i Rynek 3/45 3

8 ena Blacka-cholesa opcji spedaży dla t = pyjmuje postać: W pypadku euopejskiej opcji spedaży stategia abepiecająca dana jest potfelem: ponieaż achodi: 3 4 oa 5 py cym 6 Pykład empiycny Do symulacji yceny euopejskiej opcji kupna ystaionej na akcję be pa do dyidendy ykoystano tiedenie o epeentacji matyngałoej dla modeli ciągłych. Utoono da matyngały o postaci: oa. Dięki nim można stoyć pognooay poces oa poces. Do obliceń pyjęto cas ykonania opcji =,5 oku 3 miesiące, mienność ceny akcji stopę pocentoa oą od yyka = 5%, cenę ykonania opcji kupna 36, ł oa skoystano e oó 7, 8 i 9. 4 Zesyty Naukoe Fima i Rynek 3/45

9 abela. ymulacja yceny euopejskiej opcji kupna a pomocą metody matyngałoej model ciągły as nume tygodnia ena akcji ena euopejskiej opcji kupna Licba akcji Licba obligacji ł ł ł 4, 6,9 6,9, ,358 4,5 7,467 7,56, ,75 39,5 5,84 5,34,984-33, ,48 4,86 4,5,9637-3, , 3,45 3,5,9448-3, ,54,85,95,994-3, ,,3,394,897-9, ,5,6,66,85-6, ,,,6,7357-4, ,3,84,93,96-3,769 38,4,64,78, ,558 39, 3, 3,9, ,87 Źódło: opacoanie łasne Wnioski końcoe Podobnie jak modelu dysketnym modelu ciągłym ónież aktualioany jest potfel, któy aiea akcji oa obligacji celu abepiecenia się ped yykiem mian cen instumentu baoego akcji. W każdym momencie dla składniki potfela eplikującego opcję kupna ulegają mianie. Z tabeli ynika, że piesym tygodniu gdy cena akcji ynosi 4,5 ł, inesto poinien mieć soim potfelu =,99753 akcji i -33,75 obligacji po cenie opcji 7,56 ł. W dugim tygodniu, gdy cena akcji ynosi = 39,5 ł, skład potfela inestoa poinno chodić,984 akcji, -33,89 obligacji, po cenie opcji ynosi 5,34 ł. Na spadek atości opcji dugim tygodniu płya obniżenie ceny instumentu baoego oa mniejsenie się casu jaki poostał do teminu ygaśnięcia opcji. Istotna miana aatości potfela jest idocna ócas gdy cena akcji ynosi 36, ł, cyli nacąco bliża do ceny ykonania opcji, któa ynosi 36, ł. Wtedy potfel inestoa aiea,7357 akcji oa 4,435 obligacji. Zesyty Naukoe Fima i Rynek 3/45 5

10 W ostatnich casach pocesy matyngałoe stały się populanym i efektynym naędiem badacym stosoanym na ynku kapitałoym. Z uagi na dość uguntoaną już iedę o matyngałach należy żyić nadieję, że nieustannie będie się poseał akes astosoań tego pożytecnego naędia naukach ekonomicnych. HE EUROPEAN ALL OPION PRIING ONINUOU MODEL ummay In the aticle a method of using pactically the matingale epesentation theoem fo the Euopean call option picing has been pesented. Keyods: matingale measue, continuous model, Euopean call option picing. 6 Zesyty Naukoe Fima i Rynek 3/45

WYBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATYCZNEGO CIĄGNIKA ROLNICZEGO. Bronisław Kolator

WYBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATYCZNEGO CIĄGNIKA ROLNICZEGO. Bronisław Kolator MOTROL, 26, 8, 118 124 WBRANE ZAGADNIENIA ODKSZTAŁCEŃ NAPĘDOWEGO KOŁA PNEUMATCZNEGO CIĄGNIKA ROLNICZEGO Bonisław Kolato Kateda Eksploatacji Pojadów i Masyn, Uniwesytet Wamińsko-Mauski w Olstynie Stescenie.

Bardziej szczegółowo

DS-WPZN-MJ-420/208/2010 Warszawa,xpaździernika 2010 r.

