Sympozjum Trwałość Budowli

Wielkość: px
Rozpocząć pokaz od strony:

Download "Sympozjum Trwałość Budowli"

Transkrypt

1 Sympozjum Trwałość Budowli Andrzej ownuk ROJEKTOWANIE UKŁADÓW Z NIEEWNYMI ARAMETRAMI Zakład Mechaniki Teoretycznej olitechnika Śląska URL:

2 Wytrzymałość betonu Neville A.M., Właściwości betonu. olski Cement Sp. z o.o., Kraków 2000

3

4 Niepewności parametrów mają szczególnie duże znaczenie w następujących przypadkach: - obliczanie konstrukcji murowych; - mechanice gruntów; - mechanice konstrukcji kompozytowych; - ekspertyzach istniejących obiektów szczególnie konstrukcji zabytkowych; - określanie wartości obciążeń np.: a) mosty b) tunele c) obciążenia nawierzchni drogowych

5 Metody modelowania niepewności - metody półprobabilistyczne (wykorzystanie współczynników bezpieczeństwa) σ0 σmax γ lub g(, γ) σ max 0 - metody probabilistyczne lub ( g( x) 0) R ( σ max σ0) R 0 rzykład funkcji granicznej dla problemu rozciągania prętów g(x) = σ 0 A 0

6 Wady metod półprobabilistycznych: - mała dokładność; - wartości współczynników bezpieczeństwa trudno ustalić na drodze eksperymentalnej. Wady metod probabilistycznych: - brak odpowiednich danych doświadczalnych (konstrukcje zabytkowe); - zbyt mała liczba pomiarów uniemożliwia zastosowanie tych metod (koszty przeprowadzania pomiarów); - idealizacja rzeczywistych procesów fizycznych poprzez zastosowanie rozkładu normalnego; - brak losowego charakteru niektórych zjawisk (konstrukcje budowlane są bardzo często jednostkowe); - krytyka teorii prawdopodobieństwa (nie da się jej zweryfikować w sposób ścisły, ponieważ nie można wykonać nieskończonej ilości pomiarów);

7 odstawowe założenia procesu modelowania niepewności parametrów konstrukcji budowlanych Istniejące teorie naukowe nie opisują dokładnie rzeczywistego zachwiania się konstrukcji. (zwykle dokładność ta jest wystarczająca dla celów inżynierskich) Każdy parametr konstrukcji budowlanej znany jest tylko z pewną dokładnością W niektórych przypadkach wpływ niepewności parametrów jest na tyle duży, iż nie może zostać pominięty podczas obliczeń wytrzymałościowych. Sam proces wykonywania obliczeń jest źródłem błędów (np. błędy zaokrągleń, linearyzacja itp.)

8 Identyfikacja parametrów przedziałowych rzypadek I Dostępne informacje Dane doświadczalne X ω ). ( i rocedura obliczeń Ustalamy poziom ufności α [0, 1]. + rzedział x = [ x, x ] ustalamy tak, aby ( X x) α + 1- α ( X x ) = ( X x ) = 2 Jeśli nie można założyć, że wszystkie pomiary są jednakowo prawdopodobne 1 tzn. ( { ω i }) =, to przyjmujemy, N + że ({ ω i }) [, ] i wykorzystujemy koncepcję dolnego prawdopodobieństwa: ( X x) α

9 rzypadek II Dostępne informacje 1) Dane doświadczalne X ( ω i ). Mała liczba pomiarów. 2) Informacje na temat zachowania podobnych konstrukcji. rocedura obliczeń + x = min X ), x = max X ) 0 ( ωi i 0 ( ωi i rzedział x otrzymujemy w wyniku oszacowania ekstremalnych wartości parametrów układu mechanicznego na podstawie przedziału x 0 oraz wiedzy o zachowaniu się podobnych konstrukcji.