DS-WPZN-MJ-420/208/2010 Warszawa,xpaździernika 2010 r. DS-WPZN-MJ-420/208/2010 Warsaa,xpaźdiernika 2010 r. Pan Rysard Proksa Preodnicący Sekcji Krajoej Ośiaty i Wychoania NSZZ Solidarność" ul. Wały Piastoskie 24 80-855 Gdańsk Sanony Panie Preodnicący, Odpoiadając

Bardziej szczegółowo

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćiceie 0 BADANIE ODKSZTAŁCEŃ SRĘŻYNY ŚRUBOWEJ 0.. Wproadeie Sprężyy, elemety sprężyste mają bardo różorode astosoaie ielu kostrukcjach mechaicych. Wykorystuje się je

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Spis treści. Rozdział 1 Charakterystyka i klasyfikacja instrumentów finansowych. Ryzyko w działalności przedsiębiorstwa

Spis treści. Rozdział 1 Charakterystyka i klasyfikacja instrumentów finansowych. Ryzyko w działalności przedsiębiorstwa Spis teści Wstęp.......................................... 7 Rozdział 1 Chaakteystyka i klasyfikacja instumentów finansowych. Ryzyko w działalności pzedsiębiostwa 1.1. Istota instumentów finansowych........................

Bardziej szczegółowo

Maria Dems. T. Koter, E. Jezierski, W. Paszek

Maria Dems. T. Koter, E. Jezierski, W. Paszek Sany niesalone masyn synchonicnych Maia Dems. Koe, E. Jeieski, W. Pasek Zwacie aowe pąnicy synchonicnej San wacia salonego, wany akże waciem nomalnym lb pomiaowym yskje się pe wacie acisków wonika (j (sojana

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

OPCJE KOSZYKOWE JAKO NOWOCZESNY INSTRUMENT FINANSOWY ODPOWIADAJĄCY POTRZEBOM RYNKU FINANSOWEGO XXI WIEKU

OPCJE KOSZYKOWE JAKO NOWOCZESNY INSTRUMENT FINANSOWY ODPOWIADAJĄCY POTRZEBOM RYNKU FINANSOWEGO XXI WIEKU Marcin Malinoski marcin.malinoski@prao.uni.roc.pl OPCJE KOZYKOWE JAKO NOWOCZENY INTRUMENT FINANOWY ODPOWIADAJĄCY POTRZEBOM RYNKU FINANOWEGO XXI WIEKU Wstęp Współczesna działalność gospodarcza czy inestycyna

Bardziej szczegółowo

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W.

DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wyznaczanie oporów przy przepływie płynów [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] opracowanie: A.W. DZIAŁ: HYDRODYNAMIKA ĆWICZENIE B: Wynacanie ooró ry rełyie łynó [OMÓWIENIE NAJWAŻNIEJSZYCH ZAGADNIEŃ] oracoanie: A.W. rys.. Rokład rędkości rekroju rury dla rełyu laminarnego i turbulentnego LICZBY KRYTERIALNE:

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

KINEMATYKA. Pojęcia podstawowe

KINEMATYKA. Pojęcia podstawowe KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu

Bardziej szczegółowo

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE ELEKTRYKA 213 Zesyt 1 (225) Rok LIX Marcin FICE Politechnika Śląska w Gliwicach HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE Strescenie. W artykule predstawiono wyniki

Bardziej szczegółowo

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 OPCJE NA GPW Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 CO TO JEST OPCJA, RODZAJE OPCJI Opcja - prawo do kupna, lub sprzedaży instrumentu bazowego po

Bardziej szczegółowo

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII Zesyty Problemowe Masyny Elektrycne Nr 9/211 15 Marcin Fice, Rafał Setlak Politechnika Śląska, Gliwice ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI

Bardziej szczegółowo

Internet w pracy. Raport z badania 2010. I Ogólnopolskie Badanie Pracowników. Karol Wolski. Projekt wsieprają. Patronat medialny

Internet w pracy. Raport z badania 2010. I Ogólnopolskie Badanie Pracowników. Karol Wolski. Projekt wsieprają. Patronat medialny Internet pracy I Ogólnopolskie Badanie Praconikó Raport badania 2010 Karol Wolski Projekt sieprają Patronat medialny OD AUTORA Internet stał się jednym najażniejsych narędi pracy. Wra jego roojem pojaiły