10 rzypadek III Dostępne informacje Informacje na temat zachowania podobnych konstrukcji. rocedura obliczeń rzedział x otrzymujemy w wyniku oszacowania ekstremalnych wartości parametrów układu mechanicznego na podstawie wiedzy o zachowaniu się podobnych konstrukcji. Uwaga Metoda ta może zostać wykorzystana jeśli podobne konstrukcje zachowują się podobnie (z pewną zadaną dokładnością).

11 rojektowanie konstrukcji z przedziałowymi parametrami Niech bezpieczeństwo układu daje się opisać przy wykorzystaniu pewnej funkcji granicznej y = g( x, h) oraz wektor parametrów h jest dany z dokładnością do wektora przedziałów h. rojektowany parametr x obliczamy na podstawie następującej relacji x = { x : g( x, h) 0, h h} Dla porównania w metodzie półprobablistycznej przyjmujemy: x = { x : g( x, h0,γ) 0} W teorii prawdopodobieństwa przyjmujemy: x = { x : ( g( x, h) 0) R0}

12 orównanie różnych metod projektowania. A - projektowany parametr parametr niepewny Metoda półprobabilistyczna γ F g( A,, γ) = σ0 A γ F A { A: σ0 0} A Metoda probabilistyczna g( A,) = σ 0 A 0 A { A: σ0 R0} A Zastosowanie parametrów przedziałowych g( A,) = σ 0 A A { A: σ0 0, } A

13 Związek metody parametrów przedziałowych z metodą półprobabilistyczną Metoda półprobabilistyczna [0, γ F ] γ F γ sup A sup{ A: σ0 0} = A σ = F 0 sup A = Metoda przedziałowa + = [, ] sup{ A: σ 0, A 0 } = σ + 0 orównując wyniki otrzymujemy γ F = + Wniosek W przypadku problemu rozciągania prętów metoda półprobabilistyczna daje identyczne wyniki jak metoda parametrów przedziałowych.

14 Wniosek 2 Metoda przedziałowa daje wyniki identyczne jak metoda półprobabilistyczna w przypadku, gdy zależność pomiędzy projektowanym parametrem oraz parametrem niepewnym jest monotoniczna. Warunek ten jest spełniony dla większości metod obliczeniowych wykorzystywanych w mechanice konstrukcji, gdy niepewności parametrów są dostatecznie małe. Wniosek 3 Obecne stosowane normy projektowania wykorzystują przedziałowy model niepewności oraz zakładają monotoniczną zależność pomiędzy projektowanym parametrem i parametrem niepewnym.

15 Wniosek 4 W przypadku, gdy nie potrafimy określić probabilistycznych charakterystyk parametrów konstrukcji należy zastosować metodę półprobabilistyczną zamiast probabilistycznej. Zatem w pewnych przypadkach tradycyjne metody projektowania umożliwiają lepszy opis niepewności niż metody probabilistyczne. Metoda przedziałowa umożliwia wykorzystanie istniejących współczynników bezpieczeństwa w obliczeniach wykonywanych przy wykorzystaniu komputerowych metod mechaniki ciał stałych.

16 rzyjmujemy wtedy h [0, h h ] 0 γ h 0 - wartość charakterystyczna parametru h h0 γ h - wartość obliczeniowa parametru h rojektowany parametr x można obliczyć na podstawie jednego z dwóch następujących warunków. sup{ x : inf { x : g( x,h g( x,h 0 1,..., hm ) 0, hi [0, hi γh i lub ) 0, 0 1,..., hm hi [0, hi γh i ]} ]} rzykład σ 0 [0, σ0 γc] = σ0, [0, 0 γ f ] = sup A = sup{ A: σ0 0,, σ0 σ0} A

17 odejście takie umożliwia uwzględnianie parametrów losowych oraz przedziałowych równocześnie. Niech Y będzie wektorem losowym oraz h wektorem parametrów przedziałowych. rojektowany parametr x należy do następującego przedziału lub x f 0 = { x : ( g( x, Y, h) < 0) <, h h} x = { x : fy( y)dy < f { y: g( x, y, h) < 0, h h} W zależności od charakteru parametru do obliczeń przyjmujemy inf x lub sup x. 0 }