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstay Konstukcji Maszyn Wykład 8 Pzekładnie zębate część D inŝ. Jacek zanigoski Klasyfikacja pzekładni zębatych. Ze zględu na miejsce zazębienia O zazębieniu zenętznym O zazębieniu enętznym Klasyfikacja

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

* *.* * tel. (0-44) 7363 ł 00, fax «(44) 7363 J l NI : 768-171-75-7. Pytanie nr 1. Odpowiedź. Pytanie nr 2

* *.* * tel. (0-44) 7363 ł 00, fax «(44) 7363 J l NI : 768-171-75-7. Pytanie nr 1. Odpowiedź. Pytanie nr 2 . STRATEGIA SPÓJNOSCI "Dotacje Innoacje" "Inestujemy Waszą przyszłość" G INA OPOCZNO ul. Staromiej 6, 26-300_~..- tel. (0-44) 7363 ł 00, fax «(44) 7363 J l Opoczno, 14 maja 2014 r. NI : 768-171-75-7 OiFE.042.

Bardziej szczegółowo

Korekty finansowe związane z naruszeniami PZP. Audyty Komisji Europejskiej i Europejskiego Trybunału Obrachunkowego

Korekty finansowe związane z naruszeniami PZP. Audyty Komisji Europejskiej i Europejskiego Trybunału Obrachunkowego Korekty finansoe ziązane z naruszeniami PZP. Audyty Komisji Europejskiej i Europejskiego Trybunału Obrachunkoego 1. Cel dokumentu Celem niniejszego dokumentu jest prezentacja dotychczasoych dośiadczeń

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

Europejska opcja kupna akcji calloption

Europejska opcja kupna akcji calloption Europejska opcja kupna akcji callopion Nabywca holder: prawo kupna long posiion jednej akcji w okresie epiraiondae po cenie wykonania eercise price K w zamian za opłaę C Wysawca underwrier: obowiązek liabiliy

Bardziej szczegółowo

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE

BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH OPARTYCH NA ANALIZIE TECHNICZNEJ WPROWADZENIE Edyta Macinkiewicz Kateda Zaządzania, Wydział Oganizacji i Zaządzania Politechniki Łódzkiej e-mail: emac@p.lodz.pl BADANIE ZALEśNOŚCI POMIĘDZY WARTOŚCIĄ WYKŁADNIKA HURSTA A SKUTECZNOŚCIĄ STRATEGII INWESTYCYJNYCH

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

1) Cechy geometryczne: bez współpracy przekroju belki (rys. 3.9) i szyny Pole przekroju:

1) Cechy geometryczne: bez współpracy przekroju belki (rys. 3.9) i szyny Pole przekroju: .. Pład licbo Ocenić nośność i stność beli podsunicoej jednopęsłoej o peoju popecnm monosmetcnm spaanm blach: pas gón 00 x 0 pas doln 00 x 0 śodni 0 x 5 sna 50 x 0 połącona pasem gónm ołącnie. Długość

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta. Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania

Bardziej szczegółowo

REGUŁY POLITYKI PIENIĘŻNEJ A PROGNOZOWANIE WSKAŹNIKA INFLACJI

REGUŁY POLITYKI PIENIĘŻNEJ A PROGNOZOWANIE WSKAŹNIKA INFLACJI gnieska Prybylska-Maur Uniwersye Ekonomicny w aowicach REGUŁY POLIYI PIENIĘŻNEJ PROGNOZOWNIE WSŹNI INFLCJI Wprowadenie Jednym rodaów poliyki pieniężne es poliyka opara na regułach poliyki pieniężne. en

Bardziej szczegółowo

Opcje koszykowe a lokaty strukturyzowane - wycena

Opcje koszykowe a lokaty strukturyzowane - wycena Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie

Bardziej szczegółowo

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE. uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu CMYK ISBN 98-8-888-- Wdanicto Wżsej Skoł Komunikacji i Zarądania - Ponań, ul Różana a tel 8 9, fa 8 9 skiedu danicto@skiponanpl analia89indd Wdanicto Wżsej Skoł Komunikacji i Zarądania Ponaniu 9--8 ::

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Opcje. Dr hab Renata Karkowska; Wydział Zarządzania UW

Opcje. Dr hab Renata Karkowska; Wydział Zarządzania UW Opcje 1 Opcje Narysuj: Profil wypłaty dla nabywcy opcji kupna. Profil wypłaty dla nabywcy opcji sprzedaży. Profil wypłaty dla wystawcy opcji kupna. Profil wypłaty dla wystawcy opcji sprzedaży. 2 Przykład

Bardziej szczegółowo

11.0. Zadania konstrukcyjne. 11.1. Wytyczne wykonania

11.0. Zadania konstrukcyjne. 11.1. Wytyczne wykonania ostay Konstukcji Masyn - pojektoanie.0. Zaania konstukcyjne estaione poniżej aania konstukcyjne osta Konstukcji Masyn mają a cel aponanie stuentó pebiegiem typoych obliceń elementó konstukcyjnych ykoystaniem

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Wzory matematyka finansowa

Wzory matematyka finansowa Wzory matematyka finansowa MaciejRomaniuk 29 września 29 K(t) funkcjaopisującaakumulacjęwchwiliczasut,k() kapitał,i stopazyskuwchwilit: i= K(t) K() (1) K() K kapitał,i stałastopaprocentowadlaustalonegookresuczasut,

Bardziej szczegółowo

LABORATORIUM TEORII STEROWANIA. Ćwiczenie 6 RD Badanie układu dwupołożeniowej regulacji temperatury

LABORATORIUM TEORII STEROWANIA. Ćwiczenie 6 RD Badanie układu dwupołożeniowej regulacji temperatury Wydział Elektryczny Zespół Automatyki (ZTMAiPC). Cel ćiczenia LABORATORIUM TEORII STEROWANIA Ćiczenie 6 RD Badanie układu dupołożenioej regulacji temperatury Celem ćiczenia jest poznanie łaściości regulacji

Bardziej szczegółowo

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ

Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek

Bardziej szczegółowo

Pola siłowe i ich charakterystyka

Pola siłowe i ich charakterystyka W-6 (Jaosewic) 10 slajdów Pola siłowe i ich chaaktestka Pola siłowe: pojęcie i odaje pól siłowch, wielkości chaakteujące pola siłowe Pola achowawce Pole gawitacjne: uch w polu gawitacjnm 3/10 L.R. Jaosewic

Bardziej szczegółowo

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE Opcja jest umową, która daje posiadaczowi prawo do kupna lub sprzedaży

Bardziej szczegółowo

Badanie kotła parowego

Badanie kotła parowego Badanie kotła aoego Instukcja do ćiczenia n 14 Badanie maszyn - laboatoium Oacoał: d inŝ. Andzej Tataek Zakład Mienicta i Ochony Atmosfey Wocła, gudzień 2006. 1. Cel i zakes ćiczenia Celem ćiczenia jest

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

POLITECHNIKA OPOLSKA Wydział Elektrotechniki i Automatyki

POLITECHNIKA OPOLSKA Wydział Elektrotechniki i Automatyki POLITECHNIKA OPOLSKA Wydział Elektotechniki i Automatyki Mg inż. Michał Tomaszewski MODEL PRZEDSIĘBIORSTWA DYSTRYBUCYJNEGO DZIAŁAJĄCEGO NA OTWARTYM RYNKU ENERGII ELEKTRYCZNEJ Autoefeat pacy doktoskiej

Bardziej szczegółowo

Zarządzanie ryzykiem. Lista 3

Zarządzanie ryzykiem. Lista 3 Zaządzanie yzykiem Lisa 3 1. Oszacowano nasępujący ozkład pawdopodobieńswa dla sóp zwou z akcji A i B (Tabela 1). W chwili obecnej Akcja A ma waość ynkową 70, a akcja B 50 zł. Ile wynosi pięciopocenowa