18 W przypadku, gdy pomiary są przedziałami liczbowymi lub pomiary nie są otrzymywane z jednakowym prawdopodobieństwem wykorzystujemy koncepcję górnego i dolnego prawdopodobieństwa. rezentowany algorytm można uogólnić na przypadek, gdy parametry modelowane są przy wykorzystaniu liczb rozmytych. µ F µ F (x)

19 Wnioski Modelowanie niepewności parametrów ma szczególnie duże znaczenie w konstrukcjach murowych, kompozytowych, zabytkowych, geomechanice oraz biomechanice. rzedziałowe parametry można otrzymać na drodze eksperymentalnej. Najlepiej przy wykorzystaniu koncepcji górnego i dolnego prawdopodobieństwa. Metoda półprobabilistyczna daje identyczne wyniki jak algorytm oparty na parametrach przedziałowych. Wykorzystując prezentowaną metodologię można uogólnić istniejące współczynniki bezpieczeństwa na przypadek projektowania z wykorzystaniem systemów CAD/CAM. rezentowany algorytm umożliwia projektowanie układów o parametrach losowych oraz przedziałowych.

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Spis treści. Wprowadzenie... Podstawowe oznaczenia... 1. Ustalenia ogólne... 1 XIII XV

Spis treści. Wprowadzenie... Podstawowe oznaczenia... 1. Ustalenia ogólne... 1 XIII XV Spis treści Wprowadzenie... Podstawowe oznaczenia... XIII XV 1. Ustalenia ogólne... 1 1.1. Geneza Eurokodów... 1 1.2. Struktura Eurokodów... 6 1.3. Różnice pomiędzy zasadami i regułami stosowania... 8

Bardziej szczegółowo

SEKWENCJA PRZEDMIOTÓW KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE

SEKWENCJA PRZEDMIOTÓW KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE 13 maj 2013 KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE Strona 1 z 20 SEKWENCJA PRZEDMIOTÓW KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA STACJONARNE UWAGI: 1. Oznaczenie dla przedmiotów prowadzonych

Bardziej szczegółowo

XXIII OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2010 ELIMINACJE OKRĘGOWE Godło nr PYTANIA I ZADANIA

XXIII OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2010 ELIMINACJE OKRĘGOWE Godło nr PYTANIA I ZADANIA XXIII OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2010 ELIMINACJE OKRĘGOWE Godło nr CZĘŚĆ A Czas 120 minut PYTANIA I ZADANIA 1 2 PUNKTY Na rysunku pokazano kilka przykładów spoin pachwinowych. Na każdym

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Dokładność pomiaru: Ogólne informacje o błędach pomiaru Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

13 maj 2013 KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA NIESTACJONARNE Strona 1 z 11

13 maj 2013 KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA NIESTACJONARNE Strona 1 z 11 13 maj 2013 KIERUNEK: BUDOWNICTWO, II STOPIEŃ, STUDIA NIESTACJONARNE Strona 1 z 11 SEKWENCJA PRZEDMIOTÓW KIERUNEK: BUDOWNICTWO II STOPIEŃ, STUDIA NIESTACJONARNE UWAGI: 1. Oznaczenie dla przedmiotów prowadzonych

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 1

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 1 Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 1 Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji i Zarządzania

Bardziej szczegółowo

OGÓLNA KONCEPCJA METODY UGIĘĆ

OGÓLNA KONCEPCJA METODY UGIĘĆ 1 OGÓLNA KONCEPCJA METODY UGIĘĆ modyfikacja metody ugięć zastosowanej w Katalogu Typowych Konstrukcji Nawierzchni Podatnych i Półsztywnych z 1983 roku, założenie - trwałość nawierzchni jest zależna od

Bardziej szczegółowo

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Jan Bródka, Aleksander Kozłowski (red.) SPIS TREŚCI: 7. Węzły kratownic (Jan Bródka) 11 7.1. Wprowadzenie 11 7.2. Węzły płaskich