Bardziej szczegółowo

Instrumenty finansowe w sprawozdaniu banku. Dr Katarzyna Trzpioła

Instrumenty finansowe w sprawozdaniu banku. Dr Katarzyna Trzpioła Instrumenty finansowe w sprawozdaniu banku Dr Katarzyna Trzpioła MSSF dot. instrumentów finansowych MSR 39 MSR 32 MSSF 7 MSR 21 Ujmowanie i usuwanie instrumentów finansowych Wycena instrumentów finansowych

Bardziej szczegółowo

Robot jako system komputerowy

Robot jako system komputerowy Robot jako system komputeoy Mateiał ykładoy opacoany pzez d. hab. inż. Maka Gaysiaka pofesoa na Wydziale Mechanicznym Politechniki Białostockiej Rozdział Kiedy maszyna staje się obotem? Robot pojęcie niejasne

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

Rynek, opcje i równania SDE

Rynek, opcje i równania SDE Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż

Bardziej szczegółowo

Wersja jednorazowa. 200 MB 2 zł 24 godziny DOSTĘPNA wersja niedostępna

Wersja jednorazowa. 200 MB 2 zł 24 godziny DOSTĘPNA wersja niedostępna Regulamin usługi Pakiety internetoe taryfach Orange One, Orange Yes, Orange POP i Noe Orange Go ofercie Orange na kartę oboiązuje od dnia 20 lipca 2015 r. do odołania 1. Pakiety internetoe ( Usługa ) to

Bardziej szczegółowo

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW Opcje Giełdowe Filip Duszczyk Dział Rynku Terminowego GPW Warszawa, 7 maja 2014 Czym są opcje indeksowe (1) Kupno opcji Koszt nabycia Zysk Strata Prawo, lecz nie obligacja, do kupna lub sprzedaży instrumentu

Bardziej szczegółowo

SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego. JA CZŁOWIEK (tytuł zadania publicznego)

SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) z wykonania zadania publicznego. JA CZŁOWIEK (tytuł zadania publicznego) SPRAWOZDANIE (CZĘŚCIOWE/KOŃCOWE 1) ) 2) ykonania adania publicnego JA CZŁOWIEK (tytuł adania publicnego) okresie 7.2.21 r. do 1.12.21 r. określonego umoie nr 9/21 aartej dniu 7 lutego 21 r. pomiędy POWIATEM

Bardziej szczegółowo

Poz. 1118 OBWIESZCZENIE. z dnia 14 lipca 2014 r. - -

Poz. 1118 OBWIESZCZENIE. z dnia 14 lipca 2014 r. - - Poz. 1118 OBWIESZCZENIE z dnia 14 lipca 2014 r. - - - - - - - - - E. Kopacz - - - - - - - - - - - - - - - - - - - - nagrodzenia. - - - - przedni. - - - - - - 2b. - - - - - - - - - - - - - - - - - - - -

Bardziej szczegółowo

Ćw. 4. Określenie momentu i pracy tarcia w złącznych sprzęgłach ciernych. 1. Wprowadzenie do zagadnienia.

Ćw. 4. Określenie momentu i pracy tarcia w złącznych sprzęgłach ciernych. 1. Wprowadzenie do zagadnienia. aboaoium Podsaw Konsukcji asyn Ćw. 4. Okeślenie momenu i pacy acia w łącnych spęgłach cienych. 1. Wpowadenie do agadnienia. Spęgłem naywamy espół słuŝący do łącenia wałów. Dięki asosowaniu spęgła moŝna

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Ewa Dziawgo WYCENA POTĘGOWEJ ASYMETRYCZNEJ OPCJI KUPNA

EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Ewa Dziawgo WYCENA POTĘGOWEJ ASYMETRYCZNEJ OPCJI KUPNA ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Ewa Dziawgo WYCENA POTĘGOWEJ

Bardziej szczegółowo

OPANUJ RYNEK w 8 minut!

OPANUJ RYNEK w 8 minut! OPANUJ RYNEK w 8 minut! OPANUJ RYNEK w 8 minut! Witaj w anyoption, wiodącej na świecie opcjach binarnych! platformie do transakcji na Dajemy Ci możliwość osiągnięcia wysokich zysków w krótkim i średnim

Bardziej szczegółowo

PROWIZJA I AKORD1 1 2

PROWIZJA I AKORD1 1 2 PROWIZJA I AKORD 1 1 1. Pracodawca może ustalić wynagrodenie w formie prowiji lub akordu. 2. Prowija lub akord mogą stanowić wyłącną formę wynagradania lub występować jako jeden e składników wynagrodenia.

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu

Ciśnienie i nośność w płaskim łożysku ślizgowym przy niestacjonarnym laminarnym smarowaniu TRIBOOGIA ZAGADNIENIA EKSPOATACJI MASZYN Zesyt (5) 7 PAWEŁ KRASOWSKI Ciśnienie i nośność w łasim łożysu śligowym ry niestacjonarnym laminarnym smarowaniu Słowa lucowe Płasie łożyso śligowe, laminarne niestacjonarne

Bardziej szczegółowo

Zestawienie czasów angielskich

Zestawienie czasów angielskich Zestawienie czasów angielskich Present Continuous I am, You are, She/ He/ It is, We/ You/ They are podmiot + operator + (czasownik główny + ing) + reszta I' m driving. operator + podmiot + (czasownik główny

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA LABORATORIUM MASZYNY ELEKTRYCZNE

POLITECHNIKA GDAŃSKA LABORATORIUM MASZYNY ELEKTRYCZNE POLTECHNKA GDAŃSKA WYDZAŁ ELEKTROTECHNK ATOMATYK KATEDRA ENERGOELEKTRONK MASZYN ELEKTRYCZNYCH LABORATORM MASZYNY ELEKTRYCZNE ĆWCZENE (M) MASZYNY NDKCYJNE/ASYNCHRONCZNE TRÓJFAZOWE BADANE CHARAKTERYSTYK:

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

GENERATOR PROGRAM. Instrukcja użytkownika

GENERATOR PROGRAM. Instrukcja użytkownika ALBECO Soft mgr inż. Piotr Berłoski ul. Warzyniaka 11 60-506 Poznań piotrber@albeco.poznan.pl.albeco.poznan.pl tel. 8420-027, fax 8420-228 PROGRAM GENERATOR Instrukcja użytkonika ersja 0.9 23.04.2004-1/8

Bardziej szczegółowo

Współczynniki Greckie

Współczynniki Greckie Wojciech Antniak 05.0.008r. Wstęp Współczynniki greckie określają ryzyko opcji europejskiej na zmiany rynku. ażdy z nich określa w jaki sposób wpłynie zmiana jakiegoś czynnika na cenę akcji. W dalszej

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Urządzenia i Układów Automatyki Instrukcja Wykonania Projektu

Urządzenia i Układów Automatyki Instrukcja Wykonania Projektu KAEDRA ENERGOELEKRYKI POLIECHNIKI WROCŁAWSKIEJ Urądenia i Układów Auomayki Insrukcja Wykonania Projeku Auory: rof. dr hab. inż. Eugenius Rosołowski dr inż. Pior Pier dr inż. Daniel Bejmer Wrocław 5 I.

Bardziej szczegółowo

Opcje jako uzupełnienie portfela inwestycyjnego

Opcje jako uzupełnienie portfela inwestycyjnego Opcje jako uzupełnienie portfela inwestycyjnego forex, wszystkie towary, rynki giełda w jednym miejscu Istota opcji Łac. optio- oznacza wolna wola, wolny wybór Kontrakt finansowy, który nabywcy daje prawo

Bardziej szczegółowo

MODEL MUNDELLA-FLEMINGA

MODEL MUNDELLA-FLEMINGA Danuta Miłasewic Uniwersytet Sceciński MODEL MUNDELLA-FLEMINGA 1. OPIS MODELU MUNDELLA-FLEMINGA Model ten, stworony na pocątku lat seśćdiesiątych XX wieku pre Roberta A. Mundella i Markusa Fleminga, opisuje

Bardziej szczegółowo

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014

Futures na Wibor najlepszy sposób zarabiania na stopach. Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Futures na Wibor najlepszy sposób zarabiania na stopach Departament Skarbu, PKO Bank Polski Konferencja Instrumenty Pochodne Warszawa, 28 maja 2014 Agenda Wprowadzenie Definicja kontraktu Czynniki wpływające

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Opcje Strategie opcyjne 1 Współczynniki greckie Współczynniki greckie określają o ile zmieni się kurs opcji w wyniku zmiany wartości poszczególnych