Bardziej szczegółowo

Słowa kluczowe: Eurokod, szeregowa struktura niezawodnościowa, wskaźnik niezawodności, kolokacja,

Słowa kluczowe: Eurokod, szeregowa struktura niezawodnościowa, wskaźnik niezawodności, kolokacja, Archs Wiki Niezawodność systemów konstrukcyjnych Streszczenie Dobór elementów struktury konstrukcyjnej szeregowej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β dla różnych rozkładów

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Laboratorium Telewizji Cyfrowej

Laboratorium Telewizji Cyfrowej Laboratorium Telewizji Cyfrowej Badanie wybranych elementów sieci TV kablowej Jarosław Marek Gliwiński Robert Sadowski Przemysław Szczerbicki Paweł Urbanek 14 maja 2009 1 Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

PRZEDMOWA 10 1. WIADOMOŚCI WSTĘPNE 11 2. ROZWÓJ MOSTÓW DREWNIANYCH W DZIEJACH LUDZKOŚCI 13

PRZEDMOWA 10 1. WIADOMOŚCI WSTĘPNE 11 2. ROZWÓJ MOSTÓW DREWNIANYCH W DZIEJACH LUDZKOŚCI 13 PRZEDMOWA 10 1. WIADOMOŚCI WSTĘPNE 11 2. ROZWÓJ MOSTÓW DREWNIANYCH W DZIEJACH LUDZKOŚCI 13 3. DREWNO JAKO MATERIAŁ KONSTRUKCYJNY DO BUDOWY MOSTÓW 39 3.1. Wady i zalety drewna 39 3.2. Gatunki drewna stosowane

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM ZESP1 (12.91) Autor programu: Zbigniew Marek Michniowski Program do analizy wytrzymałościowej belek stalowych współpracujących z płytą żelbetową. PRZEZNACZENIE I OPIS PROGRAMU Program służy do

Bardziej szczegółowo

Advance Design 2015 / SP2

Advance Design 2015 / SP2 Advance Design 2015 / SP2 Service Pack 2 do ADVANCE Design 2015 przynosi ponad 150 ulepszeń i poprawek. POLSKIE ZAŁĄCZNIKI KRAJOWE DO EUROKODÓW Advance Design 2015 SP2 umożliwia prowadzenie obliczeń z

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: definicje i pojęcia podstawowe. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: definicje i pojęcia podstawowe dr inż. Paweł Zalewski Akademia Morska w Szczecinie Pojęcia podstawowe: Metrologia jest nauką zajmująca się sposobami dokonywania pomiarów oraz zasadami interpretacji

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W)

Odniesienie do obszarowych efektów kształcenia 1 2 3. Kierunkowe efekty kształcenia WIEDZA (W) EFEKTY KSZTAŁCENIA NA KIERUNKU "MECHATRONIKA" nazwa kierunku studiów: Mechatronika poziom kształcenia: studia pierwszego stopnia profil kształcenia: ogólnoakademicki symbol kierunkowych efektów kształcenia

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH

STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Dane bibliograiczne o artykule: http://mieczyslaw_polonski.users.sggw.pl/mppublikacje STATYSTYCZNE OPRACOWANIE WYNIKÓW KONTROLI JAKOŚCI ROBÓT ZIEMNYCH Mieczysław Połoński 1 1. Metodyka statystycznego opracowania

Bardziej szczegółowo

Seminarium Metody obliczania przepływów maksymalnych w zlewniach kontrolowanych i niekontrolowanych, RZGW, Kraków 30 IX 2013 r. Metody obliczania przepływów maksymalnych rocznych o określonym prawdopodobieństwie

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 2 Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KUR TATYTYKA Lekcja Przedziały ufności i estymacja przedziałowa ZADANIE DOMOWE www.etrapez.pl trona 1 Część 1: TET Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 We wnioskowaniu statystycznym

Bardziej szczegółowo

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH M.20.02.01. Próbne obciążenie obiektu mostowego

WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH M.20.02.01. Próbne obciążenie obiektu mostowego WARUNKI WYKONANIA I ODBIORU ROBÓT BUDOWLANYCH Próbne obciążenie obiektu mostowego 1. WSTĘP 1.1. Przedmiot Warunków wykonania i odbioru robót budowlanych Przedmiotem niniejszych Warunków wykonania i odbioru

Bardziej szczegółowo

Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa

Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa Moduł 2/3 Projekt procesu technologicznego obróbki przedmiotu typu bryła obrotowa Zajęcia nr: 2 Temat zajęć: Określenie klasy konstrukcyjno-technologicznej przedmiotu. Dobór postaci i metody wykonania

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia

ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia ZAKŁADANE EFEKTY KSZTAŁCENIA Kierunek: Inżynieria Materiałowa Studia I stopnia Tabela odniesień efektów kierunkowych do efektów obszarowych Odniesienie do Symbol Kierunkowe efekty kształcenia efektów kształcenia

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 1 Temat: Kontrola odbiorcza partii wyrobów z selekcją

Bardziej szczegółowo

SPRAWOZDANIE Z BADAŃ

SPRAWOZDANIE Z BADAŃ POLITECHNIKA ŁÓDZKA ul. Żeromskiego 116 90-924 Łódź KATEDRA BUDOWNICTWA BETONOWEGO NIP: 727 002 18 95 REGON: 000001583 LABORATORIUM BADAWCZE MATERIAŁÓW I KONSTRUKCJI BUDOWLANYCH Al. Politechniki 6 90-924

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

ANALIZA SYSTEMU POMIAROWEGO (MSA)

ANALIZA SYSTEMU POMIAROWEGO (MSA) StatSoft Polska, tel. 1 484300, 601 414151, info@statsoft.pl, www.statsoft.pl ANALIZA SYSTEMU POMIAROWEGO (MSA) dr inż. Tomasz Greber, Politechnika Wrocławska, Instytut Organizacji i Zarządzania Wprowadzenie

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl Mechatronika i inteligentne systemy produkcyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, cel i zastosowania mechatroniki Urządzenie mechatroniczne - przykłady

Bardziej szczegółowo

Nowe technologie w nawierzchniach betonowych beton wałowany

Nowe technologie w nawierzchniach betonowych beton wałowany Nowe technologie w nawierzchniach betonowych beton wałowany Przygotował: mgr inż. Konrad Harat dr inż. Piotr Woyciechowski Zakład Inżynierii Materiałów Budowlanych Politechniki Warszawskiej Kielce, maj

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Testowanie hipotez. 1 Testowanie hipotez na temat średniej

Testowanie hipotez. 1 Testowanie hipotez na temat średniej Testowanie hipotez Poziom p Poziom p jest to najmniejszy poziom istotności α, przy którym możemy odrzucić hipotezę zerową dysponując otrzymaną wartością statystyki testowej. 1 Testowanie hipotez na temat

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

Niepewność pomiaru masy w praktyce

Niepewność pomiaru masy w praktyce Niepewność pomiaru masy w praktyce RADWAG Wagi Elektroniczne Z wszystkimi pomiarami nierozłącznie jest związana Niepewność jest nierozerwalnie związana z wynimiarów niepewność ich wyników. Podając wyniki

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej Efekty na kierunku AiR drugiego stopnia - Wiedza K_W01 K_W02 K_W03 K_W04 K_W05 K_W06 K_W07 K_W08 K_W09 K_W10 K_W11 K_W12 K_W13 K_W14 Ma rozszerzoną wiedzę dotyczącą dynamicznych modeli dyskretnych stosowanych

Bardziej szczegółowo

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej.

Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Wyznaczanie minimalnej odważki jako element kwalifikacji operacyjnej procesu walidacji dla wagi analitycznej. Andrzej Hantz Dyrektor Centrum Metrologii RADWAG Wagi Elektroniczne Pomiary w laboratorium

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Spis treści. 2.1. Bezpośredni pomiar konstrukcji... 32 2.1.1. Metodyka pomiaru... 32 2.1.2. Zasada działania mierników automatycznych...

Spis treści. 2.1. Bezpośredni pomiar konstrukcji... 32 2.1.1. Metodyka pomiaru... 32 2.1.2. Zasada działania mierników automatycznych... Księgarnia PWN: Łukasz Drobiec, Radosław Jasiński, Adam Piekarczyk - Diagnostyka konstrukcji żelbetowych. T. 1 Wprowadzenie............................... XI 1. Metodyka diagnostyki..........................

Bardziej szczegółowo

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie.

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie. Mając do dyspozycji 20 kartek papieru o gramaturze 80 g/m 2 i wymiarach 297mm na 210mm (format A4), 2 spinacze biurowe o masie 0,36 g każdy, nitkę, probówkę, taśmę klejącą, nożyczki, zbadaj, czy maksymalna

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

Instytut Budownictwa Wodnego Polskiej Akademii Nauk. Gdańsk Oliwa ul. Kościerska 7. www.ibwpan.gda.pl

Instytut Budownictwa Wodnego Polskiej Akademii Nauk. Gdańsk Oliwa ul. Kościerska 7. www.ibwpan.gda.pl Zakłady Naukowe IBW PAN 1. Zakład Mechaniki i Inżynierii Brzegów 2. Zakład Mechaniki Falowania i Dynamiki Budowli 3. Zakład Dynamiki Wód Powierzchniowych i Podziemnych 4. Zakład Geomechaniki Dyscypliny

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn. Wykład nr. 1_01

Podstawy Konstrukcji Maszyn. Wykład nr. 1_01 Podstawy Konstrukcji Maszyn Wykład nr. 1_01 Zaliczenie: Kolokwium na koniec semestru obejmujące : - część teoretyczną - obliczenia (tylko inż. i zarz.) Minimum na ocenę dostateczną 55% - termin zerowy

Bardziej szczegółowo

Oferta firmy Invenco dla przemysłu motoryzacyjnego. Piotr Bartkowski. Marian Ostrowski Warszawa, 2016

Oferta firmy Invenco dla przemysłu motoryzacyjnego. Piotr Bartkowski. Marian Ostrowski Warszawa, 2016 Oferta firmy Invenco dla przemysłu motoryzacyjnego Piotr Bartkowski Marian Ostrowski Warszawa, 2016 Plan prezentacji: Prezentacja oferty firmy INVENCO na przykładzie pojazdu HEX-XT O firmie Pojazd HEX-XT

Bardziej szczegółowo

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6

Wielkość dziennego obrotu w tys. zł. (y) Liczba ekspedientek (x) 6 2 4 5,5 6,6 Zad. 1. Zbadano wydajność odmiany pomidorów na 100 poletkach doświadczalnych. W wyniku przeliczeń otrzymano przeciętną wydajność na w tonach na hektar x=30 i s 2 x =7. Przyjmując, że rozkład plonów pomidora

Bardziej szczegółowo

Katalog typowych konstrukcji nawierzchni sztywnych

Katalog typowych konstrukcji nawierzchni sztywnych Wydział Budownictwa Lądowego i Wodnego Zakład Dróg i Lotnisk Katalog typowych konstrukcji nawierzchni sztywnych Prof. Antoni Szydło Tematyka 1.Podstawowe informacje w odniesieniu do poprzedniego katalogu

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Projektowanie Wirtualne bloki tematyczne PW I

Projektowanie Wirtualne bloki tematyczne PW I Podstawowe zagadnienia egzaminacyjne Projektowanie Wirtualne - część teoretyczna Projektowanie Wirtualne bloki tematyczne PW I 1. Projektowanie wirtualne specyfika procesu projektowania wirtualnego, podstawowe

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ESTYMACJA Symbole w statystyce Symbole Populacja Średnia m Próba x Odchylenie standardowe σ s Odsetek p p Estymacja co to jest? Estymacja punktowa Estymacja przedziałowa

Bardziej szczegółowo

Pojazdy przeciążone zagrożeniem dla trwałości nawierzchni drogowych: metody przeciwdziałania

Pojazdy przeciążone zagrożeniem dla trwałości nawierzchni drogowych: metody przeciwdziałania Pojazdy przeciążone zagrożeniem dla trwałości nawierzchni drogowych: metody przeciwdziałania Prof. dr hab. inż. Leszek Rafalski Mgr inż. Michał Karkowski II WARMIŃSKO-MAZURSKIE FORUM DROGOWE LIDZBARK WARMIŃSKI

Bardziej szczegółowo

Podstawy elektroniki i miernictwa

Podstawy elektroniki i miernictwa Podstawy elektroniki i miernictwa Kod modułu: ELE Rodzaj przedmiotu: podstawowy; obowiązkowy Wydział: Informatyki Kierunek: Informatyka Poziom studiów: pierwszego stopnia Profil studiów: ogólnoakademicki

Bardziej szczegółowo

SAS 670/800. Zbrojenie wysokiej wytrzymałości

SAS 670/800. Zbrojenie wysokiej wytrzymałości SAS 670/800 Zbrojenie wysokiej wytrzymałości SAS 670/800 zbrojenie wysokiej wytrzymałości Przewagę zbrojenia wysokiej wytrzymałości SAS 670/800 nad zbrojeniem typowym można scharakteryzować następująco:

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Obciążenia montażowe

Obciążenia montażowe Obciążenia montażowe Obciążenie użytkowe Typ: Obciążenie użytkowe Opis: Obciążenia stropów od składowania [6.3.2], E1 Wybrana kategoria obciążenia: Obciążenia stropów od składowania [6.3.2] Wybrana kategoria

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

9. Podstawowe narzędzia matematyczne analiz przestrzennych

9. Podstawowe narzędzia matematyczne analiz przestrzennych Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu

Bardziej szczegółowo

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED

Bardziej szczegółowo

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17

SPIS TREŚCI CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 SPIS TREŚCI WSTĘP..13 CZĘŚĆ I : PRZEZNACZENIE, PROCES I PODSTAWY METODOLOGICZNE BADAŃ MARKETINGOWYCH...17 1. TREŚĆ, PRZEZNACZENIE I PROCES BADAŃ MARKETINGOWYCH....19 1.1. Dlaczego badania marketingowe

Bardziej szczegółowo

BUDOWNICTWO. Zagadnienia na egzamin dyplomowy dla studentów z zakresu poniższych przedmiotów:

BUDOWNICTWO. Zagadnienia na egzamin dyplomowy dla studentów z zakresu poniższych przedmiotów: BUDOWNICTWO Zagadnienia na egzamin dyplomowy dla studentów z zakresu poniższych przedmiotów: Mechanika gruntów i fundamentowanie: 1. Podłoże gruntowe niejednorodne, zasady wydzielania warstw geotechnicznych,

Bardziej szczegółowo

Spis treści. Opis techniczny

Spis treści. Opis techniczny Spis treści Opis techniczny 1. Przedmiot i zakres opracowania 2. Podstawa formalna projektu 3. Podstawy merytoryczne opracowania 4. Zastosowane schematy konstrukcyjne 5. Założenia przyjęte do obliczeń

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski

Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski 1. Obciążenia środowiskowe (wiatr, falowanie morskie, prądy morskie, poziomy zwierciadła wody, oddziaływanie lodu) 2. Poziomy obciążeń

Bardziej szczegółowo

Parametry statystyczne

Parametry statystyczne I. MIARY POŁOŻENIA charakteryzują średni lub typowy poziom wartości cechy, wokół nich skupiają się wszystkie pozostałe wartości analizowanej cechy. I.1. Średnia arytmetyczna x = x 1 + x + + x n n = 1 n

Bardziej szczegółowo