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH 51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl

Bardziej szczegółowo

Wykład 9. Stateczność prętów. Wyboczenie sprężyste

Wykład 9. Stateczność prętów. Wyboczenie sprężyste Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem

Bardziej szczegółowo

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call)

STRATEGIE NA RYNKU OPCJI. KUPNO OPCJI KUPNA (Long Call) STRATEGIE NA RYNKU OPCJI KUPNO OPCJI KUPNA (Long Call) * * * Niniejsza broszura ma charakter jedynie edukacyjny i nie stanowi oferty kupna ani oferty sprzedaży żadnych instrumentów finansowych ani usług

Bardziej szczegółowo

Z-ID-408 Finanse przedsiębiorstw Corporate Finance

Z-ID-408 Finanse przedsiębiorstw Corporate Finance KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Naza modułu Naza modułu języku angielskim Oboiązuje od roku akademickiego 20/206 Z-ID-408 Finanse przedsiębiorst Corporate Finance A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

LABORATORIUM Z FIZYKI TECHNICZNEJ Ć W I C Z E N I E N R 7 WYZNACZANIE SPRAWNOŚCI POMPY CIEPŁA

LABORATORIUM Z FIZYKI TECHNICZNEJ Ć W I C Z E N I E N R 7 WYZNACZANIE SPRAWNOŚCI POMPY CIEPŁA Projekt Plan rozoju Politechniki Częstochoskiej spółfinansoany ze środkó UNII EUROPEJSKIEJ ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.04.01.01-00-59/08 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII

Bardziej szczegółowo

OPCJE - PODSTAWY TEORETYCZNE cz. 2

OPCJE - PODSTAWY TEORETYCZNE cz. 2 OPCJE - PODSTAWY TEORETYCZNE cz. 2 Diagram powyżej przedstawia jakie możliwe pozycje można zając na opcjach typu call (opcja kupna) i put (opcja sprzedaży). Zostały przedstawione cztery możliwe do zajęcia

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Tabela 4. Kody uzupełniające do kodów soczewek okularowych korekcyjnych

Tabela 4. Kody uzupełniające do kodów soczewek okularowych korekcyjnych Tabela 4. Kody uzupełniające do kodów soczewek okularowych korekcyjnych Lp Kod Środki pomocnicze 1 2 3 1. 9221.04.10.01 SZKŁA SFERYCZNE OD 0,00 DO +,- 4,00 DPTR DO BLIŻY DLA 2. 9221.04.10.01.30 SFERA OD

Bardziej szczegółowo

PREZENTACJA SPÓŁKI Publiczna oferta akcji ecard S.A.

PREZENTACJA SPÓŁKI Publiczna oferta akcji ecard S.A. PREZENTACJA SPÓŁKI Publicna oferta akcji ecard S.A. Niniejsy materiał ma charakter promocyjny. Jedynym pranie iążącym dokumentem aierającym informacje o ofercie akcji ecard S.A. jest opublikoany Prospekt

Bardziej szczegółowo

9. OCENA JAKOŚCI PRACY UKŁADU REGULACJI

9. OCENA JAKOŚCI PRACY UKŁADU REGULACJI 9. Ocea jakości acy układu egulacji 9. OENA JAOŚI PRAY UŁADU REULAJI amy edukoway układ egulacji: R() - E() () H() - Z() () Ry. 9. amy ty tyy UAR e wględu a elacje międy R(), () i Z(): a) Układy tabiliujące

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR WŁASNOŚCI OPCJI CAPPED.

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR WŁASNOŚCI OPCJI CAPPED. ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 213 EWA DZIAWGO Uniwersytet Mikołaja Kopernika w Toruniu WŁASNOŚCI OPCJI CAPPED Streszczenie W artykule

Bardziej szczegółowo

Optyka wiązek - Wiązka Gaussowska

Optyka wiązek - Wiązka Gaussowska Optyka wiąek - iąka Gaussowska iąka Gaussowska Rokład espolonego pola optycnego } exp{ ik U jest espolonym okładem pola któy musi być owiąaniem ównania Helmholt a: Gdie k jest licbą alową chaakteyującą

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo